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Abstract—Vehicle detection based on deep learning plays a

vital role in various fields, such as autopilot and intelligent
transportation. Moreover, it presents a major development
direction to computer vision in recent years. Lightweight
vehicle detection aims to reduce the burden of computer storage
and computing, including exploration of network structure and
computing efficiency. But it is difficult to cope with complex and
changeable traffic scenes. The urgent problem is to enhance
lightweight network performance while maintaining inference
speed. In this context, this study proposes an improved
Yolox-nano to alleviate the above-mentioned problems by
splitting the vanilla convolution unit into two parts and utilizing
fewer convolution kernels to generate several feature maps.
Subsequently, several linear transformations are further
applied to generate cheap feature maps efficiently. The cheap
convolutional unit Ghost Module can control feature map ratio
of vanilla convolution and linear transformation. The activation
function in Ghost Module is improved by SiLU, which has a
more powerful nonlinear ability. In addition, the convolution
and the batch normalization in Ghost Module can be fused in
the pre-processing stage to speed up inference time.
Experimental results show that the improved network provides
4.9% and 3.1% mAP on Pascal VOC and MS COCO vehicle
datasets. The improved network enhances the performance and
maintains an efficient inference speed, and detection results
become further competitive using Yolox-nano.

Index Terms—Vehicle Detection, Yolox-nano, Lightweight
Network, Ghost Module.

I. INTRODUCTION

ith the rapid economic growth, the number of vehicles
has increased year by year. People pay more attention

to safety issues, and vehicle detection [1] has become one of
the research hotspot of computer vision. Vehicle detection
has been widely used in autopilot, vehicle monitoring, and so
on.

Traffic problems such as running red lights, illegal parking,
and illegal vehicles on the road are very frequently. These
problems pose a enormous threat to traffic safety. In the past,
it mainly relied on the traffic police to maintain order or stare
at videotapes of illegal vehicles, which makes the police very
tired and cost a lot of time.

Traditionally, vehicle detection relied on the HOG [2] or
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SVM [3] algorithm, which lacks robustness, generalization,
and the ability to cope with complex traffic scenes.

Nowadays, object detection algorithm based on deep
learning has a more powerful feature extraction capability
and robustness, and vehicle detection algorithm method has
made great progress.

At the beginning of deep learning, there are many
two-stage object detection algorithms. These algorithms
usually have high detection accuracy, but need enormous
computational complexity. There are some deficiencies when
detecting fast moving vehicles. The emergence of
lightweight network can solve these problems better.

Lightweight vehicle detection [4] aims to reduce the
burden of computer storage and computing, including the
exploration of network structure and computing efficiency,
which promotes the application of computer vision and other
technologies in many devices and is widely used in many
fields such as intelligent transportation. Due to the limitation
of hardware performance and cost, lightweight networks can
not only perceive the surrounding situation accurately but
also interact with the external environment quickly.
Lightweight networks have a better application scenario.

But it is difficult for lightweight networks to cope with
complex and changeable traffic scenes. The urgent problem
is to enhance the lightweight network performance while
maintaining inference speed. In this context, this study
proposes an improved Yolox-nano to alleviate the
above-mentioned. This study proposes to reconstruct the
residual bottleneck and part of the convolution unit by using
Ghost Module. The activation function in Ghost Module is
improved by SiLU, which nonlinear ability is more powerful.
In addition, the convolution and the batch normalization in
Ghost Module can be fused in the pre-processing stage to
speed up inference time. These operations enhance the ability
to extract features without reducing inference speed
substantially.

II. RELATED ALGORITHMS

Yolox [5] is a one-stage anchor-free object detector, and
Yolox-nano is the lightest network in the Yolox series, which
is a new-generation object detector that integrates various
training strategies. Yolox-nano gathered experience from
previous Yolo [6]-[8] series, offering data augmentation,
decoupled head, and SimOTA algorithm to the program. It is
an end-to-end high-performance object detector.

Training pictures after various data enhancements first
pass through the Focus module. The Focus module divide
three RGB channel pictures into a group every four pixels.
Then the pixels at the corresponding positions in each group
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can be spliced together, and the pixels at the corresponding
positions can be concatenated together according to the
channel dimension. At this time, the channel dimension is
four times larger than before.

The backbone of Yolox-nano is CSPDarknet [9]. To
reduce the model size, a part of the convolution in
Yolox-nano is a Depthwise Separable Convolution [10].
Same to EfficientNets [11], [12] series, it reduces the model
size by controlling the model’s depth and width.

Most networks used only one branch to predict the classes,
confidence, and offsets. But in recent years, decoupled heads
are used in many advanced single-stage or two-stage
networks. Researchers found that classification tasks differ
from regression tasks in object detection experiments. There
are some differences between classification tasks and
regression tasks in the network. Classification tasks and
regression tasks focus on different feature information.
Classification tasks pay more attention to the texture
information of the target, while regression tasks pay more
attention to the edge information of the target. Hence,
single-branch prediction is inadequate, and the head of the
detector needs to be decoupled. Decoupling features before
prediction improves network performance. Furthermore, two
parallel branches are needed to finish classification and
regression tasks, respectively, such as Fcos [13], and VFNet
[14]. Yolox-nano also adopts the same strategy, and
prediction layers don’t share one decoupled head.

Most object detectors are anchor-based, and these
detectors are lacking generalization. When dealing with
different issues, it is necessary to use the K-means algorithm
to analyze datasets. Moreover, anchor-based networks have
excessive hyperparameters, which renders debugging codes
more complex. However, Yolox-nano is an anchor-free
network that avoids aforementioned problems.

III. IMPROVEMENTS

A. Ghost Module
Due to the development of computer vision, researchers

pay more attention to practical value. To augment the use of
models by various devices, neural networks need a
lightweight structural design. In this context, multiple new
ideas in network structure design have emerged in recent
years. Take for example OctConv [15] reduces feature
redundancy by reducing high-frequency features. SPConv
[16] proposes to get more feature maps by pointwise
convolutions. SilmConv [17] gets feature maps increase by
inverting SE [18] attention weight, while HSBlock [19]
divides feature maps into multi-level divisions. These
operations could reuse features. These modules are designed
ingeniously, but most of them are difficult to implement,
which prevents convolution layer and batch normalization
layer from being fused in the pre-processing stage, thus
slowing down inference speed.

GhostNet [20] is a new efficient neural network
architecture proposed by Huawei Noah Lab. The Ghost
module aims at generating more feature maps with cheap
operations. On this basis, the feature map generated by
vanilla convolution contains partially similar redundant

feature maps, it’s necessary to reduce redundancy feature
maps by using less convolution kernels.

Given the input feature maps x , where 1c is the number
of input channels. The operation of the convolutional layer
for generating 2c feature maps can be calculated as:

Y W x b   (1)
where  represents the matrix broadcast multiplication, b is

the bias, Y is the output feature map with 2c channels, and
W is the convolution filters. The number of filters and the
channel number is a considerable constant when dealing with
high dimension feature maps.

It can be known from data visualization that the output
results of vanilla convolutional layers include some similar
results, so it is unnecessary to consume such huge computing
resources to generate these redundant feature maps. First,

2c
s

feature maps 'Y are generated using a vanilla

convolution(bias is omitted):
' 'Y W x  (2)

where 'W is the utilized filters, and 2s  . Second, to
further generate the desired 2c feature maps, cheap linear
transformations on each feature maps are applied in 'Y to

generate
22 cc
s

 ghost features, according to the

function:  'y Y  . And  are linear transformations, and
y represents the cheap features which generated by a series

of linear transformations. Finally, it is necessary to
concatenate the two parts of the feature map to get the final
output. Fig. 1 is the structure of Ghost module when 2s  .

Fig. 1. The structure of Ghost Module when 2s  .

When building Ghost Module, affine transformation is
also considered as a cheap linear transformation. However,
under the acceleration of current computing device and
software algorithms, convolution is also recognized as an
efficient linear transformation. And well supported by
various computing platforms. Thus it covers several widely
used linear operations. Hence, this study chooses DepthWise
and GroupWise convolutions to achieve linear
transformation in experiments.

Taking linear transformation and vanilla convolution of
the same size in one Ghost module for efficient execution, the
kernel size d of the linear transformation is the same as the
kernel size k of identity mapping, and s c .

B. Activation Functions
A proper nonlinear mapping plays a critical role in neural

networks. On the other hand, multiple popular activation
functions exist in convolutional networks, such as ReLU,
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SiLU, Metacon, etc. Different activation functions greatly
affect the training stability and the performance of object
detector.

The activation of Ghost Module is different from GhostNet
in improved networks. The original activation function of
GhostNet is ReLU, which performance is unsatisfactory in
Yolox-nano. Hence, this study improved the activation
function in Ghost Module as SiLU to get a more powerful
nonlinear ability.

As for SiLU, it is a special case of Swish [21]. Swish is a
widely used activation proposed by google brain, using
automatic search techniques. Swish is defined as

 x sigmoid x , and  is either a predefined number or a
trainable tensor. Various activation functions are present in
Fig. 2, such as ReLU, SiLU, and different values of  for
Swish. When 0  , Swish becomes the scaled linear
function   0.5f x x . When    , Swish becomes
positive proportional function. Subsequently, it is almost
coincident with ReLU when 0.1  . Swish can be regard as
a smooth function which the range of function image is
between the positive proportional function and the ReLU
function. And SiLU is a special case of Swish when 1.0  .

Fig. 2. Different kinds of activation functions.

Similar to Swish, SiLU is unbounded above and bounded
below. Furthermore, it is smooth, nonmonotonic, and
derivative everywhere. It is non-monotonic when x<0, and
that is the starkest difference from ReLU. When extracting
features, SiLU is more diverse than ReLU.

C. Convolution and Batch Normalization fusion
Batch normalization is essential in convolutional neural

networks, which speeds up its convergence speed and
enhances model performance. On the other hand, it increases
the calculation cost of the network and slows down the
inference speed. The convolution layer and the batch
normalization layer can be fused in Ghost Module in the
pre-processing stage. The calculation process of a normal
convolution layer can be expressed as:

Y W x b   (3)
the same as (1). Moreover, the calculation process of a batch
normalization layer can be expressed as:

 
2bn

x
Y


 

 


  


(4)

where  and  are trainable parameters,  is mean value,
2 is the variance, and  is a non-zero decimal. Bringing (3),

into (4), we can get:
 

 
2

2 2
    

bn

W x b
Y

bW x


 

 
  

   

  
  


 

   
 

(5)

 
2 2

    fuse fuse

bWW
   

   

 
  

 
(6)

Consequently, an arbitrary convolutional layer fused by a
batch normalization layer can be formulated as:

fuse fuse fuseY W x    (7)
Using this method, a convolution layer and a batch

normalization layer are fused into one layer in the
pre-processing stage. These operations do not harm to
precision but speed up inference time.

Fig. 3. The structure of the improved Yolox-nano.
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D. Module Detials
As shown in Fig. 3, downsample, decoupled head, and

some of the CSPLayer convolutions are replaced with Ghost
Module. The network size can be controlled by variable s.
The network performance is explored when generating a
different number of cheap feature maps. Hence, cheap feature
maps generated by Ghost module can be controlled by s=2 or
4. Although s could be an odd number (such as 3 or 5), the
feature maps generated by linear transformations are
truncated during concatenating. This operation wastes
calculating resources. Hence, to ensure that the generated
feature maps are not wasted, s is only equal to 2 or 4 in the
experiments.

The SPP module consists of three different kinds of kernel
size maxpool and a 1×1 convolution unit, mainly used to get
different kinds of feature maps of the receptive field. The SPP
module is applied exclusively in stage 5, meaning it does not
exist in other stages. Both Pafpn [22] and decoupled head, the
first BaseConv units are 1×1 reduction convolutions. Three
vanilla convolutions at the end of the decoupled head are
used to predict the class, confidence and offset, respectively,
without activation function and batch normalization. The
improved modules are drawn in dark color.

C5 means that backbone downsampling is 32 times at most.
The convolution in the Focus module is a 3×3 convolution
unit used for downsampling. These modules are unmodified
in experiments. The improved Yolox-nano remains in three
decoupled heads. Since the three convolutions at the end of
the decoupled head are vanilla convolutions, the convolution
at this position is not replaced by Ghost Module.

The left top-to-bottom part of the Pafpn, which operations
are similar to the right bottom-up, is executed twice. The
whole network structure and the number of residuals are kept.
During feature extraction, the number of residuals of
CSPLayer in each stage is 1, 3, 3, and 1.

The improved network didn’t attempt to add more Ghost
Module because this operation makes the network too large
and slows down the inference speed. And Ghost Module
doesn’t replace 1×1 convolution unit, because this operation
makes the number of network layers explosive increase. The
network may have difficulty converging. The experiment
only made one attempt, replacing all convolutions with Ghost

Module. Although the computational complexity of the
network can be greatly reduced, the training process became
extremely unstable. Obviously, this is not the expected
experimental result.

Fig. 4 is the structure of the improved CSPLayer. The latter
consists of left and right branches. The left branch is made up
of a 1×1 BaseConv unit, mainly used to reduce channels,
similarly to the first right BaseConv unit. The Bottleneck is
mainly used to extract features. The n represents the number
of times when the Bottleneck is added repeatedly. BaseConv
unit includes a vanilla convolution, a batch normalization,
and an activation function. The improved part has been
marked in dark color.

Fig. 4. The structure of the improved CSPLayer.

IV. EXPERIMENTS

A. Experiment Environments
All experiments ran on the DELL server. In the experiment,

the commonly used Centos7 was selected as the training
platform and the inference time is also estimated on this
device. GTX1080ti × 2 are used as a computing device to
save training time. And more comparative experiments are
executed to explore the performance of the improved
network and verify the superiority of the improved model.
Due to the limitation of Cudnn version, Pytorch and Cuda
version are 1.7.1 and 10.1 in the experiment.

B. Datasetsets and Settings

Fig. 5. The Pascal VOC vehicle datasetset.

Fig. 6. The MS COCO vehicle datasetset.
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Object detection experiments were conducted on two
common-used datasets, including Pascal VOC and MS
COCO.

The Pascal VOC 2012 dataset presents 20 categories for
about 17k images. All vehicle classes are extracted,
including car, bus, train, bicycle, and motorbike, for a total
of 3073 pictures, 80% of which are randomly split as the
training set and 20% as validation set. Furthermore, the same
number of images is extracted as the validation set from
Pascal VOC 2007 test set for testing. Subsequently, this
study chose 2459 images for training and 614 images for
validation and testing.

The MS COCO 2017 dataset presents 80 categories for
about 120k images. All vehicle classes are extracted,
including bicycles, car, motorbike, bus, train and truck, and
selecting randomly a total of 7000 pictures in total, 80% of
which are randomly split as the training set and 20% as the
validation set and test set, respectively. In this setting, 5600
images were chosen for training and 700 for validation and
testing in total. Fig. 5 and Fig.6 are the two vehicle datasets,
respectively.

C. Object Detection
This study compares the improved Yolox-nano to

Yolov4-tiny and Yolov3-tiny, which is the same lightweight
network as Yolox-nano. Moreover, the one-stage object
detection network RetinaNet [23] is chosen, which is a
typical one-stage object detector widely used in the
benchmarks of detection tasks.

The experimental code is based on the official Yolox
repository. Models are trained from scratch on two GTX
1080ti GPUs by using 640×640 pixels. Models are trained
for 700 epochs and 350 epochs on Pascal VOC and MS
COCO vehicle datasets. This study employed batch size of
32 to train models, and following the cosine [23] decay
learning rate schedule. The original data augmentation
principles of Yolox-nano were followed, closing mosaic
augmentation for the last 15 epochs. The standard of
evaluation was IoU0.5 on test set. Training precision
defaults to FP32.

The experimental code for RetinaNet is based on
mmDetection repository, the version is 2.15. The optimizer
is the same as Yolox-nano. Due to the limitation of GPU
memory capacity, and the learning rate of the network is
calculated by 8-GPUs in offical repository. This study
choose learning rate with an initial lr= 0.005 and batch size
of 4 for training. During the training phase, the ResNet-50

[25] is initialized with the weights pre-trained on ImageNet,
while the other layer weights are obey the Xavier
distribution. The model defaults to freeze in stage 1. All the
latency in this report is measured with FP32-precision on a
single GTX 1080ti.

For Yolov3-tiny and Yolov4-tiny, a relatively new and
high performance implementation process is adopted in the
experiment. For better comparison with lightweight
networks. Therefore, the experimental results of these two
programs are higher than original program.

During the experiments, to calculate the time consumed
by network more accurately, the time consumed by
Non-Maximum Suppression is taken into the consideration.
Object detectors might generate multiple bounding boxes
during validation or inference. However, few
high-confidence bounding boxes need to be preserved.
Non-Maximum Suppression is able to suppress most of the
overlapping low-confidence boxes according to the
threshold. Finally, the high-confidence bounding boxes are
retained.

We named the network when Ghost module 2s  as
Yolox-nano-Ghost-s2. In parallel, when Ghost module

4s  as Yolox-nano-Ghost-s4. All experimental details are
shown in Table Ⅱ and Table Ⅲ. “#Params(M)” represents
the parameters of the network. “GFLOPs” is estimated by
the input size of 640×640. “Inference time(ms)” refers to the
time that network takes to detect per image.

As it's shown in Table Ⅰ, the mAP of
Yolox-nano-Ghost-s2 is 4.9 points better than Yolox-nano,
while the mAP of Yolox-nano-Ghost-s4 is 3.2 points better
than Yolox-nano on Pascal VOC vehicle dataset. Although
the number of parameters and GFLOPs of improved
networks increased slightly, it is still less than Yolov3-tiny
and Yolov4-tiny. The inference time is still maintained
around the original level(the lower the better). The mAP of
Yolox-nano-Ghost-s2 is 4.4 points lower than RetinaNet,
but the number of parameters and GFLOPs of RetinaNet is
as high as 36.2M and 122.2GFLOPs. The calculation scale
of Yolox-nano-Ghost-s2 and Yolox-nano-Ghost-s4 are still
more than 20 times smaller than RetinaNet. Moreover, the
inference time per image is also about 14 times faster than
RetinaNet.

The mAP of Yolox-nano-Ghost-s2 is 3.1% better than
Yolox-nano, and the mAP of Yolox-nano-Ghost-s4 is 2.4%
better than Yolox-nano on MS COCO vehicle dataset. The
improved network has improved on both datasets. Thus, the
improved network has strong generalization.

TABLE Ⅰ
THE PERFORMANCE OF EACH NETWORK ON TWO VEHICLE DATASET

Module name Img Size #Params(M) GFLOPs mAP(%)
Pascal VOC

mAP(%)
MS COCO

Inference
time(ms)

Yolox-nano 640×640 0.9 2.5 76.8 53.7 4.3

Yolox-nano-Ghost-s2 640×640 1.5 4.4 81.7 56.8 4.6

Yolox-nano-Ghost-s4 640×640 1.1 3.2 80.0 56.1 4.5

Yolov4-tiny 640×640 6.4 17.4 70.7 54.3 3.9

Yolov3-tiny 640×640 8.9 13.3 70.3 51.5 3.7

RetinaNet 1000×600 36.2 122.2 84.4 61.2 52.8
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Fig. 7 exhibits the total loss of training set on two vehicle
dataset(the lower the better). The light color is Yolox-nano,
the dark color is Yolox-nano-Ghost-s2. The loss value of
two datasets is close to 25 at most. To make the figure more
clear, the maximum value of y-axis is 13, the minimum
value of y-axis is 2. The line of Yolox-nano is significantly
underneath Yolox-nano-Ghost-s2.

(a) Pascal VOC loss

(b) MS COCO loss

Fig. 7. (a) And (b) are the total loss of training set on two vehicle dataset,
respectively.

D. Ablation Experiment
This section conducts ablation experiments on the Pascal

VOC vehicle dataset. To verify the feasibility of each
improvements. In GhostNet, the activation function in Ghost
Module is ReLU. In the improved works, the activation
functions of Ghost Module are replaced by SiLU to get
powerful nonlinear ability. Table Ⅱ shows the experimental
results.

After the activation function in Ghost Module is changed

from SiLU back to ReLU, the performance of
Yolox-nano-Ghost-s4 and Yolox-nano-Ghost-s2 reduces
about 0.7% and 0.9% mAP, respectively. Two improved
models reduce about 0.2 ms inference time.

TABLE Ⅱ
THE INFLUENCE OF ACTIVATION FUNCTION ON PASCAL VOC VEHICLE

DATASET

Module name ReLU SiLU mAP(%)
Inference
time(ms)

Yolox-nano-Ghost-s4
√ × 79.3 4.4

× √ 80.0 4.6

Yolox-nano-Ghost-s2
√ × 80.8 4.4

× √ 81.7 4.6

The following experiments explore the impact of
convolution layer and batch normalization layer fusion on
network speed. The experiment uses Yolox-nano-Ghost-s2
as a benchmark.

Table Ⅲ shows the impact of convolution and batch
normalization fusion on network speed. It can be seen that
after removing convolution and batch normalization fusion
in Ghost Module, the network consumes an additional 0.2
ms inference time.

TABLE Ⅲ
THE INFLUENCE OF CONVOLUTION AND BATCH NORMALIZATION FUSION ON

PASCAL VOC VEHICLE DATASET

Module name fuse without fuse
Inference
time(ms)

Yolox-nano-Ghost-s2
√ × 4.6

× √ 4.8

E. Inference Result
Fig. 8 and Fig. 9 are the inference results on two vehicle

test set. The inference results are generated by Yolox-nano,
Yolox-nano-Ghost-s4, and Yolox-nano-Ghost-s2,
respectively.

It is clear from Fig. 8 that Yolox-nano-Ghost-s2 provides
higher confidence in detecting four overlapping bicycles,
while Yolox-nano misses one of them. Furthermore,
Yolox-nano misidentifies the crowd and the fence on the
right as motorbikes and cars. Moreover, in Fig. 9,
Yolox-nano-Ghost-s2 detects bicycles covered with flowers
very precisely, unlike Yolox-nano, which is unable to detect
them. When detecting the half-exposed car on the left side
and the motorbike half-covered by people on the right side,
the improved networks have higher precision. This study
obtains the same conclusion for both datasets.

Fig. 8. The inference result on Pascal VOC vehicle dataset.
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Fig. 9. The inference result on MS COCO vehicle dataset.

V. CONCLUSION

In short, this study proposes to improve Yolox-nano's
performance by using Ghost module, which separates the
vanilla convolution unit into two parts and use less
convolution kernels to obtain less feature maps. The
improved networks performed exquisitely in various aspects.
The activation function in Ghost Module is replaced by SiLU.
In addition, the convolution layer and the batch normalization
layer in Ghost Module can be fused in the pre-processing
stage to accelerate the inference time. Experiments show that
the improved networks can get higher performance and
significant robustness on two common used vehicle datasets.
Furthermore, the improved networks are highly competitive
in visual tasks, compared to other lightweight models. The
improved network can meet the actual needs.
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