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Abstract—In this paper, problems involving steady heat con-
duction in two-layered materials are considered. The problems
are governed by diffusion equations. These equations may be
solved analytically for a limited number of problems. Hence, a
numerical method is needed to solve these problems. In this
paper, a numerical method known as the Dual Reciprocity
Method (DRM) is employed to solve the problems numerically.
To test the accuracy of the numerical method, three problems
with analytical solutions are solved numerically using the DRM.
Comparisons between numerical and corresponding analytical
solutions are presented and discussed. Moreover, problems
with unknown analytical solutions are solved numerically by
employing the method. Some numerical results are presented
to verify the effect of material diversity to the heat conduction.

Index Terms—Heat conduction, dual reciprocity method,
steady diffusion equation, two-layered materials.

I. INTRODUCTION

HEAT conduction problems have been studied by nu-
merous researchers. Such researchers are Fu et al. [1],

Bao et al. [2], Xu et al. [3], Azis et al. [4], and Pramesti et
al. [5]. In these studies, many types of materials have been
considered, such as Functionally Graded Materials (FGMs)
and porous media. Some researchers also studied heat con-
duction in layered materials. Among the researchers studied
layered materials are Gao et. al. [7] Di et al., Johansson and
Lesnic [8], and Qiu et. al. [9].

Recently, researchers have been working on heat conduc-
tion in layered materials, experimentally or numerically. Gao
et al. reviewed progress, challenges, and perspectives in the
design and application of 2D layered material (2DLM) for
nanofluidic research conducted experimentally [7]. Johan-
sson and Lesnic conducted numerical studies by applying
a fundamental solution method for solving problems in-
volving transient heat conduction in layered materials [8].
The problems in [8] are also solved numerically using a
meshless singular boundary method [9]. In the numerical
studies that have been carried out by these researchers, the
heat conduction problems studied do not involve a source
term. Hence, we presume that it is necessary to continue their
studies by involving a source term. As in real life situation,
sometimes a source is generated inside the materials.

The heat conduction problems considered in this paper
may be solved numerically using the Dual Reciprocity
Method (DRM), a method that has been widely used by
researchers to solve numerous problems numerically. Some
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of such problems are convection-diffusion-reaction problems
([10], [11], and [12]), infiltration problems ([13], [17], [15],
[16], [17], [18], and [19]), and crack problems ([20], [21],
and [22]).

In this study, we extend the problems investigated in [8]
and [9] by incorporating a source generated in the materials.
For the completion of our paper and the convenience of
readers, the mathematical formulation, involving problem
formulation and method of solution (DRM), is presented.
We also present several problems with analytical solutions
to test the DRM. The DRM is then employed to solve some
heat conduction problems with unknown analytical solutions.
Two set of problems are considered. Numerical results are
presented and analyzed to determine the influence of layered
materials on the temperature distribution inside the material.

II. PROBLEM FORMULATION AND BASIC EQUATIONS

We consider two-layered materials consisting of upper
layer and lower layer. Each layer is an isotropic homoge-
neous material. The regions of upper layer and lower layer
are denoted as R1 and R2, respectively. These regions are
defined as

R1 = {(x, y) : 0 ≤ x ≤ L, and 0 ≤ y ≤ K}, (1)
R2 = {(x, y) : 0 ≤ x ≤ L, and −K ≤ y ≤ 0}, (2)

where L,K > 0. An illustration of the two-layered material
is shown in Figure 1.
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Fig. 1: Two-layered materials considered in this study.

Problems involving heat conduction in two-layered
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isotropic materials are governed by a system of equations

ρ1c1
∂T1

∂t
= D1

(
∂2T1

∂x2
+

∂2T1

∂y2

)
+G1(x, y), (3)

ρ2c2
∂T2

∂t
= D2

(
∂2T2

∂x2
+

∂2T2

∂y2

)
+G2(x, y), (4)

where T1 is the temperature in the upper layer, T2 is the
temperature in the lower layer, ρ1 is the mass density of the
upper layer material, ρ2 is the mass density of the lower layer
material, c1 is the specific heat of the upper layer material,
c2 is the specific heat of the lower layer material, D1 and D2

are, respectively, the thermal conductivity of the upper layer
and the lower layer materials, G1 is the source generated in
the upper layer, and G2 is the source generated in the lower
layer.

Interface conditions are given by

T1 = T2, (5)
F1 = −F2, (6)

where

F1 = D1
∂T1

∂n
, (7)

F2 = D2
∂T2

∂n
, (8)

respectively. For the case of steady heat conduction prob-
lems, the system of equations (3) and (4) can be expressed
as follows.

∂2T1

∂x2
+

∂2T1

∂y2
+ g1(x, y) = 0, (9)

∂2T2

∂x2
+

∂2T2

∂y2
+ g2(x, y) = 0, (10)

where

g1(x, y) =
G1(x, y)

D1
and g2(x, y) =

G2(x, y)

D2
.

To implement the DRM, similar to those in [23] and [24],
the solutions of Equation (9) and Equation (10) are expressed
as integral equations

λ(ξ1, η1)T1(ξ1, η1) =

∫∫
R1

τ(x, y; ξ1, η1)g1(x, y)dx dy

+

∫
C1

[
T1(x, y)

∂

∂n

(
τ(x, y; ξ1, η1)

)
−τ(x, y; ξ1, η1)

∂

∂n

(
T1(x, y)

)]
ds,

(11)

λ(ξ2, η2)T2(ξ2, η2) =

∫∫
R2

τ(x, y; ξ2, η2)g2(x, y)dx dy

+

∫
C2

[
T2(x, y)

∂

∂n

(
τ(x, y; ξ2, η2)

)
−τ(x, y; ξ2, η2)

∂

∂n

(
T2(x, y)

)]
ds,

(12)

where C1 and C2 are, the boundary of R1 and R2, respec-
tively,

λ(ξi, ηi) =

{
1/2 , if (ξi, ηi) on smooth part of Ci

1 , if (ξi, ηi) ∈ Ri
,

i = 1, 2.

and
τ(x, y; ξ, η) =

1

4π
ln[(x− ξ)2 + (y − η)2]

is the fundamental solution of two-dimensional Laplace
equation.

Integral equations (11) and (12) may be recast into a sys-
tem of linear algebraic equations by applying the algorithm
in [6].

III. TEST PROBLEMS WITH ANALYTIC SOLUTION

In this section, the method presented in Section II is tested
for accuracy. Three problems with analytic solutions, namely
Problem 1, Problem 2, and Problem 3 are presented.

A. Problem 1

In Problem 1, we consider a system of equations involving
Equation (9) and Equation (10), where

g1(x, y) = −2(x2 + y2), (13)

g2(x, y) = −2xey
2

(2y4 + 5y2 + 1), (14)

with Dirichlet boundary conditions

T1 = y2, for x = 1 and 0 < y < 1, (15)
T1 = x2, for 0 < x < 1 and y = 1, (16)
T1 = 0, for x = 0 and 0 < y < 1, (17)
T2 = 0, for x = 0 and − 1 < y < 0, (18)
T2 = xe, for 0 < x < 1 and y = −1, (19)

T2 = y2ey
2

, for x = 1 and − 1 < y < 0. (20)

In this problem, we set D1 = D2.
Problem 1 have analytic solutions,

T1 = x2y2, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 (21)

and

T2 = xy2ey
2

, for 0 ≤ x ≤ 1 and − 1 ≤ y ≤ 0. (22)

The DRM is then implemented to solve Problem 1 using
two sets of boundary elements and interior collocation points.
The two sets are named as Set A and Set B, which are
summarized in Table I. Some of the results obtained are
presented in Table II, Figure 2 and Figure 3.

TABLE I: Sets of boundary elements and interior collocation
points.

Set name Number of
boundary element

Number of
interior

collocation point
Set A 320 361 (19× 19)
Set B 400 361 (19× 19)

Table II shows numerical solutions, analytical solutions
and absolute errors, at selected points. From Table II, it can
be seen that, generally, Set B yields more accurate solutions,
as Set B has more number of elements than Set A. At the
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TABLE II: Numerical and analytical solutions at selected points

Layer Point Num. (Set A) Num. (Set B) Analytic eA eB
(0.05, 0.05) 0.00072623 0.00020887 0.00000625 0.00071998 0.00020262
(0.05, 0.50) 0.00060032 0.00062947 0.00062500 0.00002468 0.00000447
(0.05, 0.95) 0.00223510 0.00225766 0.00225625 0.00002115 0.00000141

Upper layer (0.50, 0.50) 0.06238915 0.06261535 0.06250000 0.00011085 0.00011535
(0.95, 0.05) 0.00412022 0.00360824 0.00225625 0.00186397 0.00135199
(0.95, 0.50) 0.22576261 0.22566774 0.22562500 0.00013761 0.00004274
(0.95, 0.95) 0.81352004 0.81451156 0.81450625 0.00098621 0.00000531
(0.05,−0.05) 0.00078766 0.00029686 0.00012531 0.00066235 0.00017155
(0.05,−0.50) 0.01557977 0.01585311 0.01605032 0.00047055 0.00019721
(0.05,−0.95) 0.11113849 0.11126423 0.11126741 0.00012892 0.00000318

Lower layer (0.50,−0.50) 0.15998066 0.16060390 0.16050318 0.00052252 0.00010072
(0.95,−0.05) 0.00450773 0.00377192 0.00238094 0.00212679 0.00139098
(0.95,−0.50) 0.30440096 0.30495372 0.30495604 0.00055508 0.00000232
(0.95,−0.95) 2.11138382 2.11405268 2.11408082 0.00269700 0.00002814
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Fig. 2: Mesh plots of absolute errors for Problem 1 using
Set A.

selected points, the absolute errors resulted from Set A and
Set B are less than 2.7× 10−3 and 1.4× 10−3, respectively.

Distribution of the absolute errors over the domain can
be observed in Figure 2 and Figure 3. From Figure 2, the
maximum value of absolute error resulted from Set A is
achieved at the interface. More specifically, the maximum
value of the absolute error is about 6×10−3, at point (1, 0).
Figure 3 shows the distribution of the absolute errors attained
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Fig. 3: Mesh plots of absolute errors for Problem 1 using
Set B.

from Set B. In most part of the domain, the resulting absolute
errors are close to 0, except on some area, for instance
at (0, 0.2), (1, 0.2), (0,−0.8) and (1,−0.8). The maximum
value of the absolute errors is observed at around 1× 10−3.
From the results presented in Table II, Figure 2, and Figure
3, we may conclude that, generally, Set B results in more
accurate numerical solutions than Set A.

For the objective of error assessment, we calculate the
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average total absolute error (ATAE) along lines x = 0.05×
k, k = 1, 2, · · · , 19. For each line, the total absolute error
(TAE) is computed using formula

TAE =
1

2

1∫
−1

AE dy, (23)

where AE is the absolute error. Here, we may not apply
the relative error as the analytic solution at y = 0 is 0.
We employ the Simpson’s Rule to compute the integral in
(23), with 20 subdivisions for each layer. The average of the
total absolute error is calculated by taking the mean of the
total relative error along the 19 distinct lines. The results are
presented in Table III.

TABLE III: ATAE resulted from Set A and Set B.

Set name ATAE
Set A 4.9× 10−3

Set B 1.6× 10−3

From Table III, we may infer that Set B is about 3
times more accurate than Set A. Nevertheless, from the
results obtained, DRM gives accurate solutions. Therefore,
by considering the accuracy and efficiency, henceforth, the
DRM is implemented using Set A, as Set A needs less
computational times than Set B.

B. Problem 2

In this subsection, we consider a system of equations
involving Equation (9) and Equation (10), where

g1(x, y) = ex[2π2 cos2(πy)

+(1− 2π2) sin2(πy)], (24)
g2(x, y) = 6− 2x, (25)

with Robin boundary conditions

T1 = e sin2(πy), for x = 1 and 0 < y < 1, (26)
∂T1

∂n
= 0, for 0 < x < 1 and y = 1, (27)

T1 = sin2(πy), for x = 0 and 0 < y < 1, (28)
T2 = 3y2, for x = 0 and − 1 < y < 0, (29)

∂T2

∂n
= 2(3− x), for 0 < x < 1 and y = −1, (30)

T2 = 2y2, for x = 1 and − 1 < y < 0. (31)

As those in Problem 1, the values of D1 and D2 satisfy
D1 = D2.

The analytic solutions to Problem 2 are

T1 = ex sin2(πy), for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, (32)

and

T2 = y2(3− x), for 0 ≤ x ≤ 1 and − 1 ≤ y ≤ 0. (33)

Problem 2 is solved numerically using the DRM by
discretizing the boundary into 320 elements, and 361 interior
collocation points are chosen. The graphs of numerical
solutions obtained using the DRM with their corresponding
analytic solutions can be seen in Figure 4.

Figure 4, shows the numerical results and corresponding
analytical results at four different lines. As can be observed in

0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

Upper Layer

Lower Layer

x = 0.95

x = 0.6x = 0.4

x = 0.05

Fig. 4: Temperature (T ) profile for Problem 2, compared with
the analytic solutions (represented with dots).

Figure 4, the numerical results obtained using the DRM are
in good accuracy with the corresponding analytical solutions.
Using the error measurement as that in Problem 1, the value
of ATAE is 8.1× 10−3. This shows that the numerical solu-
tions have good agreements with the corresponding analytical
solutions.

C. Problem 3

In Problem 3, a system of equations involving Equation
(9) and Equation (10), where

g1(x, y) = π2(x2 + y2) sin(πxy), (34)
g2(x, y) = 4π2(x2 + y2) sin(2πxy), (35)

are considered. The boundary conditions of the problem are

∂T1

∂n
= 2πy cos(πy), for x = 1 and 0 < y < 1, (36)

T1 = 2 sin(πx), for 0 < x < 1 and y = 1, (37)
T1 = 0, for x = 0 and 0 < y < 1, (38)
T2 = 0, for x = 0 and − 1 < y < 0, (39)
T2 = −2 sin(2πx), for 0 < x < 1 and y = −1, (40)

∂T2

∂n
= 4πy cos(2πy), for x = 1 and − 1 < y < 0.

(41)

Here, the values of D1 and D2 satisfy D1 = 2D2. The
analytic solutions of the problem are

T1 = sin(πxy), for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, (42)

and

T2 = sin(2πxy), for 0 ≤ x ≤ 1 and − 1 ≤ y ≤ 0. (43)

Using the DRM with 320 line segments and 361 interior
collocation points, as those in Problem 2, the numerical
results are obtained. The graphs of numerical solutions with
their corresponding analytic solutions are presented in Figure
5.

As that in Problem 2, Figure 5 shows the numerical
solutions and the corresponding analytical solutions for Prob-
lem 3. Compared to the two previous problems, there is a
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Fig. 5: Temperature (T ) profile for Problem 3, compared with
the analytic solutions (represented with dots).

difference in the relation between D1 and D2. In Problem
1 and Problem 2, we set D1 = D2. In Problem 3, the
value of D1 is twice the value of D2 (D1 = 2D2). As
before, by observing Figure 5, it is seen that the numerical
solutions obtained have a good accuracy. The value of ATAE
is 6.8× 10−2.

IV. PROBLEMS WITHOUT ANALYTIC SOLUTION

In this section we consider a system of equations involving
Equation (9) and Equation (10) with unknown analytic
solutions. There are two sets of problems considered. The
sets of problems are as follows.

A. Set of Problems 1

In the set of problems 1, we consider cases with D1 = D2.
There are four different cases considered, named as Case
A, Case B, Case C, and Case D. In this set of problems,
we investigate influences of sources placed at a part of
boundary and inside the materials. Sources generated inside
Layer 1 and Layer 2 are governed by functions g1 and g2,
respectively. The source at the part of boundary is governed
by function u. Functions g1, g2, and u for the four cases
considered are summarized in Table IV.

TABLE IV: Source g1, g2, and u for four different cases.

Case g1(x, y) g2(x, y) u(x, y)
Case A 400y(1−y) −400y(1 + y) 100−|200(x− 1

2
)|

Case B 100(1−y2) 100(1− y2) 100−|200(x− 1
2
)|

Case C 100(1−y2) 100(1− y2) −400x(x− 1)
Case D 400y(1−y) −400y(1 + y) −400x(x− 1)

The boundary conditions of the problems are Dirichlet
boundary conditions as follows.

T1 = 0, for x = 1 and 0 < y < 1, (44)
T1 = u(x, y), for 0 < x < 1 and y = 1, (45)
T1 = 0, for x = 0 and 0 < y < 1, (46)
T2 = 0, for x = 0 and − 1 < y < 0, (47)
T2 = 0, for 0 < x < 1 and y = −1, (48)
T2 = 0, for x = 1 and − 1 < y < 0. (49)

This set of problems are solved using the DRM with 320
elements and 361 interior collocation points. The numerical
results obtained are presented in Figure 6 - Figure 7.

Figure 6 shows the graphs of T at three different values of
x. From the functions g1, g2 and u given in Table IV, and the
boundary conditions (44) - (49), the problems to solve are
symmetrical about the line x = 0.5. Hence, the three values
of x in Figure 6 must be less than or equal to 0.5. The three
values of x are x = 0.1, x = 0.3, and x = 0.5. From Figure
6, it can be observed that the values of T in Case C and Case
D are higher than those in Case A and Case B. These mean
that the source u(x, y) = −400x(x − 1) results in higher
temperature compared to the source u = 100−|200(x− 1

2 )|.
These may be affected by the total source at y = 0, as
1∫

0

−400x(x− 1)dx =
200

3

> 50 =

1∫
0

[
100−

∣∣∣∣200(x− 1

2

)∣∣∣∣] dx.
It can also be observed that the pair g1 = 400y(1−y) and

g2 = −400y(1 + y) produces in more curved graphs of T
compared to the pair g1 = g2 = 100(1 − y2). These results
may be due to the first pair g1 and g2 being more curved
than the second pair.

Figure 7 shows the distribution of temperature in the
domain. It can be seen that the maximum temperature is
gained at point (0.5, 1). This is expected, as the function u
reaches it’s maximum value at this point. Observing Figure
7(a) and Figure 7(b), it can be seen that from y = 0.5 to
y = 1.0, the distributions of temperature of Case A and
Case B are about the same. A similar fashion also occurs
for Case C and Case D. Moreover, comparing Figure 7(a)
and Figure 7(c), it can be seen that the temperature at y = 1
for Case C is higher than that in Case A.

For the amount of total temperature, in all cases we use
formula

1∫
−1

1∫
0

T (x, y)dxdy. (50)

Since T is obtained numerically, the integral in (50) can-
not be evaluated analytically. Thus, a numerical scheme is
employed to estimate this integral. To compute the integral
numerically, the domain is divided into 50×100 rectangular
regions. Let Alk be the region at k-th row and l-th column,
and ∆xl and ∆yk be the breadth and the length of region
Alk, respectively.

Let Tlk be the numerical value of temperature T at one
corner of Alk. Now, the integral in (50) may be approximated
using the formula

50∑
l=1

100∑
k=1

Tlk∆xl∆yk. (51)

Using formula in (51), the numerical values of the total
temperature on the domain are summarized in Table V.

From the results presented in Table V, we may conclude
that the pair of heat source g1 = g2 = 100(1− y2) produces
higher total temperature than the pair of heat source g1 =
400y(1− y) and g2 = −400y(1 + y).
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Fig. 6: Plots of T vs y for selected values of x.
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Fig. 7: Surface plots of solutions over the region for the four different cases.
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Fig. 8: Contour plots of T for −0.5 ≤ y ≤ 0.5.

TABLE V: Total temperature from four different cases con-
sidered.

Case A Case B Case C Case D
Total T 23.83 24.57 29.16 28.42

Figure 8 shows contour plots of tempe-
rature T over region bounded by the set
{(x, y) : 0 ≤ x ≤ 1 and − 0.5 ≤ y ≤ 0.5}. Here, the
range of y is from −0.5 to 0.5. This range is needed to
observe the distribution pattern of temperature on the area
near the interface. There are four contour plots presented in
Figure 8. From Figure 8(a) and Figure 8(b), although Case
A and Case B have the same heat source u, the temperature
resulted from Case B is higher than that resulted from Case
A. For instance, the highest temperature at the interface in
Case B is around 13.5, which is higher than that in Case
A, which is about 10. This may be due to the fact that the
total temperature generated in the range −0.5 ≤ y ≤ 0.5 in
Case B is greater than that in Case A. The total temperature
generated are 275

3 and 200
3 , respectively. Furthermore, in the

area shown in Figure 8, the temperature resulted from Case
B has a range from 2 to 23, while the temperature resulted
from Case A is ranged from 2 to 22.

A Similar fashion as that in Case A and Case B also occurs
in Case D and Case C, respectively. Similar conclusions
are also obtained when we compare Case C and Case D
(see Figure 8(c) and Figure 8(d)). However, since the total
temperature at boundary {(x, y) : 0 ≤ x ≤ 1 and y = 1} in
Case C and Case D is larger than that in Case A and Case B,
the resulting temperatures from Case C and Case D are

greater than those from Case A and Case B. The range of
temperature resulting from Case C and Case D are from
about 2 to 27 and from about 2 to 26, respectively. From the
results presented we may conclude that the higher the total
temperature at boundary {(x, y) : 0 ≤ x ≤ 1 and y = 1}, the
higher the resulting temperature in the domain. The greater
the total temperature generated in the range −0.5 ≤ y ≤ 0.5,
the higher the resulting temperature on the area around the
interface.

B. Set of Problems 2

In the set of problems 2, we consider cases with D1 ̸= D2.
The boundary conditions of the problems in this set are as
those in the set of problems 1. The source u is defined as

u = −400x(x− 1).

The sources generated in the domain, G1 and G2, are set as
follows.

G1 = G2 = 20. (52)

In this set of problems, we consider four different cases,
named as Case A, Case B, Case C, and Case D. Thermal
conductivities, and g1 = G1

D1
and g2 = G2

D2
of these four cases

are summarized in Table VI.
As those in the set of problems 1, here we solve the

problems using the DRM with 320 elements and 361 interior
points. Using the DRM, numerical results of the problems
are obtained. Some of the numerical results are presented in
Table VII, and Figure 9 and Figure 10.

Table VII shows the numerical values of temperature at the
interface. For D2 = 3.0 (Case A), the values of numerical
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TABLE VI: Thermal conductivities D1 and D2, and func-
tions g1 and g2 for four different cases.

Case D1 D2 g1(x, y) g2(x, y)
Case A 1.0 3.0 20 6.67
Case B 1.0 2.0 20 10
Case C 1.0 0.5 20 40
Case D 1.0 0.33 20 60

TABLE VII: Temperature at interface for four different cases
of two-layered materials, and at y = 0 for homogeneous
material.

Point Case A Case B Isotropic
Homoge-

nous
Material

Case
D

Case E

(0.1, 0.0) 21.63 28.84 43.26 57.69 64.90
(0.2, 0.0) 21.65 28.87 43.30 57.73 64.95
(0.3, 0.0) 21.67 28.90 43.35 57.80 65.02
(0.4, 0.0) 21.69 28.92 43.39 57.85 65.08
(0.5, 0.0) 21.70 28.94 43.40 57.87 65.10
(0.6, 0.0) 21.69 28.92 43.39 57.85 65.08
(0.7, 0.0) 21.67 28.90 43.35 57.80 65.02
(0.8, 0.0) 21.65 28.87 43.30 57.73 64.95
(0.9, 0.0) 21.63 28.84 43.26 57.69 64.90

temperature at the interface are about 21. In Case B and Case
C (D2 = 2.0 and D2 = 0.5, respectively), the numerical
values of T at the interface are about 28 and 57, respectively.
The numerical values of temperature for D2 = 0.33 (Case
D) are around 65. These results indicate that the bigger the
thermal conductivity in the lower layer, D2, the lower the
temperature at the interface.

The results presented in Table VII are the consequence of
one of the conditions at the interface,

D1
∂T1

∂n
= −D2

∂T2

∂n
,

which may be written as

D1

D2

∂T1

∂n
= −∂T2

∂n
.

Since D1 = 1.0 for all cases, then higher values of thermal
conductivities in the lower layer, D2, result in smaller values
of |∂T2/∂n|. Hence, higher values of D2 result in smaller
values of difference between the temperature at the interface
and the temperature at y = −1.

Figure 9 shows the distribution of temperature over the
domain for the isotropic homogeneous material and four
different cases of layered materials. In particular, Figure 9(a)
and Figure 9(b) show the distribution of temperature for Case
A and Case B, respectively. The distribution of temperature
over the isotropic homogeneous material is shown in Figure
9(c). The distribution of temperature for Case C and Case
D can be seen in Figure 9(d) and Figure 9(e), respectively.

It can be seen that the maximum temperature is lo-
cated at point (0.5, 1). This is expected, as the maxi-
mum value of function u = −400x(1 − x) defined over
{(x, y) : 0 ≤ x ≤ 1 and y = 1} is achieved at that point. It
can also be seen that the lower layer with smaller thermal
conductivity yields higher temperature than those with higher
thermal conductivities.

Figure 10 shows contour plots of temperature over area
{(x, y) : 0 ≤ x ≤ 1 and − 0.5 ≤ y ≤ 0.5}. More
specifically, Figure 10(a) and Figure 10(b) are contour plots
resulted from Case A and Case B, respectively. Contour

plots of temperature for the isotropic homogeneous material
is shown in Figure 10(c). Figure 10(d) and Figure 10(e)
show contour plots of temperature for Case C and Case D,
respectively.

It can be seen that for Case A and Case B, a rapid decline
in temperature in the upper layer from area located at y = 0.5
to area at y = 0 is observed. For Case A, the temperature
drops from about 46 to 22. The decline in temperature for
Case B is from about 49 to 29. On the other hand, in the
lower layer from y = 0 to y = −0.5, the temperature
decreases gradually from about 22 to 10 for Case A and
from about 29 to 16 for Case B.

The opposite occurs for Case C and Case D. In the
upper layer, the temperature declines gently. For Case C,
temperature decreases from about 64 to 58. The decline in
temperature for Case D is from about 68 to 66. In the lower
layer, the temperature drops significantly from about 58 to
34 for Case C, and from about 66 to 40 for Case D.

These results indicate that the thermal conductivities of
the materials affect the distribution of temperature over
the domain considered. If the thermal conductivity of the
upper layer is higher than that of the lower layer, then the
temperature in the lower layer varies more than that in the
upper layer. On the other hand, if the thermal conductivity
of the upper layer is lower than that of the lower layer, then
the temperature in the upper layer varies more than that in
the lower layer.

V. CONCLUDING REMARKS

Problems involving steady heat conduction in two-layered
materials have been solved numerically using the DRM. The
problems are solved by expressing the governing equations
into integral equations. The resulted integral equations are
then recast into a system of linear algebraic equations. By
solving the linear algebraic equations, the required numerical
solutions are obtained.

The method is tested using three problems with analytical
solutions. The numerical results obtained are in good agree-
ment with the corresponding analytic solutions. Moreover,
the DRM is applied to solve problems without analytic
solutions. For the cases with D1 = D2, higher total source
at one of boundaries results in higher temperature in the
materials. The more curved the internal source g1 and g2,
the more curved graphs or contour plots of temperature T .
However, the total temperature in the domain resulted from
curved internal source g1 and g2 is smaller from that resulted
from the other pair of g1 and g2. For the cases with D1 ̸= D2,
the higher the thermal conductivity in the lower layer, the
lower the temperature in the materials.
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