
Two-time-scale Control of High-speed Permanent
Magnet Synchronous Motors

Yan Zhang, Zhong Yang, Wenyong Duan, Xiaolin Wang, Xucong Bao

Abstract—A two-time-scale control strategy of high-speed
permanent magnet synchronous motors (HSPMSMs) is pro-
posed in this paper. HSPMSMs including mechanical part
and electromagnetic part possess two-time-scale characteristic.
Singular perturbation theory is adopted to model the two-time-
scale dynamic behavior. The model is then decomposed into slow
and fast subsystems. With the consideration of disturbances in
both slow and fast subsystems, H∞ controller and sliding mode
controller are designed for slow and fast subsystems, respec-
tively. Stabilities of the two subsystems are proven using Lya-
punov theory separately. A composite controller is developed
by combining the two subcontrollers, and the stability of the
whole system is analyzed. Control performance of HSPMSM is
verified through simulation experiments. Results show that the
parallel-connection dual-loop two-time-scale control presents
clear advantages over series-connection dual-loop PI control.

Index Terms—High-speed permanent magnet synchronous
motors, two-time-scale control, H∞ control, sliding mode con-
trol

I. INTRODUCTION

High-speed permanent magnet synchronous motors
(HSPMSMs) are widely applied in national defense, aero-
nautics and astronautics, medical equipment, and other fields
due to their microminiature, light weights, high efficiency,
and high power density [1]. Hence HSPMSMs have attracted
considerable research attention from industrial and academic
communities [2], [3]. As known to all, control strategy plays
a very important role in improving the working performance
of motors. PID control [4], dead-beat control [5], model
predictive control [6], adaptive control [7], [8], etc. are com-
monly applied to control electric current loop and angular
velocity loop of HSPMSMs. However, these control methods
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are typically based on series-connection dual-loop structure
as shown in Fig. 1.

Fig. 1. Series-connection Dual-loop Control Strategy.

In the series-connection dual-loop control strategy, current
loop is regarded as inner loop, and angular velocity loop
(or position loop) is taken as outer loop. The currents
references are provided by the outer loop controller and
angular velocity (or position) tracking error. The design
processes of controllers for inner and outer loops are affected
by each other. Notably, poor control performance of the
outer loop will lead to an unsatisfactory reference of the
q axis current and poor inner loop control results. Therefore,
developing two acceptable controllers at the same time and
obtaining excellent performance of the entire system are
usually complex and difficult.

HSPMSMs include mechanical and electromagnetic parts.
In the system, current dynamics are remarkably faster than
mechanical dynamics [9], [10]. Hence, HSPMSMs demon-
strate two-time-scale property. Two-time-scale system is a
typical simplified representative of multi-time-scale systems.
In this paper, a novel parallel-connection dual-loop control
strategy is proposed for HSPMSMs based on the two-time-
scale characteristic and singular perturbation theory.

Singular perturbation theory is an effective tool to deal
with two-time-scale systems [11], [12]. The two-time-scale
system is decoupled into slow and fast subsystems, and
two subcontrollers are designed separately on the basis of
these two subsystems. A composite controller can then be
developed by combining the two subcontrollers, as shown
in Fig. 2. This method presents many advantages and is
applicable to plenty of electromechanical integrated systems
with two-time-scale property [13], [14].

Reference [15] presents an application of singular per-
turbation theory for modeling induction motors systems
and shows that singular perturbation techniques can provide
an effective means to represent the dynamics of motor
states. However, control problem is ignored in [15]. Singular
perturbation theory is utilized in [16], [17] to establish a
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Fig. 2. Singular Perturbation Control Strategy.

torque control method for permanent magnet stepper mo-
tors. Although the slow subcontroller is designed, the fast
subsystem is neglected. Reference [18] develops a two-time-
scale observer for induction machines and demonstrates the
convergence of the observer for all open-loop stable operat-
ing points of the induction machine. To our best knowledge,
the composite two-time-scale control scheme for HSPMSMs
remains unverified.

Singular perturbation theory is applied in this work to
develop a parallel-connection dual-loop control strategy for
HSPMSMs, and the block diagram of the proposed method is
shown in Fig. 3. First, the HSPMSM model is rearranged into
singular perturbation form, and two decomposed subsystems
are obtained via mathematical derivations. Second, fast and
slow subcontrollers are designed for fast and slow subsys-
tems, respectively. Finally, a composite controller is devel-
oped on the basis of the two subcontrollers for HSPMSMs.

Fig. 3. Parallel-connection Dual-loop Control Strategy.

The main contributions of this study are presented as
follows: (1) a parallel-connection dual-loop control strat-
egy for HSPMSMs is proposed; (2) an H∞ controller is
designed using the linear parameter varying reformulation
for the slow subsystem and a sliding mode controller for
the fast subsystem while considering disturbances in both
subsystems. The affections of subcontrollers from each other
are avoided given that the two-time-scale controllers are
designed separately. The control design process is simplified
and the computational burden is reduced. The performance
of the HSPMSM under two-time-scale control and PI control

are compared via simulations, and advantages of the method
proposed in this paper are validated.

II. SYSTEM MODEL OF HSPMSMS

In this section the HSPMSMs model is presented. Slow
and fast subsystems are then derived to provide the basis of
the subcontrollers design.

The following model considers a class of HSPMSMs:

Ldi̇d(t) = ud(t)− rid(t) + ωe(t)Lqiq(t) (1)
Lq i̇q(t) = uq(t)− riq(t)− ωe(t)(Ldid(t) + Ψf ) (2)
Jω̇e(t) = Pn

(
Ψf iq(t) + (Ld − Lq)id(t)iq(t) (3)

−Tl
)
−Bωe(t)

where id(t) and iq(t) are the direct and quadrature axis
currents respectively, Ld and Lq are the direct and quadrature
axis inductances respectively, ud(t) and uq(t) are the direct
and quadrature axis voltages respectively, r is the stator
resistance, ωe(t) is the electrical angular velocity, Ψf is the
magnet flux linkage, J is the rotor inertia, Pn is the number
of pole pairs, Tl is the load torque which is assumed to be
a constant, and B is the damping coefficient.

For non-salient pole motors Ld = Lq , so equation (3) is
simplified to be

Jω̇e(t) = PnΨf iq(t)− PnTl −Bωe(t) (4)

The complete nonlinear model of HSPMSM is obtained
by combining (1), (2) and (4). We will then introduce
the singular perturbation method to decouple currents and
angular velocity variables.

The order of magnitude of inductances in HSPMSM is
usually 10−3 or even smaller. Hence, absolute values of
i̇d(t), i̇q(t) are considerably larger than that of ω̇e(t). This
finding implies that variation rates of id(t) and iq(t) are
faster than that of ωe(t). This conjecture coincides with the
common sense that the electrical part of the system changes
remarkably faster than the mechanical part. Therefore, we
take id(t), iq(t) as fast variables and ωe(t) as the slow
variable. The singular perturbation parameter is defined as
ε = 1 × 10−3 in view of the order of magnitude of
inductances to obtain the following:

εi̇d(t) =
ud(t)

L̄
− rid(t)

L̄
+
ωe(t)Liq(t)

L̄
(5)

εi̇q(t) =
uq(t)

L̄
− riq(t)

L̄
− ωe(t)(Lid(t) + Ψf )

L̄
(6)

ω̇e(t) =
Pn
J

Ψf iq(t)−
Pn
J
Tl −

Bωe(t)

J
(7)

where L̄ = L× 103 and L , Ld = Lq .
The obtained nonlinear singularly perturbed model of

HSPMSMs is then applied to decouple the fast and slow
states of system (5)-(7) using singular perturbation theory.

Set ε = 0 in (5) and (6) to obtain the two formulas (8)-
(9) of ids(t) and ids(t) to describe the slow portions of the
respective fast states id(t) and iq(t).

ids(t) =
ωes(t)L

r
+
uds(t)

r
(8)

iqs(t) = −ωes(t)L
2

r2
− ωes(t)Ψf

r
− ωes(t)L

r2
uds(t)

+
uqs(t)

r
(9)
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where the subscript s signifies the slow parts of variables.
We can obtain the following equation when substituting

(8) and (9) into (7):

ω̇es(t) =
Pn
J

Ψf

(
− ω2

es(t)L
2

r2
− ωes(t)Ψf

r

− ωes(t)L

r2
uds(t) +

uqs(t)

r

)
− TlPn

J
− Bωe(t)

J

= −PnL
2

Jr2
Ψfω

2
es(t)− (

Pn
Jr

Ψ2
f +

B

J
)ωes(t) (10)

+
[
−PnL
Jr2 Ψfωes(t)

Pn

JrΨf

] [uds(t)
uqs(t)

]
− TlPn

J

Remark 2.1: ε is a very small positive parameter. We
can obtain the approximation relations (8)-(9) between the
fast states id(t), iq(t) and the slow state ωe(t) by setting
ε = 0 so as to decouple the fast and slow states in (5)-(7).
However, (8)-(9) only reveal the approximate equations of
slow sections of the actual fast and slow states by ignoring
the tiny parameter ε. This indicates that small errors exist
between (8)-(9) and the original model (5)-(7). Therefore,
we will further derive fast portions of actual fast and slow
states to compensate for the errors caused by neglect of ε
during decoupling.

The following notations are used to simplify (10):
a1 = −PnL

2

Jr2 Ψf , a2 = −Pn

JrΨ2
f − B

J , and b =[
−PnL
Jr2 Ψfωes(t)

Pn

JrΨf

]
. Equation (10) is then trans-

formed as follows:

ω̇e(t) = a1ω
2
es(t) + a2ωes(t) + b(ωes)

[
uds(t)
uqs(t)

]
− TlPn

J

= (a1ωes(t) + a2)ωes(t) + b(ωes)

[
uds(t)
uqs(t)

]
− TlPn

J
(11)

System (11) is the slow subsystem which describes the
main dynamic behavior of the slow variable of the system. It
can be seen from (11) that the slow subsystem is a nonlinear
model.

The fast subsystem is derived as follows. Define τ = t−t0
ε

and change the time scale of (5)-(6) from t to τ , we obtain

didf
dτ

= −ridf + ω̄eL+ udf + d(τ) (12)

diqf
dτ

= −ω̄eLidf − riqf + uqf − ω̄eΨf + d(τ) (13)

In view of the fast time scale τ , ωe is regarded as a
constant denoted as ω̄e within a short time because of its slow
variation feature. upd = ω̄eL+udf and upq = uqf −ωeΨf are
taken as pseudo inputs, and d(t) is the disturbance bounded
with ‖d(t)‖2 < δ, δ > 0.

Equations (12) and (13) can be rewritten as[
didf
dτ
diqf
dτ

]
︸ ︷︷ ︸
dz
dτ

=

[
−r 0
−ω̄eL −r

]
︸ ︷︷ ︸

Af

[
idf
iqf

]
︸ ︷︷ ︸
z

+

[
upd(τ)
upq(τ)

]
︸ ︷︷ ︸
uf

+

[
1
1

]
d(τ) (14)

namely,

dz(τ)

dτ
= Afz(τ) + uf (τ) +

[
1
1

]
d(τ) (15)

The fast subsystem (15) is clearly a linear system.
Remark 2.2: The original system composed of (1), (2)

and (4) is decomposed into slow subsystem (11) and fast

subsystem (15), and the slow mechanical state and fast
electromagnetic states are decoupled. In the next section
the designs of slow and fast subcontrollers are considered
separately to simplify the synthesis complexity and difficulty.

III. MAIN RESULTS

The main results of this study, slow controller design
method for the slow subsystem (11) and fast controller design
method for the fast subsystem (15), are presented in the form
of two theorems.

A. Slow Controller

The design of a gain-scheduled H∞ controller is framed
in the context of linear parameter varying (LPV) slow
systems to regulate the electrical angular velocity with the
consideration of nonlinearity and disturbance.

Choose an operating point θ1 = ω̂es of system (11)
and linearize the nonlinear parts at point θ1 to obtain the
following:

δω̇es = ω̇es − ˙̂ωes

= (2a1ω̂es + a2)δωes

+
[
−P

2
nL
Jr2 Ψfδωes(t) 0

] [ûds
ûqs

]
+

[
−P

2
nL
Jr2 Ψf ω̂es(t)

P 2
n

JrΨf

] [
δuds(t)
δuqs(t)

]
(16)

A pseudo input is defined as follows:

us(θ1) =
[
−P

2
nL
Jr2 Ψfδωes(t) 0

] [ûds
ûqs

]
+

[
−P

2
nL
Jr2 Ψf ω̂es(t)

P 2
n

JrΨf

] [
δuds(t)
δuqs(t)

]
(17)

Equation (16) is then transformed as below:

δω̇es = (2a1ω̂es + a2)δωes + us(θ1) (18)

The nonlinear decoupled slow subsystem is linearized at
one operating point θ1, and we can design a robust H∞ con-
troller on the basis of linear time invariant system (18). Take
the disturbance and the output variable into consideration,
and denote As(θ1) , 2a1ω̂es + a2 to obtain the following
linearized system:

δω̇es = As(θ1)δωes + us(θ1) + cδv (19)
y = mδωes (20)

where δv is the external disturbance and m is a coefficient.
The output is basically δωes in the case of m = 1.

We design the state feedback control input as follows:

us(θ1) = K(θ1)δωes (21)

We can obtain the following equation when us(θ1) is sub-
stituted into (19)-(20):

δω̇es = (As(θ1) +K(θ1))δωes + cδv (22)

The main result to guarantee the asymptotic stability of the
system (22) is presented in Theorem 3.1.
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Theorem 3.1: For system (22), given a positive scalar γ >
0, if there exists a positive parameter P1 > 0 satisfying the
following condition:2(As(θ1) +K(θ1))P1 cP1 d

cP −γ2 0
d 0 −I

 < 0 (23)

then the equilibrium point of system (22) at θ1 point is
asymptotically stable, and the transfer function Tδvy(s) from
disturbance δv to output y(t) satisfies ‖m(sI − (2a1ω̂es +
a2))−1c‖ < γ.
The proof is simple and omitted here. The derivation details
are referred to [20].

The domain of angular velocity, denoted by Ω, can be
covered by appropriately choosing n operating points θi (i =
1, . . . , n) with θ1 < θ2 < · · · < θn. In other words, θi,
i ∈ {1, . . . , n} constantly exists for any ωes ∈ Ω, such that

θi < ωes < θi+1 or ωes = θi (24)

We can have n linear models by linearization of (11) at
θi, i ∈ {1, . . . , n}. Then we design n controllers of these
models at n operating points using Theorem 3.1 respectively.
If ωes = θi, then the control gain K(θi) is selected. Else, it
is necessary to calculate two scalars α1 > 0 and α2 > 0 to
satisfy ωes = α1θi + α2θi+1 and α1 + α2 = 1. The control
gain is then selected as

K(t) = α1K(θi) + α2K(θi+1) (25)

Remark 3.1: The interval Ω is cut into n−1 small sections
by appropriately choosing n operating points θi satisfying
(24). Only one case: (1) ωes = θi or (2) ωes = α1θi+α2θi+1

with α1 > 0 and α2 > 0 exists according to basic linear
algebra theory. Case (1) is equal to ωes = 1× θi + 0× θi+1,
where α1 = 1, α2 = 0. Therefore, α1 and α2 will always
exist for any ωes ∈ Ω such that 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1
and ωes = α1θi + α2θi+1.

Remark 3.2: This control algorithm is based on the gain
scheduling control method [21], [22]. The proof is excluded
from this work because the asymptotic stability of the whole
system under control (25) can be easily proven.

The following algorithm is presented to clarify the whole
process of designing a parameter dependent controller for the
nonlinear slow subsystem (11):

Algorithm of designing a parameter dependent controller
1. Choose n operating points θi (i = 1, . . . , n) with θ1 < · · · < θn,
such that the range of the rotor speed Ω can be covered;
2. Linearize the nonlinear singularly perturbed model (11) at θi, and
obtain the linear parameter dependent coefficient As(θi);
3. For a given γ > 0, LMI (23) is solved at each operating point θi
(i = 1, . . . , n) to obtain control gain matrices K(θi);
4. Measure the variable ωes(tk) at time tk , and calculate weighting
coefficients α1 and α2 to satisfy ωes = α1θi + α2θi+1 with α1 ≥ 0,
α2 ≥ 0 and α1 + α2 = 1;
5. Obtain the control gain at time tk:

K(tk) = α1K(θi) + α2K(θi+1)
with the control input as follows:

us(tk) = K(tk)δωes(t)
6. Apply the control input us(tk) to the slow subsystem (11);
7. At time tk+1 repeat step 4 to step 7.

B. Fast Controller
Considering the fast time scale of subsystem (14), sliding

mode control method is chosen to guarantee fast dynamic
response property for the fast subsystem (14) in this study.

We can obtain a reference trajectory of the states of fast
subsystem with zref (τ) = [irefd (τ) irefq (τ)]T by means of
PI compensation in Fig. 3. The tracking error vector can be
expressed as follows:

e(τ) =

[
id(τ)
iq(τ)

]
−
[
irefd (τ)
irefq (τ)

]
(26)

We define a set of surfaces denoted by S as follows:

S =
{
e(τ)

∣∣∣s(e(τ)) = e(τ) +M

∫ t

0

e(θ)dθ
}

(27)

where M is a given diagonal matrix satisfying M =
diag{λ1, λ2} > 0, where λi > 0, i = 1, 2. The solutions
of s(τ) = 0 are ei(τ) = ei(0)e−λiτ , i = 1, 2, where ei(τ) is
the ith element of vector e(τ), and ei(0) is the initial value
of e(τ). The desired tracking dynamics of id, iq in the sliding
mode surfaces can be achieved with an appropriate selection
of M .

Theorem 3.2: For given scalars h > 0, l > 0, and the
upper bound of disturbances ζ > 0, the closed-loop fast
subsystem composed of (14) and (15) is considered with the
following sliding mode control law:

uf (τ) = uneq(τ)−Qs(τ)− P2
s(τ)

‖s(τ)‖2 + h
(28)

where Q and P2 are positive definite matrices, and

uneq(τ) = −
(
Af

[
ifd(τ)
ifq (τ)

]
−
[
i̇refd (τ)

i̇refq (τ)

]
+M

[
ifd(τ)
ifq (τ)

]
−M

[
irefd (τ)
irefq (τ)

])
(29)

Tracking errors of the closed-loop fast subsystem converge
to zero if gains and parameters of the controller satisfy

P2 > 0, Q > 0 (30)
λmin(Q)‖s(τ)‖22 + λmin(P2)‖s(τ)‖22 > l + ‖s(τ)‖2ζ (31)

Proof: Construct the following quadratic Lyapunov
function:

V (τ) =
1

2
sT (τ)s(τ) (32)

Take the derivative of V (τ) with respect to time τ to yield

V̇ (τ) = sT (τ)ṡ(τ) = Veq(τ) + VN (τ) (33)

where Veq(τ) = −sT (τ)Qs(τ) and VN (τ) =
−sT (τ)P2sgn(s(τ)), with P2 and Q satisfying

ṡ(τ) +Qs(τ) + P2sgn(s(τ)) = 0

or sT (τ)(ṡ(τ) +Qs(τ) + P2sgn(s(τ))) = 0 (34)

The derivative of s(τ) can be expressed as

ṡ(τ) =
∂s

∂τ
+
∂s

∂z

∂z

∂τ

=
dz(τ)

dτ
− dzref (τ)

dτ
+Mz(τ)−Mzref (τ)

= Afz(τ) + uf +

[
1
1

]
d(τ)− dzref (τ)

dτ

+Mz(τ)−Mzref (τ) (35)
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We can obtain the following equation by substituting (35)
into (34):

uf (τ) = −
(
Afz(τ) +

[
1
1

]
d(τ)− dzref (τ)

dτ
+Mz(τ)

−Mzref (τ)
)
−Qs(τ)− P2sgn(s(τ)) (36)

Denote ueq(τ) = −
(
Afz(τ) +

[
1
1

]
d(τ) − dzref (τ)

dτ +

Mz(τ) −Mzref (τ)
)

= uneq(τ) + udeq(τ), where uneq(τ) =

−
(
Afz(τ)− dzref (τ)

dτ +Mz(τ)−Mzref (τ)
)

is the nominal

part and udeq(τ) = −
[
1
1

]
d(τ) is the uncertain part.

On the basis of the assumption ‖d(τ)‖2 < ζ, we can
ignore the uncertain part udeq(τ) in ueq(τ) to simplify the
fast control law to yield

uf (τ) = uneq(τ)−Qs(τ)− P2sgn(s(τ)) (37)

The following inequation is necessary to satisfy the reaching
condition within a finite time:

V̇ (τ) = sT (τ)ṡ(τ) < −l (38)

where l is a given small positive scalar. Then the following
inequation can be derived by substituting (35) and (37) into
(38):

sT (τ)ṡ(τ)

= sT (τ)
([1

1

]
d(τ)−Qs(τ)− P2sgn(s(τ))

)
< −l (39)

According to Schwarz inequality, (31) is a sufficient condi-
tion for (39). The following approximation is used in (31) to
avoid discontinuity of control signals:

sgn(s(τ)) =
s(τ)

|s(τ)|+ h

The fast subcontroller uf (τ) can be obtained on the basis of
Theorem 3.2.

Remark 3.3: References [16], [17] study the stability of
fast subsystem and find that the fast subsystem without
disturbances d(t) is inherently exponentially stable. However,
disturbances must be considered because they inevitably exist
in practice. Therefore, a fast controller for the disturbed
fast subsystem based on the sliding mode control method
is designed in this study.

IV. NUMERICAL EXPERIMENTS

One numerical example is adopted in this section to verify
the theoretical results. The simulation test is carried out using
a 200 W motor. The main parameters of the motor are listed
in Table I. The series-connection dual-loop PI control method
is compared with the parallel-connection dual-loop two-time-
scale control method. The fast control inputs obtained using
the two-time-scale control scheme are presented in Fig. 4,
and slow control inputs, usd, usq are presented in Fig. 5.

The control results of PI control are illustrated in Fig.
6, and two-time-scale control in Fig. 7. Fig. 6 and 7 show
that the control results are both acceptable under these two

Fig. 4. Fast Portions of ud and uq : (a) Fast Portion of ud, (b) Fast Portion
of uq .

Fig. 5. Slow Portions of ud and uq : (a) Slow Portion of ud, (b) Slow
Portion of uq .

TABLE I
MOTOR PARAMETERS

Descriptions Values
Equivalent resistance 0.22 Ω
Equivalent inductance 0.0001 H
Stator flux amplitude 0.0004
Rated velocity 180, 000 rpm
Number of pole pairs 1
Bus voltage 36 V
Rotor inertia 0.2 K·m2

control schemes although the performance of the two-time-
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Fig. 6. Simulation Results under Series-connection Dual-loop PI Control:
(a) Speed Dynamic, (b) Currents Performance, (c) Phase Current Wave-
forms.

scale control is better. The specific comparison data are listed
in Table II. Overshoots δ of the speed control under PI
and two-time-scale control schemes are 1.67% and 0.83%,
with peak times tp of 6.71 ms and 6.51 ms, respectively.
This finding indicates that the proposed method in this study
achieves faster states responses than the PI control scheme.
In addition, the setting time of the two-time-scale control
is 8.5 ms, which is shorter than the PI control’s setting
time of 11.2 ms. The sudden load of 0.003 N·m torque is
placed on the motor system at 0.1 s, and this leads to speed
reductions of 0.88% and 0.44% under PI control and two-
time-scale control, respectively. All performance indexes of
the speed loop under the two control strategies demonstrate
that the dynamic property via parallel-connection dual-loop
two-time-scale control shows evident advantages over that of
the series-connection dual-loop PI control.

The steady-state current ripple values of the two-time-
scale control and PI control for the current loop are 0.08 A
and 0.1 A, respectively. This finding indicates the enhanced
static control performance of the proposed control scheme.
Therefore, the proposed control scheme can successfully
provide better dynamic and static control performances of
HSPMSMs according to the figures and data comparisons.

Fig. 7. Simulation Results under Parallel-connection Dual-loop Two-time-
scale Control: (a) Speed Dynamic, (b) Currents Performance, (c) Phase
Current Waveforms.

TABLE II
PERFORMANCE COMPARISON

Index PI
Control

Two-time-scale
Control

Overshoot δ(%) 1.67 0.83

Peak Time tp (ms) 6.71 6.51

Speed
Loop

Setting Time
ts (ms) (4=0.5%) 11.2 8.50

Sudden Loading
Speed Decreases (%) 0.88 0.44

Current Steady State 0.10 0.08Loop Current Ripple (A)

V. CONCLUSIONS

A parallel-connection dual-loop two-time-scale control
strategy is put forward for HSPMSMs in this study. In
this method, the HSPMSMs model rearranged in singular
perturbation form is decoupled into slow and fast subsys-
tems. An H∞ control algorithm for slow subsystem with
consideration of disturbance is designed on the basis of
linear varying parameter technique. The sliding mode control
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scheme is synthesized for fast subsystem with consideration
of disturbance. And stabilities of the two subsystems are
proven separately. A composite controller is obtained by
combining these two subcontrollers. This control strategy
is validated via a simulation experiment. And the control
performances of the proposed method are compared with
the control results of series-connection dual-loop PI method.
The comparison results show that the system under the two-
time-scale control strategy presents better dynamic and static
performances.
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