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Characterizations of Fuzzy Functions on Time
Scales

M.N.L. Anuradha, C.H. Vasavi, T. Srinivasa Rao, G. Suresh Kumar

Abstract—This paper handles with the characterization the-
orem for A,y fuzzy functions on T (time scales) through the
A-differentiability of their end point functions. We proposed a
relationship between the Ay -derivative of level-wise function
Fs and the delta differentiability of the endpoint functions
I'; and F'3. We extended the results to fuzzy integro dynamic
equations (FIDEs) on T (FIDETSs) which translates FIDET into
an equivalent system of crisp FIDETs. This laid the foundation
for the methods of finding the analytic and approximate
solutions of FIDETsS.

Index Terms—time scales, Fuzzy-valued function, Hukuhara
difference, gH- difference.

I. INTRODUCTION

HE first path to study FDEs depends on the H-

difference. Bede [3] introduced gH-derivative of fuzzy
functions. Hilger studied T to combine the continuous and
discrete systems [4]. Using the H-difference, Hong [6] estab-
lished the results on set valued functions on T. Lupulescu
[12] studied the interval functions on T. In [5], te author
established few results of fuzzy functions on T. For literature
on fuzzy differential and difference equations, [9]], [13[]-
[14], [20], [21]. For detailed study on T we refer to [1]-
(20, 170, (8, [100-[L1], [LS]. In [16]- [19], Vasavi et.al.,
established the existence as well as uniqueness criteria for
FDEs on T under Ap-derivative, Agp-derivative(second
type), generalized delta derivative (A -derivative).

The basic concepts concerned to fuzzy as well as T are
given in section 2. The next section presents definitions
and proposed a relationship between the A,-derivative of
level-wise function Fg and the delta differentiability of the
endpoint functions F'5 and Fp.

II. PRELIMINARIES

Rp denotes the set of fuzzy functions whose values are
compactly supported, upper semi-continuous, normal as well
as fuzzy convex on R whose [-cuts are defined as usual and
the metric is the supremum metric [9]].
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III. Agp-DERIVATIVE FOR FUZZY FUNCTIONS ON TIME
SCALES

We present few results and then propose a relationship
between the A, g-derivative of level-wise function Gg and
A-derivative of endpoint functions Gg and Gg. Throughout
G : T — Ry be a fuzzy function.

Definition 3.1: [5] Let AguG(¢) € Rp and for given 6 >
0, there exists £ > 0, such that

d[(G(t+h)SguG(a(L)), AguG(€)(h—p(L))] < 6(h—p(L)),
d[(G(a(0))©gu G(t=h), AguG (£)(h+p(f))] < 6(h+p(f)),
Vl+ht—heUpwith0 <h <& If AggG(¢) exists,
then G is A,y -differentiable on Tk,

Theorem 3.1: [3] Denote [G(0)]s = [G4(¢),Gs(0)], for

each 3 € [0,1]. Then if A,y G exists, then the real functions
Gy and Gg are A-derivable and

) —A
(i) (630,35 0)] . o
n [=A
(if) g5 (0,95 (0)]
If G is Agp-differentiable as in (i), then G is called to be
A gm-differentiable, otherwise A ,-differentiable.
Remark 3.1: The above theorem gives the form of the (-

level sets of gﬁg H (£), whenever the endpoint functions are
differentiable. In view of this lemma, two cases arise:

657" (0)]5 =

(i) Tt may happen that G29# (£) exists and the endpoint
functions may not be A-differentiable.

(ii) In such a case, what is G29% (¢) in terms of its endpoint
functions.

From the following example, it is clear that the an-

swer to the above remark is positive i.e. whenever [ is

Agp-differentiable, the endpoint functions may not be A-

differentiable.

Example 3.1: Let G be as follows

1 1
G(0)]s = [(1 +le()NA+B) A+ le@))(1+6)]’
1
where G500 = T o@D+ B)
Gs(l) = 1
g (L+]o(0)))(1+ B)
For T = Z, a&) = { + 1. Then for all £ # -1,

Gs(0),g ﬂ(ﬁ) are delta derivable. At ¢ = —1, the left and
right delta derivatives are not same.

-1

< —1

D ET .
1
<
Gs)2(0) = E(Z—i—l)(l_—{ﬁ)
, 0> —1

(L+2)(0+3)(1+5)
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Now for the gH-difference and £ # —1, we have

[G(€ 1) Sgr G(=D)]s
§

_1[ 1 1 }@
el lEna ) A+ e+ p))

)

I S R G R
IR3EE) {mm{(lﬂﬁ)’ <1+|s|>}’
e { (1_+|€||€|)’ § f €D) H

1 [—1 1 }
(148 LA+ + D)

Thus, the limit GAaH (1) =
e GE=DEm gDl _ [ -1 1 }
im = ; )
€0 3 (1+5) (14 5)
As the gH-difference exists, G is A, p-differentiable but the

end point functions G, (¢), G (&) are not delta differentiable
at £ = —1.
Proposition 3.1: For ¢ € T*.
(i) Let ¢ be right-scattered. G(o(¢)) 64u G(¢), gH-
difference exists for ¢ € T*,

len([G(a(£))]s) = len([G(£)]p),
Gs(0(€)) — G4(f) is nondecreasing w.r. to S,
Gt

Gs(a(0)

len([G(o(€))]s) < len([G(0)]5),
(o(£)) — G4(¢) is nonincreasing w.r. to 3,
0) 14

o g 5
(a(€)) = Gal(
(ii) Let ¢ € T* be right-dense. The differences G(¢+h)S,n

G(0), G(0)©ym G(£ —h) exists for £ —h, L, L+ h € TF,
0 < |h| < 4. Then:

{zen([g(£+ h)]g) > len([G(0)]p),

Y
Gg(¢), is nonincreasing w.r. to 3.

Y
s

), is nondecreasing w.r. to 3.

Gs(l+h) —G4(¢) is nondecreasing w.r. to /3,
Gp(t+h)—Gp(t

or

len([G(€ + h)]) < len([G(0)]s),
G4 (L+h)— Qﬁ(é is nonincreasing w.r. to 3,
Ga(t+h) —Ga(t
The following theorem explains the form of the S-level sets
of AggG on T.

Theorem 3.2: For € T, A, G (¢) exists < one among
the following holds:

(a) The A- derivative of G ﬁ,éﬁ exists at ¢, and either

~— —

, 1S nonincreasing w.r. to /3.

), is nondecreasing w.r. to [3.

(G577 (0] = [(G5)2(0), (@) (0)],
or
(G5 (0)] = [(G5)2(0), ()™ (0)]
(b) (G4)%,_(€) and (gg)ﬁ/_(ﬁ) exist and
(gﬁ)ﬁ(e) = (Gp)2(¢), and
(G5)2(0) = (Ga)2(0)

and either
(G5 (0] = [(G5)2(0), (G5) 2 (0]
=[(Gs)2(0). ()2 (0)]
(G5 (0)] = [(Gs)2(0), (G )5 (0))

=1(G5)2(0).(Gs)2(0)-

Proof: Let G be A, p-differentiable at ¢ € T, then
(a) holds from Theorem 5 in [5)]. Conversely suppose that
g 5 G are A-derivable at ¢ € Tk, Let ¢ be right-scattered.

ten (i Ga(o(0)]) 2 ten (116a(0)]) . (1)
or
ten (25105(0(O)) < ten (7510500]) . @

From (T)), Gs(o(l)) — G4(0) is nondecreasing, Gs(o(l)) —
Gp(¢) is nonincreasing. Therefore (G B)A(ﬁ) is nondecreas-
ing and (Gs)2(¢) is nonincreasing. Clearly, (G)2(¢) <

(G)2(0), WEiCh implies (gg)A(é) < (Gp)A(¥). Hence
(gg)A(e), (Gs)2(¢). Hence,

{9(0(5)) S Q(E)}
5

w(f)
_ [mm {gﬂ("“” ~G4(0) Ty(o(t) - Talt }

~—

u(l) ’ u(l)
-_ {%(U(f)) —G5(0) Ga(a(0)) —Gps(0) H
1(€) ’ (e
=[(G5)2(0). (Gp)2 (0,
which is a fuzzy interval. Hence G is A,y -differentiable.

From (@), the function (Qﬁ)A(E) is nonincreasing,
(Gs)2(¢) is nondecreasing. Hence,

G ) 0 GO] s
e e P O RO

which is a fuzzy interval. Hence, G is A, y-differentiable.
If ¢ is right-dense, o (¢) = ¢, u(¢) = 0.

n (Fgste 1) 2 ten (Fgun). @

ten (G106t 1) < ten (316500) . @

From (3)), G4(C + h) — G4(0) is nondecreasing and Gs(l +
h) — I5(¢) is nonincreasing. Hence,

[lim Gl +h)OSgn Q(K)L _

h—0 h

lmln { lim Q,@w +h) - Q@(é) lim 7,3(3 +h)— ?3(6) }
—0 h " h—0 h ’

- { o GelHM) — G5O Ga(l+h) ~Ga(0) H
h—0 h "h—0
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is a fuzzy interval. Hence G is A,y -differentiable. From @,

i 1) En G0
h—0 h

=[(G5)2(0), (G5)>(0)],

B

is a fuzzy interval and hence G is A,y -differentiable.
Now suppose that (b) is valid i.e. (Qﬁ)ﬁ/f(ﬁ),

(G5)2,_(0) exist and (G)5(0) = (Go)2() and
(G,)2(0) = (G5)3(¢) and cither

G5 (0)] = [(G,)3(0. @) 2 (0)] = [@a)2(0). (G )2 (1),
or

G5 (0)] = [(@a)3(0. (G)2(0)] = [(G5)2(0). (Go)* ()

Here three cases Yill arise: (i) (Qﬁ)ﬁ(f) < (Gp)3(0),
(i) (G5)3(0) = (Ga)2 (0,
(iif) (G)5(6) > (G5)2(0). B

(i) Let ¢ € T* be right-scattered, (Qﬁ)ﬁ(f) < (Gp)2

+
—

~
~—

— [(G,)3(0), @5)2 ()],

is a fuzzy interval. Hence, G is A,py-differentiable.
When ¢ is right-dense, the result is similar.

(i) Assume (G,)2(0) = (Go)3(0). Since (G,)3(¢) =
(Gs)2(0) and (G4)2(6) = (Gp)3(£), we have G,
66 are A-differentiable. Hence from (a), G is Agy-

differentiable. B
(iii) In a similar way as in (i), if (G4)2() > (Gp)3(9)s
then G is A, p-differentiable and

Analogously, if AgyG(f) exists € TF (G,)%, (0),
(Gs)2,(¢) exist and (G,)2(0) = (@)2(0) (G)2(0) =
(Gs)2 (€), then

or

Theorem 3.3: 1f G(¢) is A, y-differentiable at ¢ € T*, <
one among the four holds:

(i) G4,Gp are A-differentiable at £, (G,)*

decreasing, (Gg)~ *(¢) is nonincreasing functions of 3,
and (91)A(5) < (G1)?(s). In this case,

(G577 (0] = [(,)2(0): (@) (0)],

is non-

(i) gﬁ,@, are A-differentiable at /, (gﬁ)A is non-

increasing, (EB)A(K) is nondecreasing functions of 3,
and (G1)2(¢) < (G,)*(¢). In this case,

(G577 (0] = [(Gs)> (), (G ) (0)).

(G502 (1) and G)2, (1) exist and (G,)2(0)
(Gs)2(¢) is nondecreasing and (gﬂ) () = (Gp)3(0)
is nonmcreasmg functions of 3, and (G,)%(¢) <
(G1)%(£). In this case,

95" (0] = 1(G)3(0), o) 2 (0

=[(Gp)2(0). (g2 (1),
(93, (1) and (G2, (1) exist and (G,)3(1
(Gs)2(¢) is nonincreasing and (G4)2(¢) = (7 (4

B
is nondecreasing as functions of 3, and (G1)3(¢)
(G,)2(0). In this case,

A, =
[G5°" (0] = [(G)2(0), (G5)F (0)]
=[(G,)2(0),(Gp)2(0).
The below example illustrates the form of the [-level sets
for the A, p-differentiability of I on time scales when the

end-point functions are not A-differentiable.
Example 3.2: For p € T*, G defined by the S-cuts

(iii)

@
%

1

(iv)

~—

IN

[G(p)]s = [-1(1 = B)(0° +p),2(1 = B)(P* + p)].
ie. G4(p) = 2(1-B)(»* +p), Gs(p) = —1(1 - B)(»* +p),
p <0,
G4(p) = —1(1 = B)(P* +p), Galp) = 2(1 = B)(»* + p),
p > 0.

When T =7Z, for all p #0, G 5 ?5 are A-differentiable.

At p = 0, the functions g ,, % are not A-differentiable,
they are differentiable but they are not same.

(Qg)A(p) =2(1-B)(3p*+3p+2), p<0
—1(1-8)Bp* +3p+2), p>0

= Ay )1 =8)3p* +3p+2), p<0
(Gs)"(p) = {2(1 - B)Bp*+3p+2), p>0.
Here (G,)2(p) = (G5)2(p), (G5)2(p) = (Gp)2(p) are

respectively nondecreasing, nonincreasing functions of 3,
and (G,)2(p) < (G1)2 (p). Hence from Theorem (iii),

A
(G5 (p)] = [-1(1 = B)(3p* + 3p + 2),2(1 — B)(3p* + 3p + 2)].
Example 3.3: For p € T, G defined by the 3-cuts

-1 1
G0l = | T oA+ 8 G o@D+ 5)} ’
—1
ivhere 950) = Flr)D+5)’
) = oG+ B g
If T = Z, o(p) = p+1. Then for all p # —1,G,4(p). G4(p)

are delta derivable. At p = —1, they are right differentiable
but not left delta differentiable.

~1
(QB)A(]?) _ {Wa p < -1
(p+2)(p+3)(1+8

7p>_]-7
)
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1
(gﬂ)A(p) _ p(p+ 1)(1_"1"_ B)

(P+2)(p+3)(1+5)

Then from Theorem 2 (i) in [5] at p = —1, we have

,p<—1

, p>—1.

o [

B -1 1 ~11
BEY) mm{2’2}’m{2’2H
1

1 -1 1
Hence the limit 729 (—1) L —|. As the gH-

T1+p) | 272
difference exists, G is AgH—differentia le but the endpoint

functions G ,(s), Gs(s) are not delta derivable at s = —1.

IV. Fuzzy INTEGRO DYNAMIC EQUATIONS ON TIME
SCALES (FIDETS)

The main aim of this study is to present the characteri-
zation theorem for fuzzy integro dynamic equation on time
scales (FIDET) which translates FIDET into an equivalent
system of crisp FIDETs is of the form:

P
ZAQH(p) = ‘F(pay(p))+ g(paqaz(Q))Aqap07q S [p07p0+a]T7

Po

(D

z(po) = 2o,

where F : [po,po +alr X Rx — Rz and G : [po, po + al? x
Rr — Rz are rd-continuous fuzzy functions, 2 denotes
Agpg-derivative of z, p € T, z9 € Rr.

To solve this, express zp in [-level representation

[2p]s = [25(p),Zs(p)] and [2(po)ls = [204(P),Z05(P)]-
From Zadeh’s extension principle if z(p) is fuzzy, then

[F(p,y(p))ls
= [Es(p. 2(p)), Fs(p, 2(p))]

= [F1,5(25(p), Z5(P)), F2,8(p. 25(p), Z5(P))]

G can be expressed as

[G(p,a,2(9))]s
=[G4, 4:2(0)), G5(p ¢, 2(q))]
=[G, 5(p.4,25(): Z5(2)). G2,5(p: 4, 25(a) Z5(0))]

Definition 4.1: Let z : [po, po + a]r — Rz and z21.9#,
ZA2.00 exists. If z and 22198 satisfy (T), it is called (i)-
solution, otherwise (ii)-solution.

Now, we represent FIDETs (I in terms of its [-cuts,
where the new system consists of two crisp IDEs for each
type of differentiability. For convenience, we are considering
(i) and (ii) cases of Theorem [3.3]

(@) If z(p) is Ay 4p differentiable, then
[z%97 (p)]g = [25 (p), Z5 (p)] and FIDETs (I) is trans-
lated into

= E0.20)50) + [ G(000.4(0).5(0) B0

= Falr.20).20) + [ Galr.0.5(0).7(@) B0
2)

subject to z4(po) = 204,28 (Po) = Z0-
(i) If z(p) is Ag qm differentiable, then

[z29 ()]s = [Zﬁ(p),gﬁ(p)] and FIDETs are
translated into

AgH(

z"9H (p)

= Falr.20)50) + [ Gatna2(a).2(0) 0,
z%94 (p)
= F5(p,2(p),2(p) + | G45(p.4,2(q),Z(q))As,
3)

subject to z5(po) = @B,QQ(pO) = Zog-
Obviously,  [z4(p),Zs(p) and its  A,p-derivative
[z29# (p),Z29H (p)] are valid level sets for each 3 € [0, 1].
To obtain the approximate solution of (I, without loss

of generality assume G(p, q,y(q)) = K(p, q)G(z(p)), where
the (-level representation of G(y(p)) is

G(=(p))
= [G(=(p)), G(2(p))]
=G, 5(p.25(p), Z5(p)). G2,5(p, 25(P). Z5(P))]

Hence (T)) can be expressed as

ZBai (p) = Flp,2(p)) + [5 K(p,0)G(2(p)Aq; po,q €
[po, po + alr.
To solve (I)), express it by equivalent crisp IDEs

2294 (p)

— Fu (200 50) + | " K00, 2(0). Z5(0)) Mg,

z897 (p)

= Fo 0,20).50) + [ Ko al0.0.,(0). 755,

subject to z5(po) = 204,28 (po) = Zo, where

K(p.9)g, 4(p, z5(p), Z5(p));
K(p,q) >0,

K(p,a)G, 40, 25(p), 25 (p));
K(p,q) <0,

Ki15(p,4,25(q),Z5(q)) =

K(p.a)G, 5(p25(p), Z5(p)),
K(p.q) =20,

K(p.a)G, 5(p;25(p),Z5(p)),
K(p,q) <0,

KQ,ﬁ(p7 q, %ﬁ(Q)’ Eﬁ(q)) =
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Definition 4.2: A function F : [po,po + alr X Rr — Rx
and G : [p(),p() + a]% X Rr — Rx are

(i) rd-continuous, if F(p,u(p)),G(p,u(p),v(p)) are rd-
continuous and u, v : [po,po + alr — Rx.

Lipschitz continuous w.r.to the last argument in fuzzy
sense if there exists ¢1, /> > 0 such that

D(F(p,u(p)), F(p,v(p))) < €1D(u(p),v(p))
D(G(p, s,u(p)), F(p,s,v(p))) < LaD(u(p), v(p))(4)

for each p,s € [po,po + a|r. Then FIDETs (I) have
two unique solutions, one is A; ,y-differentiable and
the other is A, ,p-differentiable on [po, po + ar.

Theorem 4.1: Let F,G are bounded and py € T with
inf T < py—a,supT > pg + a such that
(D) [F(p, 2(p))]s
= [Es(p, 25(p), Z5(p)), F5(p, 25(p), Z5 (),
[G(p,s,2(5))]s
= [Gs(p,5,24(5).Z5(5)), G (. 5, 25(5), Z5(5))];

(i)

(i) g, Fs,G 6755 are rd-equicontinuous uniformly in g €
[0, 1], uniformly bounded on any bounded set, and uniformly
Lipschitz in the second, third argument, i.e., ¢1, /s > 0 and

|E5 (P ug(p): Us(p)) — Fs(p,v5(p) vs(p))]

< b max{|ug(p) — up(p))l, [vg(p) — vs(p))[},
and

and

1G5 (p,us(p),us(p)) — Gs(pvs(p), Ts(p))
< lymax{|ug(p) —us(p))l, [vs(p) —vs(p))|}

for all p,s € [po,po + alr, B € [0,1], then for Ay zp-
differentiability,the FIDET (T)) on T is equivalent to (2 and
for Ay 4p-differentiability,the FIDET (1) on T is equivalent
to (3).

Proof: Let z be A gpy-differentiable. The rd-
equicontinuity of F 6’75’ g 5 and ?5 implies the rd-
continuity of F,G. Further, the Lipschitz property ensures
that the fuzzy functions F,§ satisfy Lipschitz property in
the metric space (Rp, D) as follows:

D(F(p,u(p)), F(p,v(p)))

= ﬂil[lopl] max{|Fz(p, ug(p), us(p)) — F5(p,v5(p), vs(p))l;
\Fp(p,ug(p), ws(p)) — Fs(p,vs(p), vs(p))|}

<ty sup max{lug(p) —us(p))l; lus(p) — Vs(p))I}
Bel01]

=01 D(u,v).

In a similar
lyD(u,v).
From the Lipschitz as well as boundedness condition,
it follows that FIDET (I) has unique A; ,p-differentiable
solution and a unique A, ,p-differentiable solution.

way, D(G(p,s,u(s)),G(p,s,v(s)) <

Conversely, suppose that (T)) has a solution (z4(p)), Zs(p))
with 8 € [0, 1], whereas the Lipschitz condition implies the
uniqueness along with existence of fuzzy solution z(p). As z
is Ay gp-differentiable, then 25 and Z are the endpoints of
[z(p)s], solution of (). Since the solution of ([2) is unique,
we have

[2(p)s] = [2(P)s,Z(p)s] = [2(p)]s, which means, FIDET
(I is equivalent to (). |

REFERENCES

[1] M.N.L. Anuradha, C.H. Vasavi and G. Suresh Kumar,“Fuzzy Integro-
Dynamic Equations on Time Scales”, Journal of Advanced Research
in Dynamical and Control Systems, vol.12, no.2, pp1788-1792, 2020.

[2] M. N. L. Anuradha, C.H. Vasavi and G. Suresh Kumar,“Fuzzy
Integro Nabla Dynamic Equations on Time Scales”, Advances in
Mathematics: Scientific Journal, vol.9, no.12, pp10251-10260, 2020.

[3] B. Bede, and L. Stefanini, “Generalized Differentiability of Fuzzy
Valued Functions”, Fuzzy Sets and Systems, vol.230, ppl119-141,
2013.

[4] M. Bohner, and A. Peterson, “Dynamic equations on time scales: An
introduction with applications”, Birkhauser, Boston,2001.

[5] O. S. Fard, and T. A. Bidgoli, “Calculus of fuzzy functions on time
scales(I)”, Soft Computing: Methodologies and Applications, vol.19,
no.2, pp293-305, 2015.

[6] S.Hong, “Differentiability of multivalued functions on time scales and
applications to multivalued dynamic equations”, Nonlinear Analysis:
Theory, Methods and Applications, vol.71, no.9, pp3622-3637, 2009.

[71 Meng Hu, and Lili Wang, “Almost Periodic Solution for a Nabla BAM
Neural Networks on Time Scales”, Engineering Letters, vol.25, no.3,
pp290-295, 2017.

[8] Meng Hu, and Lili Wang, “Positive Periodic Solutions in Shifts
Delta(+/-) for a Neutral Dynamic Equation on Time Scales”, IAENG
International Journal of Applied Mathematics, vol.48, no.2, pp134-
139, 2018.

[9] O. Kaleva, “Fuzzy differential equations”, Fuzzy Sets and Systems,

vol.24, no.3, pp301-317, 1987.

R. Leelavathi and G. Suresh Kumar, “Characterization theorem for

fuzzy functions on time scales under generalized nabla hukuhara

difference”, International Journal of Innovative Technology and Ex-

ploring Engineering, vol.8, no.8, pp1704-1706, 2019.

R. Leelavathi, G. Suresh Kumar, and M.S.N Murty, “Nabla Hukuhara

Differentiability for Fuzzy Functions on Time Scales”, IAENG In-

ternational Journal of Applied Mathematics, vol.49, no.1, pp114-121,

2019.

V. Lupulescu, “Hukuhara differentiability of interval-valued functions

and interval differential equations on time scales”, Information Sci-

ences, vol.248, pp50-67, 2013.

T. Srinivasa Rao, G. Suresh Kumar, C.H. Vasavi, and M.S.N. Murty,

“Observability of Fuzzy Difference Control Systems”, International

Journal of Chemical Sciences, vol.14, no.4, pp2516-2526, 2016.

T. Srinivasa Rao, G. Suresh Kumar, C.H. Vasavi, B. V. A. Rao, "On

the controllability of fuzzy difference control systems”, International

Journal of Civil Engineering and Technology, vol.8, no.12, pp723-732,

2017.

R. V. N. Udayasree, T. Srinivasa Rao, C.H. Vasavi and G. Suresh

Kumar,“Interval Integro-Dynamic Equations on Time Scales under

Generalized Hukuhara Delta Derivative”, Advances in Mathematics:

Scientific Journal, vol.9, no.11, pp9069-9078, 2020.

C.H. Vasavi, G. Suresh Kumar, and M.S.N. Murty, “Generalized dif-

ferentiability and integrability for fuzzy set-valued functions on time

scales”, Soft Computing: Methodologies and Applications, vol.20,

pp1093-1104, 2016.

C.H. Vasavi, G. Suresh Kumar, and M.S.N. Murty, “Fuzzy dynamic

equations on time scales under second type Hukuhara delta deriva-

tive”, International Journal of Chemical Sciences, vol.14, pp49-66,

2016.

C.H. Vasavi, G. Suresh Kumar, and M.S.N. Murty, “Fuzzy Hukuhara

Delta Differential and Applications to Fuzzy Dynamic Equations on

Time Scales”, Journal of Uncertain Systems, vol.10, no.3, pp163-180,

2016.

C.H. Vasavi, G. Suresh Kumar, and M.S.N. Murty, “Fuzzy dynamic

equations on time scales under generalized delta derivative via

contractive-like mapping principles”, Indian Journal of Science and

Technology, vol.9, no.25,ppl-6, 2016.

C.H. Vasavi, G. Suresh Kumar, T. Srinivasa Rao, and B. V. Appa Rao,

“Application of Fuzzy Differential Equations For Cooling Problems”,

International Journal of Mechanical Engineering and Technology,

vol.8, no.12, pp712-721, 2017.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Volume 50, Issue 1: March 2023



IAENG International Journal of Computer Science, 50:1, IJCS 50 1 18

[21] Guiying Wang, and Qianhong Zhang, “Dynamical Behavior of First-
Order Nonlinear Fuzzy Difference Equation”, IAENG International
Journal of Computer Science, vol.45,n0.4, pp552-559, 2018.

BIBLIOGRAPHY

The first author M. N. L. Anuradha is an Associate
Professor in the Department of Mathematics, Vidya Jyothi
Institute of Technology, Hyderabad, R.R. District., India.

Volume 50, Issue 1: March 2023



	Introduction
	Preliminaries
	gH-derivative for fuzzy functions on time scales
	Fuzzy Integro Dynamic Equations on time scales (FIDETs)
	References



