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Critical Metrics of the Schouten Functional on a
4-manifold

L.F. Zhang

Abstract—The existence of critical metrics of the Schouten
functional on §'xs* is studied in this paper. We define a family
of Riemannian metrics {g ol xS*, where ] is the interval

(0, I) or (0, +w0) . By investigating these Riemannian metrics’

properties about the Schouten functional on /x$*, we obtain
critical metrics’ results of the Schouten functional on §' x §°.

Index Terms—Schouten tensor,
critical metric, flat metric, 4-manifold

Riemannian functional,

I. INTRODUCTION

et M"(n=3) be an n-dimensional compact, orientable,

connected smooth manifold. We denote by A7(M)
and 2(M) the space of smooth Riemannian metrics
on )f" and the group of diffeomorphisms of As", respectively.
A functional & : M (M) — R is called Riemannian if # is
invariant under the action of 2(M) , that is, # (¢’ g) = F(g)
foreachpe P(M)andg e M(M) .

A very typical example of Riemannian functionals is the
Einstein-Hilbert functional defined by

H(g]= ( [ avol, )(H)/" [ Rdvol, (1.1)

where R, is the scalar curvature of & . Hilbert pointed out that

the critical points of this functional are Einstein metrics [1].
The critical points of this functional restricted to the space of
metrics with constant scalar curvature of unitary volume was
studied, the CPE metric was simplified. A necessary and
sufficient condition on the norm of the gradient of the
potential function for a CPE metric to be Einstein was
obtained [2]. Baltazar et al. studied weakly Einstein critical
metrics of the volume functional on a compact manifold with
smooth boundary, and gave a complete classification for an
n-dimensional weakly Einstein critical metrics of the volume
functional with nonnegative scalar curvature [3].

In addition to Einstein-Hilbert functional, in connection
with the generalized o, -Yamabe problem, the Riemannian

functional defined by
(2k-n)/n
Flgl= ( [ avol, ) [ ou(4,)dvol,,

where 0; (4, ) denotes the k-th elementary symmetric function

(1.2)

Manuscript received September 1, 2022; revised January 4, 2023.

This work was supported by the Education Department of Henan
Province Key Foundation under Grant 23B110001.

L.F. Zhang is a lecturer of the School of Mathematics and Statistics,
Anyang Normal University, Anyang, China (e-mail: zhanglifen @aynu.edu.
cn).

of the eigenvalues (with respect to 8 ) of the Schouten tensor
defined by

4, = Ric, - 2(}’_ D g. (1.3)

The study of this functional was first initiated by J.
viaclovsky[4], and many in-depth results have been obtained
[5-8]. It is the main result of [9] that, for compact, boundless,
smooth 3-dimensional manifolds, the space forms are the only
critical points of .7 if the critical value is nonnegative. In [10],
Hu et al. extended this result to higher dimensions, and proved
that, for n-dimensional (7 =5), compact, boundless, smooth
manifolds, the space forms are the only locally conformally
flat critical points of % if the critical value of % is

nonnegative. Gursky et al. developed a gluing procedure
designed to obtain canonical metrics on connected sums of
Einstein four-manifolds. By using certain quotients
of §? x §% as one of the gluing factors, critical metrics on
several non-simply-connected manifolds were obtained [11].
By using the curvature identity on 4-dimensional Riemannian
manifolds, critical metrics for the squared L2-norm
functionals of the curvature tensor, the Ricci tensor and the
scalar curvature were studied [12].

In addition to the above functionals, we can get other
examples of Riemannian functionals by integrating the
quadratic polynomial for curvature tensor [1]. Among them,
the most interesting Riemannian functional is

Stgl=([, avol, )(47")/" [ 14, F dvol,.

In this paper, we also call 5" the Schouten functional.
We know

(1.4)

2
3n—42 ;:| ; Pt (n-2) i Rg%’
4(n—-1) 4n(n—1)
where E, = Ric, —(R, / n)g is the trace-free Ricci tensor.

Obviously, STg]=0if and only if (M ", g) is Ricci-flat.

In [13], the authors proved that the infimum of the
Schouten functional on §'x S§*is zero. However, only the
Ricci-flat metric is the metric with zero Schouten functional
on the manifold, but there is no Ricci-flat metric on §' x §°. A
question naturally arises: ‘‘Are there critical metrics
of S on §' x $*?” This problem is the creative motivation of
this paper.

Remarkl1.1. In general, if M"(n23) is an orientable,

2 |\ pi. 2
| 4, ['=| Ric, | -

noncompact or compact n-dimensional smooth manifold with
boundary, we can consider the critical point of the functional
with respect to the variation with compact support. Then the
Euler-Lagrange equation of the Schouten functional in [13] is
still valid for noncompact or compact manifold with boundary
(see proposition 3.5). Thus, all the conclusions derived from
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Euler-Lagrange equation in [13] are also valid for
noncompact or compact manifold with boundary.
We firstly consider the manifold M = I xS, where [ is the

interval (0,7) or (0,+) . We write the coordinate function
on/ as”, the tangent vector as vV, =<, and the cotangent
vector as 6’ =dr .Take the tangent frame field on S*
according to the method in section 5 of [13], that is, let

S ={(x", X, N e R (X)) + () +() +(x) =1
be the unit 3-sphere in R*.

Define vector fields v;,v, and v, on S° by

v (x 7 x0 xh) = (7, —x xt, -x),

vy (x, 27,0, 1) = (o0, —xt, X', x7),

v (x, 7 x x ) = (), -, =X,
which constitute a basis for tangent vector fields on §°. We
denote the dual coframe field of {v,,v,,v;}as {0',6°,6°} .

Define a family of Riemannian metrics
g =dr’ + f2(N[(0) +(6°) +1°(6°)"] (1.5)

on M =1xS>, where f(r)>0,t>0 is the parameter and
satisfies f(0)=0, f'(0)=1. Then {v,v,,%v;} constitutes the
standard, orthogonal frame field on S, and its dual coframe
field is {&',£°,&7} .
Remark1.2. Based on the standard metric, the Riemannian
metric g, in the form of (1.5) is constructed by introducing
parameters in order to find the critical metrics of the Schouten
functional on [ x S° .

Now let's describe the main results of this paper.
Theoreml. For V¢ > 0, g, is not the nontrivial, critical metric
of the Schouten functional on / x S° .

Theorem?2. There is no metric which likes g, (where f(7)is a
periodic function) on §' x §*, making it a nontrivial, critical
metric of the Schouten functional on §' x S°.

Here, the critical metric is called nontrivial, which means
that it is neither locally conformally flat nor Einstein.
Remark1.3. According to the inference 3.1 in [13], every
Einstein metric is the critical point of the Schouten
functional S’ on a smooth n-dimensional manifold, so every
Einstein metric is the critical metric of S on §' x S°.

The structure of this paper is as follows. In section 2, we
firstly review the knowledge of Riemannian manifolds by
using the moving frame method, and then give a fact. In
section 3, we give some lemmas and propositions, as well as
the proofs of theorem 1 and 2. In section 4, we summarize the
research contents of this paper.

II. PRELIMINARIES
Let A" denote an n-dimensional smooth manifold and
(M",g) be an n-dimensional Riemannian manifold with
metric & . Let{e, :*,e,} be a local frame field of the tangent
bundle of A", and {@', -,

Throughout the paper we use the standard local notation and
adopt the Einstein summation convention. For example, we

®"} its dual coframe field.

write g =g,.ja)[ ®w’ for the local expression of & and set

(g")=(g,)". Weuse g’ and g; to raise and lower indices as
usual.

Recall that the connection forms [a);.] of the Levi-Civita

connection of (M", g) satisfy the structure equations:

do' =0’ N0, @+ =0, 2.1

2.2)

where Riﬂd are the components of the curvature tensor of

i

ik i1 k !
do,=o; no+7R 0" Ao,

(M",g) . It is well-known that the Riemannian curvature

tensor R, = g[mR';'k, has an irreducible decomposition given

by [1]
1

Ry =Wy +E(Rikgj1 -R,g; +R,g—R,8;)

(8481 —8u& i) (2.3)

B R
(n=1)(n-2)
1
= VVijkl +E(Aikgjl - Ailg‘jk + Ajlgik - Ajkgil ),

where W, , R; and R are the components of the Weyl
conformal curvature tensor, the Ricci tensor and the scalar
curvature of & , respectively, while 4, are the components of

the Schouten tensor 4 . It is well-known that the Weyl
conformal curvature tensor in the decomposition (2.3) yields
the conformally invariant part of the Riemannian curvature
tensor, while the Schouten tensor describes the curvature
property that is not conformally invariant.

The Ricci tensor R; and the scalar curvature R of (M ", g)
are defined by

Rij = zgklRikjl’ R= ZgiiRij’
k., i,j

For an arbitrary tensor, such as 7}/(, , we define its norm as
kr s

| TP=TyT,,.8"g"g"g".
Denote by V and A, the covariant differentiation operator

of the Levi-Civita connection and the Laplacian on(M",g),

respectively. For local expressions of the covariant

derivatives we use the notation
R, =VR,, R,,=VV,R,
Al.j.’,( A

:VkA‘ ikl =V\V 4,
The first and the second order covariant derivatives

kl
AR; =8 Ry 4>
A 4, :gkIA",kl’ etc.

7

ij. k ij .kl

i ks

of 4 are given by
A0 =dA, — 4,0 — 4,0,

ij.k

I _ / / /
Ay y@ =dA;, - A, 0, — 4,0, - 4, 0.

An n-dimensional Riemannian manifold (M",g) is called
locally conformally flat if £ is locally conformal equivalent to
a flat Riemannian metric, that is, for any p € M | there is a
neighborhood U of point £ and a smooth function # onU , so
that g =e’’g is a flat Riemannian metric. The following
proposition is well-known.

Proposition2.1. For a Riemannian manifold (M",g), if

n>4, then (M",g) is locally conformally flat if and only
itw,,, =0.

ikl
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III. PROOF OF MAIN RESULTS

For manifold 7 x §° , we select
0 1
=f_1vz,e3 =f'1;v3.

€ :5781 =f"ve
Then {e,}} , is the integral, standard, orthogonal frame field

on(IxS%,g,), whose dual coframe field {’,0',0*,®"} is

given by
o’ =dr, (3.1
o' =f¢, (3.2)
o’ =&, (3.3)
o =f&, (3.4)

Lemma3.1. If we define a family of Riemannian metrics
=dr’ + f2(N(O")Y +(8°) +12(0°)], t>0

on /xS°, then the connection form of the Riemannian

standard,

connection of (/xS°,g,) under the above

orthogonal frame field {¢,}} , can be given by
— f*lf!a)l — f*lf!a)Z — f—lfra)3’
=@ -ne’, =—f1e?, @ =f"1.

Proof. Under the standard, orthogonal frame {e.}.,, the

3.5)

connection form {@’} of the Riemannian connection of
(IxS’,g,) satisfies the following structural equation

do' =0 no, @+ =0, (3.6)

and is uniquely determined by it. Next, we just need to verify
that (3.5) satisfies (3.6).

It is known from the section 5 of [13]
dE' =27 NE, dE =27ENE, dE =-2E NE.

3.7
From (3.1)-(3.4) and (3.7), we obtain

de’ =0,

do' = fdr NE'+ fdE' = flr NE' -2/t E AE,

do’ = fAr NE + fdE = fAr NE+2fi7'E'NE,

do’ = flr AE + fAE = flr AE -2 fif' AE

On the other hand, it is obtained from (3.5) and (3.6)
do’ =o' "o + &’ Aoy + @ A& =0,

(3.8)

do' =" Ny + & N+ @ Aoy = fdr nE =217 ENE,
do’ =" "N} + &' N} + @ A = fAr ANE 2 [T E NE,
= fArnE =2 ftE' NE.
3.9
Thus, from (3.8) and (3.9), it is known that (3.5) satisfies

(3.6). m
Proposition3.1. If we define a family of Riemannian metrics

=dr’ + (N0 +(0*) +£(6°)], t>0

on IxS*, then the Riemannian curvature tensor R,-jkl of

3 0 3 1 3 2 3
do’ =0 NOy+0 ANO)+ 07 AN,

(IxS®,g,) under the above standard, orthogonal frame field

{e,}7, can be given by

Ry = =17 (608 = 80,610
Ry == f" (808 = 80,80 )s
R03k/ :_f f (50k53/ _50153k ),

Ry :[f72(4_3tz)_fiszl](é‘wé‘zl _51152/( ),

13kl (f_z ’ f_sz’)((;lk53l _5115,%):

—2 2 =2 riper (310)
23ld (f f ff )(52k531_52153k)’
where 0< k,1 < 3.
Proof. From (3.5), we know @, = ' f'@', therefore
doy=d(f fYrne' + 7 fdo
_ 1,1\ 0 1 -1 pr -1 pr_0 1
S L A AV AN

2" A@)
=" "o -2 f 0 A
On the other hand, it is obtained from the structural
equations (2.2) and (3.5)

doy=a) Ao, +1R 0" A

=W, Ny + &) ANy —

=217 ft"0’ N’
From (3.11) and (3.12), we obtain
1R "' ==fT "0’ A&
=-3 (806, — 8yt A,

1R A (3.12)

Rmkzw N

therefore
Ry ==1" (S 00 = 0p0u)>  0<k,[<3.
Similarly, we can obtain other Riemannian curvature tensor
R, under the standard, orthogonal frame field {e,},_, . o
In particular from (3.10), we can get

0101 f f 0202 f f”
0303 f f 1212 f72(4 3t ) fisz
Ry =f7C=f7f1" Run=f"C =" fF,

and Rl-jk, = 0 if any three of the indices are distinct. Therefore,

we can get the following proposition.
Proposition3.2. If we define a family of Riemannian metrics

g =dr’+ fA(NI(0') +(0°) +12(6°)’], t>0
on[xS*, then the Ricci curvature tensor R of (IxS°,g,)

under the above standard, orthogonal frame field {e,}"_, can be

given by

Ry = Ry + Ropos + Roses =311,

R, =Ry +Ro, + Ry =—f " f"=2F7fF +2f7(2-1),
R, =R+ Ry + Ry =—f ' f"=2f7FF +2f7 (2 ),
Ry=Ryy+ Ry + Ry =—f =27 fF +2f 7
Rl.f=R,.,g.k=RI.0/0+R11/1+R1212+R,313 0 ifi+],

(3.13)
where 0 < i,j< 3.
From proposition3.2, we can easily get the scalar curvature
R of (IxS°,g,) as follows
R=—6(f"f"+f2ff)+2172(4-1). (3.14)
Let's consider the Weyl curvature tensor of (/ xS°, g,) .
From(2.3), for (IxS°,g,) , we have
szkl = z/k/ 2 (Rzk5/1 R115/k +R
+ZR( ik jl ,/()
By simple calculation, we can get
Wo = -3 fﬁ2 (1-1 )(50k = 04,0)5
Woow = _%]kz (I-1 )(50k 0y =005 )s

jk il )

(3.15)
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Wos =% 12 (1= )88 — 80,0,
W =if(—t)(55—55),
12k =3 : 192 — OO (3.16)
Wi =_?f (l_t )(0,,05, = 6,,03,)s
23kl _%JFZ (l_t )(5zk531 _5215% )a
where (0 <k, <3).

From proposition2.1 and (3.16), we immediately obtain the
following proposition.
Proposition3.3. (/xS 3,g,) is locally conformally flat if and
only ift=1.
Remark3.1.If (xS’ g,) is locally conformally flat and f'(r)
satisfies ff"+(f')*

According to theorem4.1 in [13], at this time, the locally
conformally flat metric g, is the critical point of the Schouten

—1=0, then the scalar curvature R, =0

functional §.

Under the standard, orthogonal frame field,
E, =R, —;R3;, so it's easy to get from propositions3.2 and
(3.14)

Ey==3(f"f"= [ =37 (4=,

Ey=3(/" "= [ +3 /7430,

En=5(f /"= [N +5/7(4=30),
Ey=3(f"f"= 7 f1) =517 (4=50),
E; =0 if i+ j,and for 0<i,j<3.

(3.17)

where E; denotes the components of the trace-free Ricci

tensor £, of (/xS°,g,).
Therefore we can obtain the following Proposition.
Proposition3.4. (/xS°,g,) is Einstein manifold if and only

ift =1, and f(r) satisfies the equation ff"—(f")* +1=0.
Proof. (IxS°,g,) is Einstein manifold if and only if the

trace-free Ricci tensor E, satisfies £, =0 , ie. E;=0
0<i,j<3).
Hence, we obtain
=T 5T E) =0,

E,=5(ff"= I +5/7(4=3t)=0,
Ey=3(f "= +5 7 (4-3) =0,
=TS 5 (450 =0.
By solving the above equations, we can getz =1, and f(¥)
satisfies the equation
=) +1=0. o
The first and the second order covariant derivatives
of E,, are defined by
E,.ka)" =dE, - E .a),." -E, a)’f,
EU k,a) dEU .
With(3.17)and(3.18), we obtain
Eij,ka)k = (&, _Ejj)a)z:/
E'i,ka)k =dE,

i

(3.18)

E, o) Ei,’ka) -E. la)k, (3.19)
ifi#],
if i=).
By simple calculation, we get
Lemma3.2. The

(IxS°,g,) are given by

first covariant derivatives of £, of

By =Ep,==2f"f' (/7 f"=f7fI =217 2=1),
Eu==2f"f'(ff"= 71121 1F,
EOIO E012 E01,3 = EOZ,O:EOZI E023 E03,02E03,1 = E03,2:O’

E,,=E, =k, =E,;=0,
E,=—4f71(1-1),
Ey,=4f7t(1-1),

E. =E,=E..=E

150 =B =E 5 = Eyy y=Ey; ) = By =0,

Eyo ==3[=3f7fF"+ [ "+ 207 () 1+ (=1,

Eio=Eny =37
217 1= 7430,

Eyo=3[3f 2"+ "+ 217 () 1+ 1 (4=50),

Ep,=Ey,7Ew; =0,

E,\, =E ,=E,=E,,=E,, =E,,;=E;, = E,;, = E,,;=0.

From lemma3.1,
calculation, we obtain

lemma3.2 and (3.19), with simple

Lemma3.3. The second covariant derivatives of £, of

(IxS,g,) are given by

Eyo =2/ AL 1" = F 7 f" =37 ()]
+6/7 2=,

Egyo==2[=5f2(fV "+ U+ 7 +37 (N

2617 = e,

Ey 3 =Eg =4 " fH(1-1),

Eo00 = Eor0o=FEo10s = Eori1=Eo11 = Eo11570,

E, .=E, ,,=E,,,=E,,=E

01,20 01,21 01,22 01,30 01,31 EOl ,33 O’
Ep =2/ fT4S2f1" =" =37 (f)]
+6f7 f1'2-1),

“2ASSTUN S ST ST

+3fUN RGN,

Ey 3 =Eg s =417 fH1=17),
Eoy00=Ewo = Ep=Ena = Eppn=Ep.,; =0,
Ep107En1 = Epn=Eys0 = Epnsn=Eps =0,
Eg o =2/ " 412 f1" = [T " =37 () 1+ 617 [,
Ep =205V "+ /U + /"

+3f (UM 267 -7,
=E01 = Eos.00=E 31 = Es30=E55 =0,

=Ep»n=Ey = 0,

02 20

E

03,00

Eg10=Eos 1 = Eg315=E 315 = Eg3 50=E 351

Ep =By ==2f (VS =17
ST A=) =217 fF2 1),
Ep10=Enn = Enys=Eny = Epyn=E; =0,
Epw=En0 = Engn=En e = Eps=EL s = Epp=E, 570,

Epp=Ey=12f7 f11-1%),

ELn==2f7(" (= =-27 Q-1

Eyy==2f( (=)
—4f7e0=-)y=217 [P,

=E300=E 3 0=E 1321732, 7E 15,70,

13,01

E

13,00
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E13,10 :E13,32 :E13,33 =0,

Ezzm: 2310:_12f4f2(1_t2)
Epoy==2f(fV( =SS =27fF'2~1),
Epyo==2f(/V(ff"= 1)

—4f4‘t2(1—t )—2f’4fft,
E,. =E. . ,=E

23,00 ~E23,00=E53 037 E03 11 Es 1,7 E>3 1370,
E, 23,20 :E23 21 :Ezz 2 :E23 30 :E23,31 :E23,33 =0,
Egoo=—3027 (S =37 =4f 7 fF"+ [

=6/ IS+ A=,

Eoo,n:Eoo,zz:%]Flf’(”]FZfJM_14](73 (f’)3 _3f71fm)
+ ()25,
Egy =3 [T S ATf S =14F7 () =377 )

+ ) (4431,
E.01=E00.00=E00.0s=E 030 =E o031 =E0.52 =0,
Eo107E00.10=E0013=E00.20 =E00 21 =E 0 23705
E\ =302/ [ =32 =4S "+ Y

=6/ (N I+ G = 7430,
Ey =3 /TG0 + 7™
~ U270,

E\ =532 )

SIUE -2 [P A3,
E =3 G327+ )

— [ (4=30),
E\ 0 =E 0,=E ) s =E0=E 1, =E 370,
E\\,0=E\ ,=E =E 5=E) 5 =E, 5,70,

Ly 0= [12f_3(f) SI=3fS AL Y
=6/ (NGS5,
Ezz,llz%filf’(_:;fisz"+2f73(f')3 +f71fm)
=8f 7 (1=)~ f(f) (4-30),
Ep =3 [ LS fF 107 + £ f7)
— 270,
Ep, =5 37+ 27+ )
— ) (4=31),
By 017E 00=E 5=E 107Ey 1, =E5 130,

Ey207Ey 51 7Ey 537E 307 E 317E 5, 5,70,
Eyo=5[2f 7V " =312 =4S f)"+ 7 f9
=6/ () =3 S-S50,

w1 =Ey =3 [T 3SR T
P (U-)+ ) (-5,
Eyy=3 [ G S 107 () + 7 f7)
() (490,
By 007E 5 007E 5 057E 53 107 E 53, 7E53 13,70,
Ey300=E3301=E5 53 =E53 30=E33 3 =E33 5, =0
Lemma3.3 immediately implies
Lemma3.4. For (/xS°,g,) , we have

=E

13,11

=E

13,12

=E

13,30

E

Eo =35/ [ =8N + A" +37(f")

AV AR CY A CS I CEUD)

A E =D, By ==SI5f2 (VS =8/ () + S
32U ST O-8 (1)
=41 Q=)= [T -30),

A Eg==3SI5f () f" =8 () + 2 S
3 -V 6 T (-1
—4f (O f(A50),

A Ey =0, Ey=0, Ey=A E,=A, E,=A_E, =0.

(3.20)
Proposition3.5. Let M " (n > 3) be a smooth n-manifold. Then

a metric g € A (M) is a critical point of the Schouten

functional $ if and only if it satisfies the following equations
(1<i,j,k,[<n)

AE, - (n-2)2n-3) R 4 (n-2)2n-3) -
e 2(n—-1)° Y 2n(n—-1)° £

2
2> B, —niz BB+ gy
k.l -

25 2n(n—-1)°
4 2
+—I|E =0,
n(n—2)| AR
wherel <14, j,k,l<n,
2 2
0=y oy p D)

dn(n-1° ¢

4
+Hn—4)Wol(M",g) " S[g]=0.
Proof. In [13], the authors give a detailed proof when the
manifold is compact, boundless. If the manifold is
noncompact or compact with boundary, the proof is similar to
that of compact without boundary. At this time, we need to
consider the critical point of the functional with respect to the
variation with compact support set. Following the notation in
[13], when the manifold is noncompact, we need to consider
the case that the variation function /; has a compact support
set. When the manifold is compact with boundary, we must
require the variation function /; |5, =0
Here we will not give a proof. Please refer to proposition
3.1 and theorem3.1 in [13]. |
Thus, under the standard, orthogonal frame field, we get
Corollary3.1. Let A7 be a smooth 4-manifold. Then a metric
g € M(M) is a critical point of § if and only if it satisfies the
following equations
AE,~3R +ZA RS, +2) E W, —2> EE,
kil k 3.21)
_%REU' +3E N é‘ij =0,
where 0 <14, j,k,1 <3,
A, R=0. (3.22)
The following corollary is immediately obtained from
(3.22).
Corollary3.2. Let p* be a smooth 4-manifold. If
geM(M) is a critical point of & , then the scalar
curvature R of & is constant.
Substituting (3.22) into (3.21), yields
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Ag, Ez’j +2ZEkIVVki1j _zinkEkj —%REU +% | E |2 51']' =0.
k.l 3

(3.23)
3.1 Proof of Theorem 1

Proof. For (I xS°, g,) , under the above standard, orthogonal

frame field {¢,};_,, wheni = j , (3.23) can be written as

A E;+ 2zEkkaiki —2E,E, ~5RE, +3|E F=0. (3.24)
k
Wheni # j, (3.23) can be written as
ZEkkai/g =0. (3.25)
k

From (3.16) and (3.17), wheni # j , (3.25) holds.
Now we only need to solve (3.24). From (3.16) and (3.17),
we have

2 Eubig =510,

ZEW =412A=0)S =SS
k +4 /71 -1)(4-30),

Y E W =41 2A=0) S "= 1S
k +3 A=) =30,
ZEW o VA S (WA AR S V)

-2 -1),

(3.26)

and
Eg=5(/"f"= 2SIV +3 /2= [ S4=1)
+%f4(4_t2)25
Eli:%(fflfﬂ_f—szr)z +%f—2(f—lf~u_f—zf:]w)(4_3t2)
+%f4‘(4—312)2,
EL=y (=S A5 2T RS -30)
+%f4(4—312)2,
Ex=5(f " =SS =3 S-S A4 =50
+%f4(4—5t2)2.
(3.27)
Therefore we obtain

EF =30/ f" = A 2
— G-+ 16242 +111Y.

Substituting (3.20), (3.26), (3.27), (3.28), (3.14) and (3.17)
into (3.24), yields the following four equations

OF Y =Of P AFT 8L S 84 (S

(3.28)

ST H6S TS =) =327 () (@-1) (329
+4 f7(40- 561" +25t*)=0.

Of LSO =9f I =8I 84S

S =217 (A-130) =32 () (5 20)

+4 (401126 +75t*) = 0. (3.30)

Of f D=9 fF =81 (S S84
S =27 (A -130) =32 7 () (5-2) (3.31)
+4 (401121 +75t*) =0.
Of f D=9 2 fF" =81 (S S +84 SN
S3fS H2fTf(44=350) =32 (f) 2+ 1)

—4 £ (40-168¢> +125¢*) = 0. (3.32)
Of =9 fF 8L (S +84 ST
BSOS TS A-) =327 () (A1)

+4 £74(40-561° +251*) =0,

O f D=0 I =BL (S S 84S (S
S =27 (4-130) =32 7 (f) (5 -21)

+4 £ 40-1127 +75¢%) =0,

Of 'S =9 I =81 () S+ 84S
S H2S 744350 =32 () 2+ 1)
—4 £ (40-168¢> +125¢*) = 0.

(3.33)
We first prove this conclusion: for V¢>0 , there is no

metric g, with f(7) as a constant, so that it is a nontrivial,
critical metric of S[g,]Jon [ xS*. We prove it by means of
reduction to absurdity. Assuming that f(7)is a constant, the
equations are obtained from (3.33)
40-561* +25¢t* =0,
40-112¢* +75¢* =0,
40-168¢* +125¢* = 0.
By solving the above equations, we know that for V¢ >0,
the equations have no solution. The proof is completed.
Next, we solve the equations (3.33) with assuming that
f(r)is not a constant.

In the equations (3.33), the first equation minus the second
equation, and the third equation minus the second equation,
we get

327 (A=)+32f7(f) (1=1)
—2 7 e-s)-1) =0,
96 (A=) 496/ (/) (1-1")
-160 (2 -5)(1-¢*) =0.

Obviously, the two equations in (3.34) are actually the
same equation. After simplification, we get

3 A=) 3 A=) =572 -58)(1—-12) =0.
Now we only consider the case of 7 # 1. So the above equation
can be written as

7"+ =32-5)=0. (3.35)
Next, we use the reduction method to solve this equation.
Let

(3.34)

a _ .
=T S
then
S Ay _dvdf dy
=
Substituting the above equation into (3.35), we obtain a
variable separable equation

fdy =[32-5¢) =y |df. (3.36)
Due to f(r)>0, when(2-5¢")—3* #0, the equation

(3.36) can be written as the following equivalent equation
d
%dy -
32-5)-y A
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Integrating the above equation to get
In f+1In3(2-5°)-y*|=C,,

where C, is an arbitrary constant.

Therefore

¥ =32-5)+C,f 7,

where C,=+¢’“ %0 . In addition, the special solution
»? =3(2-5¢%) is obtained from (2 —5¢)— =0 .

Therefore, the general solution of equation (3.36) is

¥ =3@2-5)+Cf7,

where C is an arbitrary constant.

The equation (3.37) is actually a first-order differential
equation for a fixed C, i.e.

(3.37)

=+ [22-57)+Cf . (3.38)

The equation (3.38) is also a variable separable equation.
If3(2-5°)=0, i.e. t:\/% , then the equation (3.38) can be

written as

fdf =+/Cadr.
By solving this equation, we obtain
+2\/Cr+2C;,, (3.39)

where C; is an arbitrary constant.

When 7=,/2 , substituting (3.39) into equations (3.33),

4f*-19C =0,
ie.
4(#2:/Cr+2C,)-19C = 0.
Obviously, this equation does not hold. Thus, we can get
that when t:\/% , &, 1s not a nontrivial, critical metric of 5 .
If2(2-5¢%) # 0, the general solution of the equation (3.38)
is

C

W, (3.40)

f =J§(2—512)(r+c4)2 -

where C, is an arbitrary constant.
Substituting (3.40) into (3.33), yields
4172 2-5)(r+C,)*(35-223¢> +350t")
N C
3(2-5t%)
Owing to the arbitrariness of C and C, , we can get
35-2234* +350t* =0,
50—343¢* +500¢* = 0.
Obviously, this equation also does not hold. Thus, we can
get that for V¢ >0and ¢ # /2

)

(50—343¢” +500¢*)] = 0.

g,1s not a nontrivial, critical

metric of Son [ xS*.

To sum up, for V¢ >0, g, is not a nontrivial, critical metric
of Son7xS*. O
Remark3.2. In theoreml, the existence problem of nontrivial,
critical metric g, of the Schouten functional on [ xS is

transformed into the existence problem of solutions of
differential equations (3.33). Now we will apply the
conclusion of theoreml to S' x S°.

3.2 Proof of Theorem2

Proof. In the proof of theoreml, we can easily see that
there is no periodic function f(r) and parameter ¢, , so

that g, is a nontrivial, critical metric of STg,]Jon /xS . Sowe

have the same conclusion on S' x S” .

Remark3.3. In theorem2, unfortunately, the Riemannian
metric we defined on the manifold, although there is a critical
metric of the Schouten functional, there is no nontrivial
critical metric. In the subsequent research process, we can
further explore the nontrivial critical metric of the Schouten
functional by modifying the parameters of g, .

IV. CONCLUSION

In this paper, we define the Riemannian metrics of the
form g, on/x S’ , and then transform the existence problem

of the critical metric of the Schouten functional into the
existence problem of solutions of the differential equation.
This paper provides an idea and method to define and find the
critical metric of the Schouten functional on a 4-manifold.
Moreover, the method for finding critical metric given in this
paper can be extended to other 4- manifolds, which is also our
future research work.
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