
 

 

Abstract—The existence of critical metrics of the Schouten 
functional on 1 3S S  is studied in this paper. We define a family 

of Riemannian metrics { }t t R
g 

on 3I S , where I is the interval 

(0,  )l  or (0,  + ) . By investigating these Riemannian metrics’ 

properties about the Schouten functional on 3I S , we obtain 

critical metrics’ results of the Schouten functional on 1 3S S . 

 
Index Terms—Schouten tensor, Riemannian functional, 

critical metric, flat metric, 4-manifold 

 

I. INTRODUCTION 

et ( 3)nM n  be an n-dimensional compact, orientable, 

connected smooth manifold. We denote by ( )M  

and ( )M the space of smooth Riemannian metrics 

on nM and the group of diffeomorphisms of nM , respectively. 

A functional : ( )M R  is called Riemannian if is 

invariant under the action of ( )M , that is, ( ) ( )g g    

for each ( )M and ( )g M . 

A very typical example of Riemannian functionals is the 
Einstein-Hilbert functional defined by 

 
(2 )

[ ] : ,
n n

n n

g g gM M
g dvol R dvol



                (1.1) 

where gR is the scalar curvature of g . Hilbert pointed out that 

the critical points of this functional are Einstein metrics [1]. 
The critical points of this functional restricted to the space of 
metrics with constant scalar curvature of unitary volume was 
studied, the CPE metric was simplified. A necessary and 
sufficient condition on the norm of the gradient of the 
potential function for a CPE metric to be Einstein was 
obtained [2]. Baltazar et al. studied weakly Einstein critical 
metrics of the volume functional on a compact manifold with 
smooth boundary, and gave a complete classification for an 
n-dimensional weakly Einstein critical metrics of the volume 
functional with nonnegative scalar curvature [3].  

In addition to Einstein-Hilbert functional, in connection 

with the generalized k -Yamabe problem, the Riemannian 

functional defined by 

 
(2 )

[ ] : ( ) ,
n n

k n n

k g k g gM M
g dvol A dvol



           (1.2) 

where ( )k gA denotes the k-th elementary symmetric function 
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of the eigenvalues (with respect to g ) of the Schouten tensor 
defined by 

: .
2( 1)

g

g g

R
A Ric g

n
 


                         (1.3) 

The study of this functional was first initiated by J. 
viaclovsky[4], and many in-depth results have been obtained 
[5-8]. It is the main result of [9] that, for compact, boundless, 
smooth 3-dimensional manifolds, the space forms are the only 

critical points of 2 if the critical value is nonnegative. In [10], 

Hu et al. extended this result to higher dimensions, and proved 

that, for n-dimensional ( 5)n  , compact, boundless, smooth 

manifolds, the space forms are the only locally conformally 

flat critical points of 2 if the critical value of 2 is 

nonnegative. Gursky et al. developed a gluing procedure 
designed to obtain canonical metrics on connected sums of 
Einstein four-manifolds. By using certain quotients 

of 2 2S S as one of the gluing factors, critical metrics on 

several non-simply-connected manifolds were obtained [11]. 
By using the curvature identity on 4-dimensional Riemannian 
manifolds, critical metrics for the squared L2-norm 
functionals of the curvature tensor, the Ricci tensor and the 
scalar curvature were studied [12]. 

In addition to the above functionals, we can get other 
examples of Riemannian functionals by integrating the 
quadratic polynomial for curvature tensor [1]. Among them, 
the most interesting Riemannian functional is 

 
(4 )

2[ ] : | | .
n n

n n

g g gM M
g dvol A dvol



             (1.4) 

In this paper, we also call the Schouten functional. 
We know 

2
2 2 2 2 2

2 2

3 4 ( 2)
| | | | | | ,

4( 1) 4 ( 1)
g g g g g

n n
A Ric R E R

n n n

 
   

 
 

where : ( / )g g gE Ric R n g  is the trace-free Ricci tensor. 

Obviously, [ ] 0g  if and only if ( , )nM g is Ricci-flat. 

In [13], the authors proved that the infimum of the 

Schouten functional on 1 3S S is zero. However, only the 

Ricci-flat metric is the metric with zero Schouten functional 

on the manifold, but there is no Ricci-flat metric on 1 3S S . A 

question naturally arises: ‘‘Are there critical metrics 

of on 1 3S S ?’’ This problem is the creative motivation of 

this paper. 

Remark1.1. In general, if ( 3)nM n  is an orientable, 

noncompact or compact n-dimensional smooth manifold with 
boundary, we can consider the critical point of the functional 
with respect to the variation with compact support. Then the 
Euler-Lagrange equation of the Schouten functional in [13] is 
still valid for noncompact or compact manifold with boundary 
(see proposition 3.5). Thus, all the conclusions derived from 
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Euler-Lagrange equation in [13] are also valid for 
noncompact  or  compact  manifold with boundary. 

We firstly consider the manifold 3M I S  , where I is the 

interval (0, )l or (0, ) . We write the coordinate function 

on I as r , the tangent vector as 0 rv 
 , and the cotangent 

vector as 0 dr  .Take the tangent frame field on 3S  

according to the method in section 5 of [13], that is, let  
3 1 2 3 4 4 1 2 2 2 3 2 4 2{( , , , ) | ( ) ( ) ( ) ( ) 1}S x x x x R x x x x       

be the unit 3-sphere in 4.R  

Define vector fields 1 2,v v and 3v on 3S by 
1 2 3 4 2 1 4 3

1( , , , ) ( , , , ),v x x x x x x x x    
1 2 3 4 3 4 1 2

2 ( , , , ) ( , , , ),v x x x x x x x x    
1 2 3 4 4 3 2 1

3 ( , , , ) ( , , , ),v x x x x x x x x    

which constitute a basis for tangent vector fields on 3S . We 

denote the dual coframe field of 1 2 3{ , , }v v v as 1 2 3{ , , }   . 

Define a family of Riemannian metrics 
2 2 1 2 2 2 2 3 2( )[( ) ( ) ( ) ]tg dr f r t                 (1.5) 

on 3M I S  , where ( ) 0, 0f r t  is the parameter and 

satisfies (0) 0, (0) 1.f f   Then 1
1 2 3{ , , }tv v v constitutes the 

standard, orthogonal frame field on 3S , and its dual coframe 

field is 1 2 3{ , , }   . 

Remark1.2. Based on the standard metric, the Riemannian 

metric tg in the form of (1.5) is constructed by introducing 

parameters in order to find the critical metrics of the Schouten 

functional on 3I S . 

Now let's describe the main results of this paper. 

Theorem1. For 0t  , tg is not the nontrivial, critical metric 

of the Schouten functional on 3I S . 

Theorem2. There is no metric which likes tg (where ( )f r is a 

periodic function) on 1 3S S , making it a nontrivial, critical 

metric of the Schouten functional on 1 3S S . 

Here, the critical metric is called nontrivial, which means 
that it is neither locally conformally flat nor Einstein. 
Remark1.3. According to the inference 3.1 in [13], every 
Einstein metric is the critical point of the Schouten 
functional on a smooth n-dimensional manifold, so every 

Einstein metric is the critical metric of on 1 3S S . 

The structure of this paper is as follows. In section 2, we 
firstly review the knowledge of Riemannian manifolds by 
using the moving frame method, and then give a fact. In 
section 3, we give some lemmas and propositions, as well as 
the proofs of theorem 1 and 2. In section 4, we summarize the 
research contents of this paper. 

 

II. PRELIMINARIES 

Let nM denote an n-dimensional smooth manifold and 

( , )nM g be an n-dimensional Riemannian manifold with 

metric g . Let 1{ , , }ne e be a local frame field of the tangent 

bundle of nM , and 1{ , , }n  its dual coframe field. 

Throughout the paper we use the standard local notation and 
adopt the Einstein summation convention. For example, we 

write
i j

ijg g    for the local expression of g and set 

1( ) ( )ij
ijg g  . We use ijg and ijg to raise and lower indices as 

usual. 

Recall that the connection forms [ ]ij of the Levi-Civita 

connection of ( , )nM g satisfy the structure equations:  

, 0,i j i i j
j j id                             (2.1) 

1
2 ,i k i i k l

j j k jkld R                            (2.2) 

where
i
jklR are the components of the curvature tensor of 

( , )nM g . It is well-known that the Riemannian curvature 

tensor
m

ijkl im jklR g R  has an irreducible decomposition given 

by [1] 
1

( )
2

   ( )
( 1)( 2)

1
( ),

2

ijkl ijkl ik jl il jk jl ik jk il

ik jl il jk

ijkl ik jl il jk jl ik jk il

R W R g R g R g R g
n

R
g g g g

n n

W A g A g A g A g
n

    


 
 

    


   (2.3) 

where ijklW , ijR and R are the components of the Weyl 

conformal curvature tensor, the Ricci tensor and the scalar 

curvature of g , respectively, while ijA are the components of 

the Schouten tensor A . It is well-known that the Weyl 
conformal curvature tensor in the decomposition (2.3) yields 
the conformally invariant part of the Riemannian curvature 
tensor, while the Schouten tensor describes the curvature 
property that is not conformally invariant. 

The Ricci tensor ijR and the scalar curvature R of ( , )nM g  

are defined by 

, ,

, .kl ij
ij ikjl ij

k l i j

R g R R g R    

For an arbitrary tensor, such as ijklT , we define its norm as 
2| | .im jp kr ls

ijkl mprsT T T g g g g  

Denote by and g the covariant differentiation operator 

of the Levi-Civita connection and the Laplacian on ( , )nM g , 

respectively. For local expressions of the covariant 
derivatives we use the notation 

, , ,, , ,kl
ij k k ij ij kl l k ij g ij ij klR R R R R g R        

      , , ,, , ,kl
ij k k ij ij kl l k ij g ij ij klA A A A A g A        etc. 

The first and the second order covariant derivatives 

of ijA are given by 

, ,k k k
ij k ij kj i ik jA dA A A      

, , , , , .l l l l
ij kl ij k lj k i il k j ij l kA dA A A A        

An n-dimensional Riemannian manifold ( , )nM g is called 

locally conformally flat if g is locally conformal equivalent to 

a flat Riemannian metric, that is, for any p M , there is a 

neighborhoodU of point p and a smooth function  onU , so 

that 2g e g is a flat Riemannian metric. The following 

proposition is well-known. 

Proposition2.1. For a Riemannian manifold ( , )nM g , if 

4n  , then ( , )nM g is locally conformally flat if and only 

if 0.ijklW   
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III. PROOF OF MAIN RESULTS 

For manifold 3I S , we select 

1 1 1
0 1 1 2 2 3 3

1
, , , .e e f v e f v e f v
r t

  
   


 

Then 3
0{ }i ie  is the integral, standard, orthogonal frame field 

on 3( , )tI S g , whose dual coframe field 0 1 2 3{ , , , }     is 

given by 
0 ,dr                                (3.1) 
1 1,f                              (3.2) 
2 2 ,f                              (3.3) 
3 3 ,f                              (3.4) 

Lemma3.1. If we define a family of Riemannian metrics 
2 2 1 2 2 2 2 3 2( )[( ) ( ) ( ) ],tg dr f r t       0t   

on 3I S , then the connection form of the Riemannian 

connection of 3( , )tI S g under the above standard, 

orthogonal frame field 3
0{ }i ie  can be given by 

1 1 1 2 1 2 3 1 3
0 0 0

2 1 1 3 3 1 2 3 1 1
1 1 2

, , ,

(2 ) ,  , .

f f f f f f

f t t f t f t

     

     

  

   

    

    
(3.5) 

Proof. Under the standard, orthogonal frame 3
0{ }i ie  , the 

connection form { }ji of the Riemannian connection of 
3( , )tI S g satisfies the following structural equation 

, 0,i j i i j
j j id                             (3.6) 

and is uniquely determined by it. Next, we just need to verify 
that (3.5) satisfies (3.6). 

It is known from the section 5 of [13] 
1 1 2 3 2 1 1 3 3 1 22 , 2 , 2 .d t d t d t                         

(3.7) 
From (3.1)-(3.4) and (3.7), we obtain 

0

1 1 1 1 1 2 3

2 2 2 2 1 1 3

3 3 3 3 1 2

0,

2 ,

2 ,

2 .

d

d f dr fd f dr ft

d f dr fd f dr ft

d f dr fd f dr ft



     

     

     







       

       

       

     (3.8) 

On the other hand, it is obtained from (3.5) and (3.6) 
0 1 0 2 0 3 0

1 2 3

1 0 1 2 1 3 1 1 1 2 3
0 2 3

2 0 2 1 2 3 2 2 1 1 3
0 1 3

3 0 3 1 3 2 3 3 1 2
0 1 2

0,

2 ,

2 ,

2 .

d

d f dr ft

d f dr ft

d f dr ft

      

         

         

         





      

         

         

         

      (3.9) 
Thus, from (3.8) and (3.9), it is known that (3.5) satisfies 

(3.6).                          □ 
Proposition3.1. If we define a family of Riemannian metrics 

2 2 1 2 2 2 2 3 2( )[( ) ( ) ( ) ],tg dr f r t        0t   

on 3I S , then the Riemannian curvature tensor ijklR of 
3( , )tI S g under the above standard, orthogonal frame field 

3
0{ }i ie  can be given by  

1
01 0 1 0 1

1
02 0 2 0 2

1
03 0 3 0 3

2 2 2
12 1 2 1 2

( ),

( ),

( ),

[ (4 3 ) ]( ),

kl k l l k

kl k l l k

kl k l l k

kl k l l k

R f f

R f f

R f f

R f t f f f

   

   

   

   







 

  

  

  

    

 

2 2 2
13 1 3 1 3

2 2 2
23 2 3 2 3

( )( ),

( )( ),

kl k l l k

kl k l l k

R f t f f f

R f t f f f

   

   

 

 

   

   
    (3.10) 

where 0 , 3.k l   

Proof. From (3.5), we know 1 1 1
0 ,f f   therefore 

1 1 1 1 1
0

1 0 1 1 1 0 1

1 1 2 3

1 0 1 2 1 2 3

( )

( ) (

  2 )

2 .

d d f f f f d

f f f f f f

f t

f f f f t

  

   

 

   

 

  

 

  

   

     

 

    

      (3.11) 

On the other hand, it is obtained from the structural 
equations (2.2) and (3.5) 

1 1 1
0 0 102

2 1 3 1 1
0 2 0 3 012

2 1 2 3 1
012

2 .

k k l
k kl

k l
kl

k l
kl

d R

R

f f t R

    

     

    

   

     

    

      (3.12) 

From (3.11) and (3.12), we obtain 
1 0 11

012

11
0 1 0 12

( ) ,

k l
kl

k l
k l l k

R f f

f f

   

     





   

   
 

therefore 
1

01 0 1 0 1( ),     0 , 3.kl k l l kR f f k l          

Similarly, we can obtain other Riemannian curvature tensor 

ijklR under the standard, orthogonal frame field 3
0{ }i ie  .         □ 

In particular, from (3.10), we can get 
1 1

0101 0202

1 2 2 2
0303 1212

2 2 2 2 2 2
1313 2323

, ,

, (4 3 ) ,

, ,

R f f R f f

R f f R f t f f f

R f t f f f R f t f f f

 

  

   

    

      

      

 

and 0ijklR  if any three of the indices are distinct. Therefore, 

we can get the following proposition. 
Proposition3.2. If we define a family of Riemannian metrics 

2 2 1 2 2 2 2 3 2( )[( ) ( ) ( ) ],tg dr f r t       0t   

on 3I S , then the Ricci curvature tensor ijR of 3( , )tI S g  

under the above standard, orthogonal frame field 3
0{ }i ie  can be 

given by 
1

00 0101 0202 0303

1 2 2 2
11 1010 1212 1313

1 2 2 2
22 2020 2121 2323

1 2 2 2
33 3030 3131 3232

0 0 1 1

3 ,

2 2 (2 ),

2 2 (2 ),

2 2 ,

ij ikjk i j i j

R R R R f f

R R R R f f f f f f t

R R R R f f f f f f t

R R R R f f f f f f t

R R R R R



  

  

  

    

         

         

        

    2 2 3 3 0     ,i j i jR if i j  

       

(3.13) 

where 0 , 3.i j    

From proposition3.2, we can easily get the scalar curvature 

R of 3( , )tI S g as follows 
1 2 2 26( ) 2 (4 ).R f f f f f f t                       (3.14) 

Let's consider the Weyl curvature tensor of 3( , )tI S g .  

From(2.3), for 3( , )tI S g , we have 
1
2
( )ijkl ijkl ik jl il jk jl ik jk ilW R R R R R         

1
6

         ( ).ik jl il jkR                               (3.15) 

By simple calculation, we can get 
2 22

01 0 1 0 13

2 22
02 0 2 0 23

(1 )( ),

(1 )( ),

kl k l l k

kl k l l k

W f t

W f t
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2 24
03 0 3 0 33

2 24
12 1 2 1 23

2 22
13 1 3 1 33

2 22
23 2 3 2 33

(1 )( ),

(1 )( ),

(1 )( ),

(1 )( ),

kl k l l k

kl k l l k

kl k l l k

kl k l l k

W f t

W f t

W f t

W f t

   

   

   

   









  

  

   

   

          (3.16) 

where (0 , 3).k l   

From proposition2.1 and (3.16), we immediately obtain the 
following proposition. 

Proposition3.3. 
3( , )tI S g is locally conformally flat if and 

only if 1t  . 

Remark3.1. If
3( , )tI S g is locally conformally flat and ( )f r  

satisfies 2( ) 1 0,ff f    then the scalar curvature 0
tg

R  . 

According to theorem4.1 in [13], at this time, the locally 

conformally flat metric tg is the critical point of the Schouten 

functional . 
Under the standard, orthogonal frame field, 

1
4ij ij ijE R R  , so it's easy to get from propositions3.2 and 

(3.14) 
1 2 2 23 1

00 2 2

1 2 2 21 1
11 2 2

1 2 2 21 1
22 2 2

1 2 2 21 1
33 2 2

( ) (4 ),

( ) (4 3 ),

( ) (4 3 ),

( ) (4 5 ),

0  ,  for 0 , 3.ij

E f f f f f f t

E f f f f f f t

E f f f f f f t

E f f f f f f t

E if i j and i j

  

  

  

  

      

     

     

     

   

        (3.17) 

where ijE denotes the components of the trace-free Ricci 

tensor
tg

E of 3( , )tI S g . 

Therefore we can obtain the following Proposition. 

Proposition3.4. 
3( , )tI S g is Einstein manifold if and only 

if 1t  , and ( )f r satisfies the equation 2( ) 1 0.ff f     

Proof. 
3( , )tI S g is Einstein manifold if and only if the 

trace-free Ricci tensor
tg

E satisfies 0
tg

E  , i.e. 0ijE   

(0 , 3)i j  .  

Hence, we obtain 
1 2 2 23 1

00 2 2
( ) (4 ) 0,E f f f f f f t           

 
1 2 2 21 1

11 2 2

1 2 2 21 1
22 2 2

1 2 2 21 1
33 2 2

( ) (4 3 ) 0,

( ) (4 3 ) 0,

( ) (4 5 ) 0.

E f f f f f f t

E f f f f f f t

E f f f f f f t

  

  

  

      

      

      

 

By solving the above equations, we can get 1t  , and ( )f r  

satisfies the equation  
2( ) 1 0.ff f                               □ 

The first and the second order covariant derivatives 

of
tg

E are defined by 

,
k k k

ij k ij kj i ik jE dE E E     ，            （3.18） 

, , , , , ,l l l l
ij kl ij k lj k i il k j ij l kE dE E E E          （3.19） 

With(3.17)and(3.18), we obtain 

, ( )     ,k j
ij k ii jj iE E E if i j     

,                   .k
ii k iiE dE if i j    

By simple calculation, we get 

Lemma3.2. The first covariant derivatives of
tg

E of 
3( , )tI S g are given by 

1 1 2 3 2
01,1 02,2 = 2 ( ) 2 (2 ),E E f f f f f f f f f t           

1 1 2 3 2
03,3 = 2 ( ) 2 ,E f f f f f f f f f t           

01,0 01,2 01,3 02,0 02,1 02,3 03,0 03,1 03,2= = = = =0,E E E E E E E E E     

12,0 12,1 12,2 12,3= =0,E E E E   
3 2

13,2 = 4 (1 ),E f t t   
3 2

23,1=4 (1 ),E f t t   

13,0 13,1 13,3 23,0 23,2 23,3= = =0,E E E E E E    
2 1 3 3 3 23

00,0 2 [ 3 2 ( ) ] (4 ),E f f f f f f f f f t               
2 11

11,0 22,0 2

3 3 3 2

[ 3

                   2 ( ) ] (4 3 ),

E E f f f f f

f f f f t

 

 

     

   
2 1 3 3 3 21

33,0 2 [ 3 2 ( ) ] (4 5 ),E f f f f f f f f f t              

00,1 00,2 00,3= 0,E E E   

11,1 11,2 11,3 22,1 22,2 22,3 33,1 33,2 33,3= = = =0.E E E E E E E E E      

From lemma3.1, lemma3.2 and (3.19), with simple 
calculation, we obtain 

Lemma3.3. The second covariant derivatives of
tg

E of 
3( , )tI S g are given by 

1 2 1 3 3
01,01

4 2

2 [4 3 ( ) ]

          6 (2 ),

E f f f f f f f f f

f f f t

   



      

  
3 2 2 2 2 4 4

01,10

4 3 2

= 2[ 5 ( ) ( ) 3 ( ) ]

           2(3 )(2 ),

E f f f f f f f f f f

f f f f f t

   

 

         

    
4 2

01,23 01,32= =4 (1 ),E E f f t t    

01,00 01,02 01,03 01,11 01,12 01,13= = =0,E E E E E E    

01,20 01,21 01,22 01,30 01,31 01,33= = =0,E E E E E E    
1 2 1 3 3

02,02

4 2

=2 [4 3 ( ) ]

         6 (2 ),

E f f f f f f f f f

f f f t

   



     

  
 

3 2 2 2 2
02,20

4 4 4 3 2

= 2[ 5 ( ) ( )

           3 ( ) ] 2(3 )(2 ),

E f f f f f f f f

f f f f f f f t

  

  

       

      
 

4 2
02,13 02,31= 4 (1 ),E E f f t t     

02,00 02,01 02,03 02,21 02,22 02,23= = = 0,E E E E E E    

02,10 02,11 02,12 02,30 02,32 02,33= = = 0,E E E E E E    
1 2 1 3 3 4 2

03,03 =2 [4 3 ( ) ] 6 ,E f f f f f f f f f f f f t              
3 2 2 2 2

03,30

4 4 4 3 2

= 2[ 5 ( ) ( )

           3 ( ) ] 2(3 ) ,

E f f f f f f f f

f f f f f f f t

  

  

       

     

03,00 03,01 03,02 03,31 03,32 03,33= = = 0,E E E E E E    

03,10 03,11 03,12 03,13 03,20 03,21 03,22 03,23= = = = 0,E E E E E E E E     
2 2 1 2

12,12 12,21

4 2 2 4 2

=  = 2 ( ) ( )

          4 (1 ) 2 (2 ),

E E f f f f f f f

f t t f f f t

  

 

    

    

12,10 12,11 12,13 12,20 12,22 12,23= = = =0,E E E E E E   

12,00 12,01 12,02 12,03 12,30 12,31 12,32 12,33= = = = =0,E E E E E E E E    
4 2

13,02 13,20= =12 (1 ),E E f f t t    
2 2 1 2 4 2

13,13 = 2 ( ) ( ) 2 (2 ),E f f f f f f f f f f t             
2 2 1 2

13,31

4 2 2 4 2

= 2 ( ) ( )

          4 (1 ) 2 ,

E f f f f f f f

f t t f f f t

  

 

    

   

13,00 13,01 13,03 13,21 13,22 13,23= = = = = =0,E E E E E E  
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13,10 13,11 13,12 13,30 13,32 13,33= = = = = =0,E E E E E E  
4 2

23,01 23,10= = 12 (1 ),E E f f t t    
2 2 1 2 4 2

23,23 = 2 ( ) ( ) 2 (2 )E f f f f f f f f f f t            ， 
2 2 1 2

23,32

4 2 2 4 2

= 2 ( ) ( )

           4 (1 ) 2

E f f f f f f f

f t t f f f t

  

 

    

    ，

23,00 23,02 23,03 23,11 23,12 23,13= = = = = =0,E E E E E E  

23,20 23,21 23,22 23,30 23,31 23,33= = = = = =0,E E E E E E  
3 2 2 2 2 1 (4)3

00,00 2

4 4 4 3 4

= [12 ( ) 3 ( ) 4

          6 ( ) ] ( 3 )(4 ),

E f f f f f f f f f f

f f f f f f f t

   

  

       

       
1 2 3 3 11

00,11 00,22 2

4 2 2

= = (17 14 ( ) 3 )

                 ( ) (12 5 ),

E E f f f f f f f f f

f f t

   



     

 
1 2 3 3 11

00,33 2

4 2 2

= (17 14 ( ) 3 )

          ( ) (4 3 ),

E f f f f f f f f f

f f t

   



     

 

00,01 00,02 00,03 00,30 00,31 00,32= = = = = =0,E E E E E E  

00,10 00,12 00,13 00,20 00,21 00,23= = = = = =0,E E E E E E  
3 2 2 2 2 1 (4)1

11,00 2

4 4 4 3 2

= [12 ( ) 3 ( ) 4

         6 ( ) ] (3 )(4 3 ),

E f f f f f f f f f f

f f f f f f f t

   

  

      

      
1 2 3 3 11

11,11 2

4 2 2

= ( 11 10 ( ) )

          ( ) (12 7 ),

E f f f f f f f f f

f f t

   



      

 
1 2 3 3 11

11,22 2

4 2 2 4 2 2

= ( 3 2 ( ) )

          8 (1 ) ( ) (4 3 ),

E f f f f f f f f f

f t t f f t

   

 

      

   
1 2 3 3 11

11,33 2

4 2 2

= ( 3 2 ( ) )

          ( ) (4 3 ),

E f f f f f f f f f

f f t

   



      

 

11,01 11,02 11,03 11,10 11,12 11,13= = = = = =0,E E E E E E  

11,20 11,21 11,23 11,30 11,31 11,32= = = = = =0,E E E E E E  
3 2 2 2 2 1 (4)1

22,00 2

4 4 4 3 2

= [12 ( ) 3 ( ) 4

          6 ( ) ] (3 )(4 3 ),

E f f f f f f f f f f

f f f f f f f t

   

  

      

      
 

1 2 3 3 11
22,11 2

4 2 2 4 2 2

= ( 3 2 ( ) )

          8 (1 ) ( ) (4 3 ),

E f f f f f f f f f

f t t f f t

   

 

      

   
1 2 3 3 11

22,22 2

4 2 2

= ( 11 10 ( ) )

          ( ) (12 7 ),

E f f f f f f f f f

f f t

   



      

 
1 2 3 3 11

22,33 2

4 2 2

= ( 3 2 ( ) )

          ( ) (4 3 ),

E f f f f f f f f f

f f t

   



      

 

22,01 22,02 22,03 22,10 22,12 22,13= = = = = =0,E E E E E E  

22,20 22,21 22,23 22,30 22,31 22,32= = = = = =0,E E E E E E  
3 2 2 2 2 1 (4)1

33,00 2

4 4 4 3 2

= [12 ( ) 3 ( ) 4

          6 ( ) ]+( 3 )(4 5 ),

E f f f f f f f f f f

f f f f f f f t

   

  

      

      
1 2 3 3 11

33,11 33,22 2

4 2 2 4 2 2

= = ( 3 2 ( ) )

          +8 (1 ) ( ) (4 5 ),

E E f f f f f f f f f

f t t f f t

   

 

      

  
1 2 3 3 11

33,33 2

4 2 2

= ( 11 10 ( ) )

          + ( ) (4 9 ),

E f f f f f f f f f

f f t

   



      

 

33,01 33,02 33,03 33,10 33,12 33,13= = = = = =0,E E E E E E  

33,20 33,21 33,23 33,30 33,31 33,32= = = = = =0.E E E E E E  

Lemma3.3 immediately implies 

Lemma3.4. For 3( , )tI S g , we have 

 

3 2 4 4 2 2 23
00 2

41 4 2 3 2

3 2 4 4 21
11 22 2

2 2 1 (4) 4 2 2

4 2 2 3

[5 ( ) 8 ( ) 3 ( )

 ] [4 ( ) ](4 ),

[5 ( ) 8 ( )

 3 ( ) ] 8 (1 )

 4 ( ) (2 ) (4 3

t

t t

g

g g

E f f f f f f f f f f

f f f f f f t

E E f f f f f f f f

f f f f f t t

f f t f f t

   

  

  

  

 

         

    

          

   

     2

3 2 4 4 21
33 2

2 2 1 (4) 4 2 2

4 2 2 3 2

01 02 03 12 13 23

),

[5 ( ) 8 ( )

 3 ( ) ] 16 (1 )

 4 ( ) (4 5 ),

0.

t

t t t t t t

g

g g g g g g

E f f f f f f f f

f f f f f t t

f f t f f t

E E E E E E

  

  

 

        

   

   

           

  

    (3.20) 

Proposition3.5. Let ( 3)nM n  be a smooth n-manifold. Then 

a metric ( )g M is a critical point of the Schouten 

functional if and only if it satisfies the following equations 
(1 , , , )i j k l n   

,2 2

2

2
,

2

( 2)(2 3) ( 2)(2 3)

2( 1) 2 ( 1)

4 8 8
2

2 2 ( 1)

4
| | 0,

( 2)

g ij ij g ij

kl k
kilj i kj ij

k l k

g ij

n n n n
E R Rg

n n n

n n
E W E E RE

n n n

E g
n n

   
   

 

 
  

 

 


   

where1 , , ,i j k l n  ,  
2 2

2 2

2

4

( 2) ( 2) ( 4)
( 4) | |

1 4 ( 1)

( 4) ( , ) [ ] 0.

g g g

n n

n n n
R n E R

n n n

n Vol M g g


  
   

 

  

 

Proof. In [13], the authors give a detailed proof when the 
manifold is compact, boundless. If the manifold is 
noncompact or compact with boundary, the proof is similar to 
that of compact without boundary. At this time, we need to 
consider the critical point of the functional with respect to the 
variation with compact support set. Following the notation in 
[13], when the manifold is noncompact, we need to consider 

the case that the variation function ijh has a compact support 

set. When the manifold is compact with boundary, we must 

require the variation function | 0ij Mh   .  

Here we will not give a proof. Please refer to proposition 
3.1 and theorem3.1 in [13].                                                  □ 

Thus, under the standard, orthogonal frame field, we get 
Corollary3.1. Let 4M be a smooth 4-manifold. Then a metric 

( )g M is a critical point of if and only if it satisfies the 

following equations 
5 5

,9 36
,

21 1
9 2

2 2

| | 0,

g ij ij g ij kl kilj ik kj
k l k

ij ij

E R R E W E E

RE E





     

  

 
  (3.21) 

where 0 , , , 3i j k l  , 

=0.gR                            (3.22) 

The following corollary is immediately obtained from 
(3.22). 
Corollary3.2. Let 4M be a smooth 4-manifold. If 

( )g M is a critical point of  , then the scalar 

curvature R of g is constant. 
Substituting (3.22) into (3.21), yields 
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21 1
9 2

,

2 2 | | 0.
tg ij kl kilj ik kj ij ij

k l k

E E W E E RE E         

(3.23) 

3.1 Proof of Theorem 1 

Proof. For 3( , )tI S g , under the above standard, orthogonal 

frame field 3
0{ }i ie  , when i j , (3.23) can be written as 

21 1
9 2

2 2 | | 0.
tg ii kk kiki ii ii ii

k

E E W E E RE E          (3.24) 

When i j , (3.23) can be written as 

0.kk kikj
k

E W                           (3.25) 

From (3.16) and (3.17), when i j , (3.25) holds. 

Now we only need to solve (3.24). From (3.16) and (3.17), 
we have 

4 2 216
0 0 3

2 2 1 24
1 1 3

4 2 24
3

2 2 1 24
2 2 3

4 2 24
3

2 2 1 28
3 3 3

4 2 28
3

(1 ) ,

(1 )( )

(1 )(4 3 ),

(1 )( )

(1 )(4 3 ),

(1 )( )

(1 )(2 ),

kk k k
k

kk k k
k

kk k k
k

kk k k
k

E W f t

E W f t f f f f f

f t t

E W f t f f f f f

f t t

E W f t f f f f f

f t t



  



  



  



  

    

  

    

  

     

  









    (3.26) 

and 
2 1 2 2 2 1 2 29 3
00 4 2

4 2 21
4

= ( ) ( )(4 )

       (4 ) ,

E f f f f f f f f f f f t

f t

    



        

 
 

2 1 2 2 2 1 2 21 1
11 4 2

4 2 21
4

2 1 2 2 2 1 2 21 1
22 4 2

4 2 21
4

2 1 2 2 2 1 21 1
33 4 2

= ( ) ( )(4 3 )

       (4 3 ) ,

= ( ) ( )(4 3 )

       (4 3 ) ,

= ( ) ( )(4 5

E f f f f f f f f f f f t

f t

E f f f f f f f f f f f t

f t

E f f f f f f f f f f f

    



    



    

        

 

        

 

         2

4 2 21
4

)

       (4 5 ) .

t

f t 

 

(3.27) 
Therefore we obtain 

2 1 2 2 2 1

2 2 4 2 4

| | =3( ) 2 (

       )(4 ) (16 24 11 ).

E f f f f f f f f

f f f t f t t

   

 

    

     
     (3.28) 

Substituting (3.20), (3.26), (3.27), (3.28), (3.14) and (3.17) 
into (3.24), yields the following four equations 

1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

4 2 44
3

9 9 81 ( ) 84 ( )

3 ( ) 6 (4 ) 32 ( ) (4 )

(40 56 25 ) 0.

f f f f f f f f f f

f f f f t f f t

f t t

   

  



      

      

   

        (3.29) 

1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

9 9 81 ( ) 84 ( )

3 ( ) 2 (4 13 ) 32 ( ) (5 2 )

f f f f f f f f f f

f f f f t f f t

   

  

      

      
 

4 2 44 (40 112 75 ) 0.f t t                                          (3.30) 
1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

4 2 4

9 9 81 ( ) 84 ( )

3 ( ) 2 (4 13 ) 32 ( ) (5 2 )

4 (40 112 75 ) 0.

f f f f f f f f f f

f f f f t f f t

f t t

   

  



      

      

   

 (3.31) 

1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

9 9 81 ( ) 84 ( )

3 ( ) 2 (44 35 ) 32 ( ) (2 )

f f f f f f f f f f

f f f f t f f t

   

  

      

      
 

4 2 44 (40 168 125 ) 0.f t t                    (3.32) 

i.e. 
1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

4 2 44
3

1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

9 9 81 ( ) 84 ( )

3 ( ) 6 (4 ) 32 ( ) (4 )

(40 56 25 ) 0,

9 9 81 ( ) 84 ( )

3 ( ) 2 (4 13 ) 32 ( ) (5 2 )

4

f f f f f f f f f f

f f f f t f f t

f t t

f f f f f f f f f f

f f f f t f f t

   

  



   

  

      

      

   

      

      

 4 2 4

1 (4) 2 3 2 4 4

2 2 3 2 4 2 2

4 2 4

(40 112 75 ) 0,

9 9 81 ( ) 84 ( )

3 ( ) 2 (44 35 ) 32 ( ) (2 )

4 (40 168 125 ) 0.

f t t

f f f f f f f f f f

f f f f t f f t

f t t



   

  











   
       


      

   

 

    (3.33) 
We first prove this conclusion: for 0t  , there is no 

metric tg with ( )f r as a constant, so that it is a nontrivial, 

critical metric of [ ]tg on 3I S . We prove it by means of 

reduction to absurdity. Assuming that ( )f r is a constant, the 

equations are obtained from (3.33)  
2 4

2 4

2 4

40 56 25 0,

40 112 75 0,

40 168 125 0.

t t

t t

t t

   


  


  

 

By solving the above equations, we know that for 0t  , 
the equations have no solution. The proof is completed. 

Next, we solve the equations (3.33) with assuming that 
( )f r is not a constant. 

In the equations (3.33), the first equation minus the second 
equation, and the third equation minus the second equation, 
we get 

3 2 4 2 2

4 2 2160
3

3 2 4 2 2

4 2 2

32 (1 ) 32 ( ) (1 )

(2 5 )(1 ) 0,

96 (1 ) 96 ( ) (1 )

160 (2 5 )(1 ) 0.

f f t f f t

f t t

f f t f f t

f t t

 



 



   

   

   

   

       (3.34)  

Obviously, the two equations in (3.34) are actually the 
same equation. After simplification, we get 

3 2 4 2 2 4 2 23 (1 ) 3 ( ) (1 ) 5 (2 5 )(1 ) 0.f f t f f t f t t           

Now we only consider the case of 1t  . So the above equation 
can be written as 

2 25
3

( ) (2 5 ) 0.ff f t                      (3.35) 

Next, we use the reduction method to solve this equation. 
Let 

,
df

y f
dr

   

then 
2

2
.

d f dy dy df dy
f y

dr dr df dr df
      

Substituting the above equation into (3.35), we obtain a 
variable separable equation 

2 25
3
(2 5 ) .fydy t y df                             (3.36) 

Due to ( ) 0f r  , when
2 25

3
(2 5 ) 0t y   , the equation 

(3.36) can be written as the following equivalent equation 

2 25
3

.
(2 5 )

y df
dy

t y f
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Integrating the above equation to get 
2 251

12 3
ln ln | (2 5 ) |= ,f t y C    

where 1C is an arbitrary constant. 

Therefore 
2 2 25

23
(2 5 ) ,y t C f     

where 12
2 = 0CC e  . In addition, the special solution 

2 25
3
(2 5 )y t  is obtained from

2 25
3
(2 5 ) =0t y  . 

Therefore, the general solution of equation (3.36) is 
2 2 25

3
(2 5 ) ,y t Cf                           (3.37) 

whereC is an arbitrary constant. 
The equation (3.37) is actually a first-order differential 

equation for a fixed ,C i.e. 

2 25
3
(2 5 ) .

df
t Cf

dr
                         (3.38) 

The equation (3.38) is also a variable separable equation. 

If
25

3
(2 5 )=0t , i.e. 2

5
=t , then the equation (3.38) can be 

written as 

.fdf Cdr   

By solving this equation, we obtain 

32 +2f Cr C  ，                            (3.39) 

where 3C is an arbitrary constant. 

When 2
5

=t , substituting (3.39) into equations (3.33), 

yields 
24 19 0,f C   

i.e. 

34( 2 +2 ) 19 0Cr C C   . 

Obviously, this equation does not hold. Thus, we can get 

that when 2
5

=t , tg is not a nontrivial, critical metric of . 

If
25

3
(2 5 ) 0t  , the general solution of the equation (3.38) 

is 

2 25
43 25

3

(2 5 )( ) ,
(2 5 )

C
f t r C

t
   


                 (3.40) 

where 4C is an arbitrary constant. 

Substituting (3.40) into (3.33), yields 
2 2 2 2 420

43

2 4

25
3

4 [ (2 5 )( ) (35 223 350 )

(50 343 500 )] 0.
(2 5 )

f t r C t t

C
t t

t

    

   


 

Owing to the arbitrariness ofC and 4C , we can get 

2 4

2 4

35 223 350 0,

50 343 500 0.

t t

t t

   


  
 

Obviously, this equation also does not hold. Thus, we can 

get that for 0t  and 2
5

t  , tg is not a nontrivial, critical 

metric of on 3I S . 

To sum up, for 0t  , tg is not a nontrivial, critical metric 

of on 3I S .                                                                      □ 

Remark3.2. In theorem1, the existence problem of nontrivial, 

critical metric tg of the Schouten functional on 3I S is 

transformed into the existence problem of solutions of 
differential equations (3.33). Now we will apply the 
conclusion of theorem1 to 1 3S S . 

3.2 Proof of Theorem2 

Proof. In the proof of theorem1, we can easily see that 

there is no periodic function ( )f r and parameter 0t , so 

that
0t

g is a nontrivial, critical metric of [ ]tg on 3I S . So we 

have the same conclusion on 1 3S S . 

Remark3.3. In theorem2, unfortunately, the Riemannian 
metric we defined on the manifold, although there is a critical 
metric of the Schouten functional, there is no nontrivial 
critical metric. In the subsequent research process, we can 
further explore the nontrivial critical metric of the Schouten 

functional by modifying the parameters of tg . 

 

IV. CONCLUSION 

In this paper, we define the Riemannian metrics of the 

form tg on 3I S , and then transform the existence problem 

of the critical metric of the Schouten functional into the 
existence problem of solutions of the differential equation. 
This paper provides an idea and method to define and find the 
critical metric of the Schouten functional on a 4-manifold. 
Moreover, the method for finding critical metric given in this 
paper can be extended to other 4- manifolds, which is also our 
future research work. 
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