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Solving Optimal Power Flow Problem of Power
System Based on Archimedes Optimization
Algorithm

Jun-Hua Zhu, Jie-Sheng Wang *, Xing-Yue Zhang

Abstract— The fundamental purpose of optimal power flow
in power system is to improve the economic indexes and
stability indexes such as generation cost and voltage deviation
on the premise of satisfying the operation constraints and
supply and demand balance. The model of the optimal power
flow problem is established by taking the system power
balance, generator set output limit and transformer tap as
constraints. In this experiment, Archimedes optimization
algorithm (AOA) is used to solve OPF problem with IEEE-30
bus system. Total generation cost, active power loss, voltage
stability and bus voltage offset are selected as the evaluation
indexes in the OPF problem. Then the experimental data of
AOA are compared with several meta-heuristic algorithms, so
as to test and verify the excellent performance of AOA.
Simulation results show that AOA can be used as a powerful
alternative technique to solve the OPF problem.

Index Terms—optimal power flow; archimedes optimization
algorithm; constrained optimization; power system

I. INTRODUCTION

PTIMAL power flow (OPF) is designed to optimize
generation costs or other reliability indicators. OPF
changes the power flow of the whole power network by
regulating the control variables when the system and
equipment constraints are satisfied. Like traditional power
flow calculation, OPF is closely related to the running status
of the entire system, including the voltage level of every bus
and the active and reactive power injected into each node.
But unlike traditional power flow calculations, OPF 1s
suitable for an unconstrained network with plural control
variables, and there can be multiple solutions. Therefore,
OPF performs several power flow iterations to modify
control variables to optimize fuel cost, voltage stability and
other indicators. The OPF is a highly nonlinear and
non-convex optimization problem, which not only has many
constraints, but also can contain both continuous and
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discrete control variables[1]. Ref. [2-4] has studied OPF
problem by using classical techniques in operations research,
and the solution methods include linear programming,
nonlinear programming, Newton method and gradient
method, etc. The OPF problem is relatively complex and
computation scale is large. The solutions obtained by the
above optimization methods are often local optimal
solutions, so these optimization methods can not deal with
the OPF problem well. Due to the limitation of traditional
mathematical optimization methods, many researchers have
turned their focus to swarm intelligence optimization
algorithms that perform well in many fields. Ref. [5]
mproved the grey wolf optimizer, named CS-GWO, which
added horizontal and vertical crossover operators for
optimization, and achieved good results in OPF problems.
Ref. [6] improved the whale optimization algorithm, named
EWOA, and added two hunting methods to make the
predation process more effective. The algorithm 1s simulated
in four OPF test systems, and the promising results are
obtained especially in the case of multiple targets. InRef. [7],
the constraint processing technology and adaptive penalty
are applied to the setting of static penalty function in OPF
problem, and satisfactory experimental results are obtained.
In Ref. [8], Sayah and Zehar improved the differential
evolution algorithm to deal with the OPF for thermal power
units including non-smooth and non-convex fuel cost
functions. The mutation operator is modified effectively to
ensure both the convergence rate of the curve and the
accuracy of the solution. In Ref. [9], Elattar et al. used the
modified JAYA algorithm to deal with the test system with
new energy, and obtains satisfactory results. In Ref. [10],
Zhang solved the OPF problem by using a small-population
hybrid particle swarm optimization method (HPSO-SP). In
Ref. [11], Mahdad and Srairi adopted adaptive partitioning
flower pollination algorithm (APFPA) to smoothly deal with
the OPF problem by taking into account of main generator
set failures. In Ref. [12], Bentouati et al. added chaotic
behavior to salp swarm algorithm (SSA) to deal with the
OPF problem.

Recently, Fatma A. Hashim proposed a new meta-
heuristic algorithm: archimedes optimization algorithm
{AOA) [13]. AOA 1s inspired by Archimedes' law, a law of
hydro-statics that states that if an object dip into liquid, it
will experience upward buoyancy equal to the force of
gravity on the liquid it displaces. If the buoyant force on an
object is equal to its own gravity, then the object will be
stationary; If the buoyancy force on an object 1s less than its
own gravity, then the object sinks. AOA shows good
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convergence and searching performance. This algorithm has
been applied to distribution network reconstruction [14],
wind speed prediction [15] and maximum power tracking
operation of wind generators [16]. In this experiment,
archimedes optimization algorithm is applied to deal with
the optimal power flow problem of power system, and its
better performance 1s verified.

II. MATHEMATICAL MODEL OF OPTIMAL POWER FLOwW
PROBLEM

The purpose of OPF problem is to improve the selected
economic index or stability index under the condition of
satisfying the safe operation of all devices in power network.
Mathematically, the most commonly used model of OPF
problem is defined as Eq.(1).

Minimize  f(x, )

st glx,y)=20 0
hlx,y)<0

where, f(x,») represents the optimization index of power
system; g(x, ¥} stands for equality constraint. The inequality
constraint is %(x,») ; The control variable is denoted by
while the state variable is denoted by ¥ . Its details are
provided below.

A. Control Variables

Control variables can be adjusted during the proper
functioning of the power network to change the running state
of the system. They mainly include four categories, which
are the power output of the generator, the voltage level of the
generator bus, the tap position of adjustable transformer and
the reactive power of the shunt capacitor.

¥ =[Py s By VooV 310100, 1 (2)

The active power output by the generator is Py, s, ;
The size of the generator bus voltage 18 Vo Ve, 0 TooeoTag
is the setting of transformer tap; @e,»--&e,, is the capacity of
the parallel reactive capacitor; The number of generators,
transformers and shunt capacitors are denoted by NG, NT
and NC respectively.

B. State Variables

In the power system, there are some variables that change
as control variables are adjusted. The names of these
variables are state variables.

¥ = [PglaVll :-"’VLNI:Q(}I,.“’QGM’Slj,.“,S‘EM] (3)

Fy isthe active power input by the balancing node, which
1s used to balance the equality constraint of the active power
shown in previous section. ¥y.--F;7,, is the voltage of each
load node in the power system. Og....¢,, is the reactive
power emitted by the generator and input into the grid.
Sy.=%, is the power transmitted over the line. NL
represents the total quantity of PQ nodes (load nodes). The

total quantity of transmission lines 1s denoted by NL

C. Constraints Conditions

There are two types of constraints in the model of OPF
problem, which are equality constraints on the power

balance and inequality constraints on the normal operating
range of each device. The purpose of equality constraints are
to make the power generated by all generators in the system
equal to the power consumed by load plus the power lost in
the line, while inequality constraints are used to make the
system tun safely and stably. The most sigmificant equality
constraint are shown in Eq. (4) and Eq. (5):

P, =P, +VY fiVj [G, cos(& —&)

| 3 @
+B,sin(s, -5, i=1.,NB

Q, =Q, +V, 2, VG, cos(d —5)

+ B, sin(d, — 3]l

)
i=1,.,NB

Eq. (4) is the active power equation constraint, where Iy,
1 the amount of active power consumed by the load. Eq. (5)
is the reactive power equation constraint, where ©r, is the
reactive power consumed by the load. 7 and j are both serial
numbers of nodes, and in this equation, they are not equal. &,
represents the phase angle of the i-th node; The inductance
and conductance of transmission lines between nodes are
denoted by B, and G, . NB indicates the number of nodes.

Inequality constraints are mainly constraints on the safe
operation of the system, and the following four parts are
considered in this paper.

(1) Generator constraints

By <P, <PF®, i=1,.,NG (6)
On" <Q, <Q5%, i=1.,NG 0
Vam <V, <Vpe, i=1,.,NG (3)

where, 5", Q2" and V5" are corresponding lower bounds;
B, 057 and V5™ are corresponding upper bounds.

{2) Compensator capacity constraints

Or <Q. <O, j=1..NC ©)
(3) Transformer constraints

ree <7, <72, K=1,..NT (10)
(3) Safety constraints

VR <y, <V m=1..,NL (11)

5, <5M, n=1..,Nl 12)

III. OPTIMIZATION OBIECTIVE FUNCTIONS

The standard IEEE-30 bus system is selected as the
simulation system of OPF in this paper, so as to verify the
effectiveness of AOA. The system includes 6 generators and
4 transformers and Fig. 1 visually presents the structural
framework of the 30-node system. Table 1 summarizes the
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key information of the simulation system. This section
describes the different optimization objectives, including
fuel cost required by thermal power generation unit, active
power loss during power transmission, voltage deviation of
load node bus, voltage stability.

A. Objective Function I (Fuel Cost)

Fuel cost, also known as generation cost, is the most
significant indicator of the OPF problem. After
simplification, a quadratic equation is used to describe the
relevance between fuel cost and generation power.
Therefore, expression of the objective function is shown in
Eq. (13):

Jon = 2004 b ] (13)

where, a;, b, and ¢, are the fuel cost coefficients of the unit
output power of the i-th generator. The fuel cost factors for
the six generators in the system are listed in Table 2.

B. Objective Function 2 (System Active Power Loss)

Power loss caused by the resistance in the transmission
line is inevitable in power systems. The calculation formula
of active power loss is shown in Eq. (14).

.f}’loss = z,\zl " G[V:Z + V/z - 2VIVI 005(51. - 5_/ )]

J#i Y

(14)

C. Objective Function 3 (Voltage Stability)

The problem of voltage stability is getting more and more
attention in power system in that some countries' power grid
collapsed because of node voltage fluctuation. In normal
operation, The stability of a power network is defined as
follows: after interference, all nodes in the system maintain
the voltage within the safe range. When the large capacity
unit is disconnected or the reactive power deficiency in the
power network is large, which result in uncontrollable
voltage drop, the voltage instability of the system will affect
the safe operation of each device.
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TABLE 1. DETAILED DESCRIPTION OF STANDARD IEEE-30 BUS SYSTEM

Fig. 1 Framework of standard IEEE-30 bus system.

Item Quantity Details
Bus 30 -
Branch 41 -
Thermal generator 6 Buses: 1 (swing), 2, 5, 8, 11
and 13
Shunt VAR 0 Buses: 10, 12, 15,17, 20, 21,
compensation 23,24 and 29
On-load tap 4 Branches: 11, 12,15 and 36
changer transformer
Control variables 24 -
Connected load - 283.4 MW, 126.2 MVAr
Load bus voltage 24 [0.95-1.05]p.u.

TABLE 2. COEFFICIENT VALUES OF GENERATORS

Generator Bus a b c
G, 1 0 2 0.00375
7, 2 0 1.75 0.0175
G, 5 0 1 0.0625
G, 8 0 3.25 0.00834
G, 11 0 3 0.025
G, 13 0 3 0.025
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As a crucial safety index, it 1s necessary to enhance the
voltage stability of power grid to ensure that the electric
energy 1s delivered to the load node safely. The L. index of
each bus needs to be calculated. The range of this index is
[0,1]. When the line is unloaded, L index is 0. When a
voltage collapse occurs, the L. index 1s 1.

we ¥
LJ = lizleFﬁ F

J

. j=l..NI (15)

where, i represents the serial number of the generator, j
represents the serial number of the load bus. ¥ and V, are
the bus voltages at their corresponding positions. F, can be
computed by YBUS matrix. The L. index of total load buses
is calculated, and the crest value is used as the collectivity
index of power network. Consequently, the system voltage
stability index 1s defined as:

stzabeizy = maX(LJ ), Jj=L..,N (16)

D. Objective Function 4 (Voltage Deviation)

Voltage deviation can reflect the voltage quality of power
system, and it 1s also a target used frequently in power
system stability evaluation. The optimization index is the

sum of the voltage deviations of all load buses in the power
grid, as shown in Eq. (17).

Srttviation = Z :il |VLm -1.0

. J=L..N (17)

E. Objective Function 5 (Fuel Cost and Voltage
Stability)

The goal is to optimize two indexes simultaneously:
reducing the fuel cost of generators and improving the
voltage stability of the grid. The linear weighting method 1s
used to assign weights to the two indexes respectively and
then add them. Finally, the sum value is taken as the
optimization objective. This comprehensive objective
equation can be described as:

Fonr =L@ 4By v GB) VAL, (18)
where, the weight coefficient A 1is set to 100 in this paper.

IV. ARCHIMEDES OPTIMIZATION ALGORITHM

Archimedes Optimization algorithm (AOA) simulates the
content of Archimedes' law of buoyancy. The algorithm
assumes that multiple objects are simultanecusly immersed
in the same fluid, either in equilibrium or in motion. When in
equilibrium, it means that the buoyancy force F, on the
object 1s equal to its gravity ¥, . The motion state of different
objects is also different, which needs to be further divided

according to their respective forces.
‘FEJ = WD
v, a, = p.v.a,

(19)

where, the density of the object is denoted by P, the volume
of the object is denoted by v, and the gravity or acceleration
of the object is denoted by @. b 1s the fluid, and ¢ 1s the

object in the fluid. This equation 1s deformed to obtain the
following equation.

V. a
a, = —; o (20)

- -}

If the object is affected by external forces or colliding
with other neighboring objects, the motion state of the object
is as follows:

F =W
W,-Ww, =W, (21)

pbvbab - pr rar = povoao

=

<

The mitial population of AOA is also randomly generated,
with each individual having different physical properties
such as volume, followed by an iterative process. In the
search process of AOA, physical properties such as density
and acceleration of objects in the fluid are updated according
to the following formula. When an object collides with
another object, its acceleration changes. The fitness value of
the population is calculated to evaluate the advantages and
disadvantages of individuals. If the termination condition of
the iteration is met, the iteration will end. Firstly, the
initialization process is carried out by Eq. (22):

O =ib +rand = (ub, —1b), i=12. N (22)
The upper and lower limits of the container in which the

liquid resides are denoted by #b, and /5. Eq. (23) is used to
assign the density and volume of each body.

den, = rand -
vol = rand 23
where, den, and vol!l, are D-dimensional vectors, and

uniform distribution is used to produce a set of stochastic
numbers with a range of [0,1]. Then finally mnitialize the
acceleration with Eq. (24). During this process, the fitness
value of each search agent was calculated, and the individual
with the best value was chosen and recorded, which are
denoted as %, den,. vol,, and ace,, .

ace, = Ib, +rand < (ub, — b)) (24)

The volume and density of the object in the fluid are
updated by Eq. (25) in the process of iterations.

4l 41 £
den™ =den™ +rand < (den, , —den’)

"ol (25)

vol™' = vol™ + rand x (vol,

o5t

where, vol,, and dem,, are the best volume and density in
the current iteration process. rand is a stochastic number in
the range [0,1].

At the beginning, objects collide with each other in a fluid
and change their original state. By late phase, objects are in
relative equlibrium. In AOA, the transfer operator 7F
defined in Eq. (26) is used to achieve this function. TF can
better transform the exploration part into the development
part.

-t
TF =exp—2= (26)

mac
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where, TF is small at the beginning of the iteration and
grows to a maximum value of 1 at the conclusion of the
iteration, f represents the present iteration and £,
represents the maximum iteration. The density factor 4 also
controls the search process, making AOA change from a
large area search to a local search in the iteration process.

-t t
dHl = ex max (% 27

meag

When TF = 0.5, the object is in the global search stage,
and different objects collide with each other. After the
impact process, the stochastic volume and density are
selected as the physical properties of the body, and
acceleration of the body 1s obtained by Eq. (28).

o _ den, +vol +acc,

ace o 23)

i

1
den™ xvo

where, den, | vol and ace, are the density, volume and
acceleration of the i-th object respectively; den,, , vol,,  and
acc,, are the density, volume, and acceleration of random
materials respectively.

When TF = 0.5, the object is in the local search stage, and
different bodies don’t hit each other. At this time, the
acceleration of the bodies will be updated according to Eq.
(29). acc,,, is the best individual acceleration

. den, +vol +acc

best best best

ace, = 20
1 1

' den’™ xvol™ (29)

Normalized acceleration. Use Eq. (30) to normalize the
acceleration.

i+l :
acc™ —min{acc
acc!  —ux i ( ) +1 (30)
max(acc) — min{ace)

where, # and / are 0.9 and 1 respectively, which are used for
normalization Guided by the position of the global optimal
individual, if the object is farther away from it, the object
will get greater acceleration, and it 1s the global search stage.
When the object come near the global optimum value, it is in
the local search stage.

Location updates. When AOA 1s 1n the exploration stage,
TF=0.5, then Eq. (31) is used to change the position of the
object.

X =xf +C xrand < acc”)

i i—norm

de(xmnd _x:) (31)

where, C, is a search coefficient, which 13 set to 2 in this
paper. On the contrary, if AOA is in the development stage,
Eq. (32) 1s used to change the position of the object.

XM =, + I xC, xrand x acct”,

I— ROV (32)
xdx(Txx, , —x)

where, C, represents a search coefficient, which is set to 6
in this paper. The calculation formula of T 1s: T =CyxIF |

and T gradually becomes larger in the interval of [ €5 0.3, 1],

F controls the displacement direction of the object through
Eq. (33).

F{H, if p<0.5 a3

-1, if p=05

where, p= 2xrand —C,

Calculate the fitness of every agent, and record the
coordinate, density, volume and acceleration of the optimal
solution, which are record as %, ., dem,,, vol., acc, . .

V. EXPERIMENTAL RESULTS AND ANALYSIS

[EEE-30 bus system is used as the test system in this
section. And the Experiments considers generation cost,
active power loss during power fransmission, voltage
stability and bus voltage deviation as target indexes. In this
experiment, the population number N was set to 50, and the
maximum iteration number was set to 600. The algorithm
was compiled and run in MATLAB 2019b, and was
independently run for 10 times under each objective
function. In this experiment, particle swarm optimization
(PSO) and coyote optimization algorithm(COA) were used
as comparison. The load bus voltages obtained by AOA are
shown in Fig. 2 and Table 3. The setting of control variables
corresponding to the optimal results of every case is shown
in Table 4. Fig. 3 describes the voltage distribution of the
load bus of the IEEE-30 bus system corresponding to the
optimal result of every objective function.

In Case 1, Fig. 2(a) shows that the optimal value of AOA
has been approached at 200 iterations, indicating good
convergence. The optimal value of AOA is better than that
of PSO and COA. In addition, it 1s apparent {from Table 3
that the optimal value of 800.5005 $/h was finally found
without violating the constraints. Compared with the
optimal index of artificial bee colony algorithm, adaptive
real coded biogeography-based optimization algorithm and
modified differential evolution algorithm, their results were
0.019%, 0.002%, and 0.234% lower respectively. The
average value and maximum value of AOA are lower than
those of other algorithms, showing better stability.

In Case 2, Fig. 2(b) shows that the optimal value of AOA
was approached at 220 iterations, and the final active power
loss was 3.1282 MW. The optimal value of AOA is better
than that of PSO. In Table 3, the mimimum value of active
power loss is 3.1078 MW, which was obtained by ABC
algorithm. Compared with the minimum value of 3.2008
MW of the improved genetic algorithm, the results of AOA
have certain competitiveness.

In Case 3, Fig. 2(c) shows that the optimal value of AOA
has been approached after 240 iterations, and the final
voltage stability index L-index (Max) is 0.1252 p.u. The
optimal value of AOA is better than that of PSO and COA.
In Table 3, compared with the optimal value of the ABC
algorithm and the ARCBBO algorithm, their results were
reduced by 15.061% and 9.472% respectively. The average
value and maximum value of AOA are lower than those of
other algorithms, showing better stability.

In Case 4, Fig. 2(d) shows that the optimal value of AOA
has been approached after 200 iterations, and the final bus
voltage deviation is 0.0871 p.u. The optimal value of AOA
1s better than that of PSO and COA. In Table 3, this result is
6.652% and 5.435% lower than the optimal value of the
gravity search algorithm and the ARCBBO algorithm. The
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average value and maximum value of AOA are also lower
than those of other algorithms.

In Case S, Fig. 2(e) shows that the optimal value of AOA
has been approached after 170 iterations. The optimal value
of AOA is better than that of PSO and COA. In Table 3,
compared with the moth swarm algorithm and MDE
algorithm, the result of AOA was reduced by 0.215% and
0.313% respectively. The average value and maximum
value of AOA are also lower than those of other algorithms.
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TABLE 3. SIMULATION DATA OF AOA AND OTHER ALGORITHMS

PSO 0.1265 0.1293 0.1276
Case# Algorithm Min Max Mean COA 0.1258 0.1280 0.1267
AOA 800.5005 800.6442 800.5379 ABC[17] 0.1474 0.2607 0.1659
PSO 800.5587 800.6922 800.596 ARCBBO [18] 0.1383 0.13598 0.1387
COA 800.5382 802.8041 801.0338 AOA 0.0871 0.0959 0.0927
Cosel ABC[17] 800.6600 801.8674 800.8715 PSO 0.0931 0.1202 0.1095
MDE [8] 802.3760 802.404 802.382 Case 4 COA 0.0907 0.1113 0.1028
ARCBBO [18] 800.5159 800.9262 800.6412 GSA [20] 0.0932 0.0941 0.0939
AOA 3.1282 3.1906 3.1510 ARCBBO [18] 0.0920 0.1257 0.1008
PSO 3.1580 39711 3.3627 AOA 813.1831 813.3571 813.3074
Case 2 COA 3.0982 3.3383 3.1777 PSO 813.4814 815.5348 814.0152
ABC[17] 3.1078 - - Case 5 COA 813.2884 813.5245 81341
EGA [19] 3.2008 - - MSA[21] 814.9378 - -
Case 3 AOA 0.1252 0.1263 0.1256 MDE[21] 815.8431 - -
TABLE 4. EXPERIMENTAL DATA OF BEST SOLUTIONS FOR IEEE 30-BUS SYSTEM
Parameters Case 1 Case 2 Case 3 Case 4 Case 5
PG2 {(MW) 48.9192 79.2802 60.3166 61.0641 48.7878
st (MW) 21.4707 499820 43.2761 48.0061 218111
By (MW) 21.4947 34.99%4 28.0658 263729 21.6289
PG11 (MW) 12.0424 29.9987 26.8969 231373 11.9819
PG13 (MW) 11.1497 39.6528 354149 18.8282 10.8633
Vs (pu) 1.0832 1.0640 1.0505 1.0176 1.0835
VG2 (pu) 1.0629 1.0594 1.0322 1.0108 1.0645
VGS {p.u.) 1.0323 1.0391 0.98%4 1.0191 1.0353
Ve (pu) 1.0382 1.0445 1.0220 1.0039 1.0372
VGu (pu) 0.9977 0.9969 1.0432 0.9891 1.0465
VG13 {p.u.) 1.0414 1.0405 1.0700 0.9954 1.0434
Ti(pu) 1.0661 1.0765 0.9992 1.0021 0.978%
T, (pu) 0.9249 0.9111 1.0189 0.9864 1.0854
Tspu) 0.9780 0.9853 1.0108 0.9637 0.9674
Ty pu) 0.9844 0.9984 0.9644 0.9744 0.98
ng (MV Ar) 4.6769 3.1566 3.8763 3.3251 4.9374
ch (MVA) 4 6588 4.6735 25747 4.9853 4.8513
O, (MVAT) 2885 4.991¢6 49718 4.9972 34579
Qcm (MV Ar) 3.8642 3.9916 4.9943 0.2422 4.9724
Qcm (MVA) 43146 4.4013 4.8912 3.5017 0.0815
O, (MVAD 4.9475 4.9968 49156 43211 4.9599
ch; (MV Ar) 3.3323 2.6395 4.0754 4.7998 4.0995
QC“ (MVA) 2.9625 3.7683 4.8554 3.8671 22115
O, (MVAD 3.7594 3.6182 4.6150 31971 4.8073
PG1 (MW) 177.3789 52.6179 94.1231 111.6118 177.3757
Fuel cost 800.5005 967.6906 8444492 859.1888 800.5628
B (MW) 9.0686 3.1282 63127 6.0241 9.0694
L-index{max) 0.1275 0.1281 0.1252 0.1396 0.1262
VD(p.u.) 0.9044 0.8509 0.9607 0.0871 0.9485
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VI. CONCLUSIONS

In this paper, AOA is used to solve the optimal power
flow problem for the IEEE-30 bus system, and the algorithm
successfully achieves the goal of minimum power
generation cost, mimimum active power loss, minimum
voltage stability and minimum bus voltage offset AOA
shows better astringency and robustness in the simulation
experiments, and 1t can be used as an effective alterative
technique to solve the OPF problem.
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