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Abstract—This paper handles with the characterization the-
orem for ∆gH fuzzy functions on T (time scales) through the
∆-differentiability of their end point functions. We proposed a
relationship between the ∆gH -derivative of level-wise function
Fβ and the delta differentiability of the endpoint functions
F β and F β . We extended the results to fuzzy integro dynamic
equations (FIDEs) on T (FIDETs) which translates FIDET into
an equivalent system of crisp FIDETs. This laid the foundation
for the methods of finding the analytic and approximate
solutions of FIDETs.

Index Terms—time scales, Fuzzy-valued function, Hukuhara
difference, gH- difference.

I. INTRODUCTION

THE first path to study FDEs depends on the H-
difference. Bede [3] introduced gH-derivative of fuzzy

functions. Hilger studied T to combine the continuous and
discrete systems [4]. Using the H-difference, Hong [6] estab-
lished the results on set valued functions on T. Lupulescu
[12] studied the interval functions on T. In [5], te author
established few results of fuzzy functions on T. For literature
on fuzzy differential and difference equations, [9], [13]-
[14], [20], [21]. For detailed study on T we refer to [1]-
[2], [7], [8], [10]-[11], [15]. In [16]- [19], Vasavi et.al.,
established the existence as well as uniqueness criteria for
FDEs on T under ∆H -derivative, ∆SH -derivative(second
type), generalized delta derivative (∆g-derivative).

The basic concepts concerned to fuzzy as well as T are
given in section 2. The next section presents definitions
and proposed a relationship between the ∆gH -derivative of
level-wise function Fβ and the delta differentiability of the
endpoint functions F β and F β .

II. PRELIMINARIES

RF denotes the set of fuzzy functions whose values are
compactly supported, upper semi-continuous, normal as well
as fuzzy convex on R whose β-cuts are defined as usual and
the metric is the supremum metric [9].
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III. ∆gH -DERIVATIVE FOR FUZZY FUNCTIONS ON TIME
SCALES

We present few results and then propose a relationship
between the ∆gH -derivative of level-wise function Gβ and
∆-derivative of endpoint functions Gβ and Gβ . Throughout
G : T→ RF be a fuzzy function.

Definition 3.1: [5] Let ∆gHG(`) ∈ RF and for given δ >
0, there exists ξ > 0, such that

d[(G(`+h)	gHG(σ(`)),∆gHG(`)(h−µ(`))] ≤ δ(h−µ(`)),

d[(G(σ(`))	gHG(`−h),∆gHG(`)(h+µ(`))] ≤ δ(h+µ(`)),

∀ ` + h, ` − h ∈ UT with 0 < h < ξ. If ∆gHG(`) exists,
then G is ∆gH -differentiable on Tk.

Theorem 3.1: [5] Denote [G(`)]β = [Gβ(`),Gβ(`)], for
each β ∈ [0, 1]. Then if ∆gHG exists, then the real functions
Gβ and Gβ are ∆-derivable and

[G∆gH

β (`)]β =

(i)
[
G∆
β (`),G∆

β (`)
]
, (or)

(ii)
[
G∆

β (`),G∆
β (`)

]
.

If G is ∆gH -differentiable as in (i), then G is called to be
∆1,gH -differentiable, otherwise ∆2,gH -differentiable.

Remark 3.1: The above theorem gives the form of the β-
level sets of G∆gH

β (`), whenever the endpoint functions are
differentiable. In view of this lemma, two cases arise:
(i) It may happen that G∆gH (`) exists and the endpoint

functions may not be ∆-differentiable.
(ii) In such a case, what is G∆gH (`) in terms of its endpoint

functions.
From the following example, it is clear that the an-
swer to the above remark is positive i.e. whenever I is
∆gH -differentiable, the endpoint functions may not be ∆-
differentiable.

Example 3.1: Let G be as follows

[G(`)]β =

[
−1

(1 + |σ(`)|)(1 + β)
,

1

(1 + |σ(`)|)(1 + β)

]
,

where Gβ(`) =
−1

(1 + |σ(`)|)(1 + β)
,

Gβ(`) =
1

(1 + |σ(`)|)(1 + β)
For T = Z, σ(`) = ` + 1. Then for all ` 6= −1,
Gβ(`),Gβ(`) are delta derivable. At ` = −1, the left and
right delta derivatives are not same.

(Gβ)∆(`) =


−1

`(`+ 1)(1 + β)
, ` < −1

1

(`+ 2)(`+ 3)(1 + β)
, ` > −1

,

(Gβ)∆(`) =


1

`(`+ 1)(1 + β)
, ` < −1

−1

(`+ 2)(`+ 3)(1 + β)
, ` > −1
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Now for the gH-difference and ξ 6= −1, we have

[G(ξ − 1)	gH G(−1)]β
ξ

=
1

ξ

[
−1

(1 + |ξ|)(1 + β)
,

1

(1 + |ξ|)(1 + β)

]
	gH[

−1

(1 + β)
,

1

(1 + β)

]
=

1

ξ(1 + β)

[
min

{
−|ξ|

(1 + |ξ|)
,
|ξ|

(1 + |ξ|)

}
,

max

{
−|ξ|

(1 + |ξ|)
,
|ξ|

(1 + |ξ|)

}]
=

1

(1 + β)

[
−1

(1 + |ξ|)
,

1

(1 + |ξ|)

]
.

Thus, the limit G∆gH (−1) =

lim
ξ→0

[G(ξ − 1)	gH G(−1)]β
ξ

=

[
−1

(1 + β)
,

1

(1 + β)

]
,

As the gH-difference exists, G is ∆gH -differentiable but the
end point functions Gβ(ξ), Gβ(ξ) are not delta differentiable
at ξ = −1.

Proposition 3.1: For ` ∈ Tk.
(i) Let ` be right-scattered. G(σ(`)) 	gH G(`), gH-

difference exists for ` ∈ Tk,
len([G(σ(`))]β) ≥ len([G(`)]β),

Gβ(σ(`))− Gβ(`) is nondecreasing w.r. to β,

Gβ(σ(`))− Gβ(`), is nonincreasing w.r. to β.
len([G(σ(`))]β) ≤ len([G(`)]β),

Gβ(σ(`))− Gβ(`) is nonincreasing w.r. to β,

Gβ(σ(`))− Gβ(`), is nondecreasing w.r. to β.

(ii) Let ` ∈ Tk be right-dense. The differences G(`+h)	gH
G(`), G(`)	gH G(`−h) exists for `−h, `, `+h ∈ Tk,
0 < |h| < δ. Then:
len([G(`+ h)]β) ≥ len([G(`)]β),

Gβ(`+ h)− Gβ(`) is nondecreasing w.r. to β,

Gβ(`+ h)− Gβ(`), is nonincreasing w.r. to β.

or
len([G(`+ h)]β) ≤ len([G(`)]β),

Gβ(`+ h)− Gβ(`) is nonincreasing w.r. to β,

Gβ(`+ h)− Gβ(`), is nondecreasing w.r. to β.

The following theorem explains the form of the β-level sets
of ∆gHG on T.

Theorem 3.2: For ` ∈ Tk, ∆gHG(`) exists⇔ one among
the following holds:
(a) The ∆- derivative of Gβ ,Gβ exists at `, and either

[G∆gH

β (`)] = [(Gβ)∆(`), (Gβ)∆(`)],

or
[G∆gH

β (`)] = [(Gβ)∆(`), (Gβ)∆(`)].

(b) (Gβ)∆
+/−(`) and (Gβ)∆

+/−(`) exist and

(Gβ)∆
+(`) = (Gβ)∆

−(`), and

(Gβ)∆
−(`) = (Gβ)∆

+(`)

and either

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)].

or

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)].

Proof: Let G be ∆gH -differentiable at ` ∈ Tk, then
(a) holds from Theorem 5 in [5]. Conversely suppose that
Gβ ,Gβ are ∆-derivable at ` ∈ Tk. Let ` be right-scattered.

len

(
1

µ(`)
[Gβ(σ(`))]

)
≥ len

(
1

µ(`)
[Gβ(`)]

)
, (1)

or

len

(
1

µ(`)
[Gβ(σ(`))]

)
≤ len

(
1

µ(`)
[Gβ(`)]

)
. (2)

From (1), Gβ(σ(`)) − Gβ(`) is nondecreasing, Gβ(σ(`)) −
Gβ(`) is nonincreasing. Therefore (Gβ)∆(`) is nondecreas-
ing and (Gβ)∆(`) is nonincreasing. Clearly, (G)∆(`) ≤
(G)∆(`), which implies (Gβ)∆(`) ≤ (Gβ)∆(`). Hence
(Gβ)∆(`), (Gβ)∆(`). Hence,[
G(σ(`))	gH G(`)

µ(`)

]
β

=

[
min

{
Gβ(σ(`))− Gβ(`)

µ(`)
,
Gβ(σ(`))− Gβ(`)

µ(`)

}
,

max

{
Gβ(σ(`))− Gβ(`)

µ(`)
,
Gβ(σ(`))− Gβ(`)

µ(`)

}]
= [(Gβ)∆(`), (Gβ)∆(`)],

which is a fuzzy interval. Hence G is ∆gH -differentiable.
From (2), the function (Gβ)∆(`) is nonincreasing,

(Gβ)∆(`) is nondecreasing. Hence,[
G(σ(`))	gH G(`)

µ(`)

]
β

= [(Gβ)∆(`), (Gβ)∆(`)], ,

which is a fuzzy interval. Hence, G is ∆gH -differentiable.
If ` is right-dense, σ(`) = `, µ(`) = 0.

len

(
1

h
[Gβ(`+ h)]

)
≥ len

(
1

h
[Gβ(`)]

)
, (3)

or

len

(
1

h
[Gβ(`+ h)]

)
≤ len

(
1

h
[Gβ(`)]

)
, (4)

From (3), Gβ(`+ h)− Gβ(`) is nondecreasing and Gβ(`+

h)− Iβ(`) is nonincreasing. Hence,[
lim
h→0

G(`+ h)	gH G(`)

h

]
β

=[
min

{
lim
h→0

Gβ(`+ h)− Gβ(`)

h
, lim
h→0

Gβ(`+ h)− Gβ(`)

h

}
,

max

{
lim
h→0

Gβ(`+ h)− Gβ(`)

h
, lim
h→0

Gβ(`+ h)− Gβ(`)

h

}]
= [(Gβ)∆(`), (Gβ)∆(`)],
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is a fuzzy interval. Hence G is ∆gH -differentiable. From (4),[
lim
h→0

G(`+ h)	gH G(`)

h

]
β

= [(Gβ)∆(`), (Gβ)∆(`)],

is a fuzzy interval and hence G is ∆gH -differentiable.
Now suppose that (b) is valid i.e. (Gβ)∆

+/−(`),
(Gβ)∆

+/−(`) exist and (Gβ)∆
+(`) = (Gβ)∆

−(`) and
(Gβ)∆

−(`) = (Gβ)∆
+(`) and either

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)] = [(Gβ)∆
−(`), (Gβ)∆

−(`)],

or

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)] = [(Gβ)∆
−(`), (Gβ)∆

−(`)].

Here three cases will arise: (i) (Gβ)∆
+(`) < (Gβ)∆

+(`),
(ii) (Gβ)∆

+(`) = (Gβ)∆
+(`),

(iii) (Gβ)∆
+(`) > (Gβ)∆

+(`).

(i) Let ` ∈ Tk be right-scattered, (Gβ)∆
+(`) < (Gβ)∆

+(`),[
G(σ(`))	gH G(`)

µ(`)

]
β

=

[
min

{
Gβ(σ(`))− Gβ(`)

µ(`)
,
Gβ(σ(`))− Gβ(`)

µ(`)

}
,

max

{
Gβ(σ(`))− Gβ(`)

µ(`)
,
Gβ(σ(`))− Gβ(`)

µ(`)

}]
= [(Gβ)∆

+(`), (Gβ)∆
+(`)],

is a fuzzy interval. Hence, G is ∆gH -differentiable.
When ` is right-dense, the result is similar.

(ii) Assume (Gβ)∆
+(`) = (Gβ)∆

+(`). Since (Gβ)∆
+(`) =

(Gβ)∆
−(`) and (Gβ)∆

−(`) = (Gβ)∆
+(`), we have Gβ ,

Gβ are ∆-differentiable. Hence from (a), G is ∆gH -
differentiable.

(iii) In a similar way as in (i), if (Gβ)∆
+(`) > (Gβ)∆

+(G),
then G is ∆gH -differentiable and

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)].

Analogously, if ∆gHG(`) exists ∈ Tk, (Gβ)∆
+/−(`),

(Gβ)∆
+/−(`) exist and (Gβ)∆

+(`) = (Gβ)∆
−(`), (Gβ)∆

−(`) =

(Gβ)∆
+(`), then

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)],

or

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)].

Theorem 3.3: If G(`) is ∆gH -differentiable at ` ∈ Tk, ⇔
one among the four holds:
(i) Gβ ,Gβ are ∆-differentiable at `, (Gβ)∆ is non-

decreasing, (Gβ)∆(`) is nonincreasing functions of β,
and (G1)∆(s) ≤ (G1)∆(s). In this case,

[G∆gH

β (`)] = [(Gβ)∆(`), (Gβ)∆(`)],

(ii) Gβ ,Gβ are ∆-differentiable at `, (Gβ)∆ is non-
increasing, (Gβ)∆(`) is nondecreasing functions of β,
and (G1)∆(`) ≤ (G1)∆(`). In this case,

[G∆gH

β (`)] = [(Gβ)∆(`), (Gβ)∆(`)].

(iii) (Gβ)∆
+/−(`) and (Gβ)∆

+/−(`) exist and (Gβ)∆
+(`) =

(Gβ)∆
−(`) is nondecreasing and (Gβ)∆

−(`) = (Gβ)∆
+(`)

is nonincreasing functions of β, and (G1)∆
+(`) ≤

(G1)∆
+(`). In this case,

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)],

(iv) (Gβ)∆
+/−(`) and (Gβ)∆

+/−(`) exist and (Gβ)∆
+(`) =

(Gβ)∆
−(`) is nonincreasing and (Gβ)∆

−(`) = (Gβ)∆
+(`)

is nondecreasing as functions of β, and (G1)∆
+(`) ≤

(G1)∆
+(`). In this case,

[G∆gH

β (`)] = [(Gβ)∆
+(`), (Gβ)∆

+(`)]

= [(Gβ)∆
−(`), (Gβ)∆

−(`)].

The below example illustrates the form of the β-level sets
for the ∆gH -differentiability of I on time scales when the
end-point functions are not ∆-differentiable.

Example 3.2: For p ∈ Tk, G defined by the β-cuts

[G(p)]β = [−1(1− β)(p3 + p), 2(1− β)(p3 + p)].

i.e. Gβ(p) = 2(1−β)(p3 + p), Gβ(p) = −1(1−β)(p3 + p),
p < 0,
Gβ(p) = −1(1− β)(p3 + p), Gβ(p) = 2(1− β)(p3 + p),

p > 0.
When T = Z, for all p 6= 0, Gβ , Gβ are ∆-differentiable.
At p = 0, the functions Gβ , Gβ are not ∆-differentiable,

they are differentiable but they are not same.

(Gβ)∆(p) = 2(1− β)(3p2 + 3p+ 2), p < 0

−1(1− β)(3p2 + 3p+ 2), p > 0

(Gβ)∆(p) =

{
−1(1− β)(3p2 + 3p+ 2), p < 0

2(1− β)(3p2 + 3p+ 2), p > 0.

Here (Gβ)∆
+(p) = (Gβ)∆

−(p), (Gβ)∆
−(p) = (Gβ)∆

+(p) are
respectively nondecreasing, nonincreasing functions of β,
and (G1)∆

+(p) ≤ (G1)∆
+(p). Hence from Theorem 3.3 (iii),

[G∆gH

β (p)] = [−1(1− β)(3p2 + 3p+ 2), 2(1− β)(3p2 + 3p+ 2)].

Example 3.3: For p ∈ Tk, G defined by the β-cuts

[G(p)]β =

[
−1

(1 + |σ(p)|)(1 + β)
,

1

(1 + |σ(p)|)(1 + β)

]
,

where Gβ(p) =
−1

(1 + |σ(p)|)(1 + β)
,

Gβ(p) =
1

(1 + |σ(p)|)(1 + β)
.

If T = Z, σ(p) = p+1. Then for all p 6= −1, Gβ(p),Gβ(p)
are delta derivable. At p = −1, they are right differentiable
but not left delta differentiable.

(Gβ)∆(p) =


−1

p(p+ 1)(1 + β)
, p < −1

1

(p+ 2)(p+ 3)(1 + β)
, p > −1,
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(Gβ)∆(p) =


1

p(p+ 1)(1 + β)
, p < −1

−1

(p+ 2)(p+ 3)(1 + β)
, p > −1.

Then from Theorem 2 (i) in [5] at p = −1, we have

[G(σ(−1))	gH G(−1)]

µ(−1)

= [G(σ(−1))	gH G(−1)]

=
1

2

[
−1

(1 + β)
,

1

(1 + β)

]
	gH

[
−1

(1 + β)
,

1

(1 + β)

]
=

1

(1 + β)

[
min

{
−1

2
,

1

2

}
,max

{
−1

2
,

1

2

}]
=

1

(1 + β)

[
−1

2
,

1

2

]
.

Hence the limit I∆gH (−1) =
1

(1 + β)

[
−1

2
,

1

2

]
. As the gH-

difference exists, G is ∆gH -differentiable but the endpoint
functions Gβ(s), Gβ(s) are not delta derivable at s = −1.

IV. FUZZY INTEGRO DYNAMIC EQUATIONS ON TIME
SCALES (FIDETS)

The main aim of this study is to present the characteri-
zation theorem for fuzzy integro dynamic equation on time
scales (FIDET) which translates FIDET into an equivalent
system of crisp FIDETs is of the form:

z∆gH (p) = F(p, y(p))+

∫ p

p0

G(p, q, z(q))∆q, p0, q ∈ [p0, p0+a]T,

(1)

z(p0) = z0,

where F : [p0, p0 +a]T×RF → RF and G : [p0, p0 +a]2T×
RF → RF are rd-continuous fuzzy functions, z∆ denotes
∆gH -derivative of z, p ∈ T, z0 ∈ RF .

To solve this, express zp in β-level representation
[zp]β = [zβ(p), zβ(p)] and [z(p0)]β = [z0β

(p), z0β(p)].
From Zadeh’s extension principle if z(p) is fuzzy, then

[F(p, y(p))]β

= [Fβ(p, z(p)),Fβ(p, z(p))]

= [F1,β(p, zβ(p), zβ(p)),F2,β(p, zβ(p), zβ(p))]

G can be expressed as

[G(p, q, z(q))]β

= [Gβ(p, q, z(q)),Gβ(p, q, z(q))]

= [G1,β(p, q, zβ(q), zβ(q)),G2,β(p, q, zβ(q), zβ(q))]

Definition 4.1: Let z : [p0, p0 + a]T → RF and z∆1,gH ,
z∆2,gH exists. If z and z∆1,gH satisfy (1), it is called (i)-
solution, otherwise (ii)-solution.

Now, we represent FIDETs (1) in terms of its β-cuts,
where the new system consists of two crisp IDEs for each
type of differentiability. For convenience, we are considering
(i) and (ii) cases of Theorem 3.3.

(i) If z(p) is ∆1,gH differentiable, then
[z∆gH (p)]β = [z∆

β (p), z∆
β (p)] and FIDETs (1) is trans-

lated into

z∆gH (p)

= Fβ(p, z(p), z(p)) +

∫ p

p0

Gβ(p, q, y(q), y(q))∆q,

z∆gH (p)

= Fβ(p, z(p), z(p)) +

∫ p

p0

Gβ(p, q, y(q), y(q))∆q,

(2)

subject to zβ(p0) = z0β
, zβ(p0) = z0β .

(ii) If z(p) is ∆2,gH differentiable, then
[z∆gH (p)]β = [z∆

β (p), z∆
β (p)] and FIDETs (1) are

translated into

z∆gH (p)

= Fβ(p, z(p), z(p)) +

∫ p

p0

Gβ(p, q, z(q), z(q))∆q,

z∆gH (p)

= Fβ(p, z(p), z(p)) +

∫ p

p0

Gβ(p, q, z(q), z(q))∆s,

(3)

subject to zβ(p0) = z0β
, zβ(p0) = z0β .

Obviously, [zβ(p), zβ(p) and its ∆gH -derivative
[z∆gH (p), z∆gH (p)] are valid level sets for each β ∈ [0, 1].

To obtain the approximate solution of (1), without loss
of generality assume G(p, q, y(q)) = K(p, q)G(z(p)), where
the β-level representation of G(y(p)) is

G(z(p))

= [G(z(p)),G(z(p))]

= [G1,β(p, zβ(p), zβ(p)),G2,β(p, zβ(p), zβ(p))]

Hence (1) can be expressed as
z∆gH (p) = F(p, z(p)) +

∫ p
p0
K(p, q)G(z(p)∆q, p0, q ∈

[p0, p0 + a]T.
To solve (1), express it by equivalent crisp IDEs

z∆gH (p)

= F1,β(p, z(p), z(p)) +

∫ p

p0

K1,β(p, q, zβ(q), zβ(q))∆q,

z∆gH (p)

= F2,β(p, z(p), z(p)) +

∫ p

p0

K2,β(p, q, y
β
(q), yβ(s))∆s,

subject to zβ(p0) = z0β
, zβ(p0) = z0β , where

K1,β(p, q, zβ(q), zβ(q)) =


K(p, q)G1,β(p, zβ(p), zβ(p)),

K(p, q) ≥ 0,

K(p, q)G2,β(p, zβ(p), zβ(p)),

K(p, q) < 0,

K2,β(p, q, zβ(q), zβ(q)) =


K(p, q)G2,β(p, zβ(p), zβ(p)),

K(p, q) ≥ 0,

K(p, q)G1,β(p, zβ(p), zβ(p)),

K(p, q) < 0,
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Definition 4.2: A function F : [p0, p0 + a]T ×RF → RF
and G : [p0, p0 + a]2T × RF → RF are
(i) rd-continuous, if F(p, u(p)),G(p, u(p), v(p)) are rd-

continuous and u, v : [p0, p0 + a]T → RF .
(ii) Lipschitz continuous w.r.to the last argument in fuzzy

sense if there exists `1, `2 > 0 such that

D(F(p, u(p)),F(p, v(p))) ≤ `1D(u(p), v(p))

D(G(p, s, u(p)), F (p, s, v(p))) ≤ `2D(u(p), v(p))
(4)

for each p, s ∈ [p0, p0 + a]T. Then FIDETs (1) have
two unique solutions, one is ∆1,gH -differentiable and
the other is ∆2,gH -differentiable on [p0, p0 + a]T.

Theorem 4.1: Let F ,G are bounded and p0 ∈ T with
inf T ≤ p0 − a, supT ≥ p0 + a such that

(i)[F(p, z(p))]β

= [Fβ(p, zβ(p), zβ(p)),Fβ(p, zβ(p), zβ(p)),

[G(p, s, z(s))]β

= [Gβ(p, s, zβ(s), zβ(s)),Gβ(p, s, zβ(s), zβ(s))],

(ii) Fβ ,Fβ ,Gβ ,Gβ are rd-equicontinuous uniformly in β ∈
[0, 1], uniformly bounded on any bounded set, and uniformly
Lipschitz in the second, third argument, i.e., `1, `2 > 0 and

|Fβ(p, uβ(p), uβ(p))−Fβ(p, vβ(p), vβ(p))|
≤ `1 max{|uβ(p)− uβ(p))|, |vβ(p)− vβ(p))|},

and

|Fβ(p, uβ(p), uβ(p))−Fβ(p, vβ(p), vβ(p))|
≤ `1 max{|uβ(p)− uβ(p))|, |vβ(p)− vβ(p))|},

|Gβ(p, uβ(p), uβ(p))− Gβ(p, vβ(p), vβ(p))

≤ `2 max{|uβ(p)− uβ(p))|, |vβ(p)− vβ(p))|}
and

|Gβ(p, uβ(p), uβ(p))− Gβ(p, vβ(p), vβ(p))

≤ `2 max{|uβ(p)− uβ(p))|, |vβ(p)− vβ(p))|}

for all p, s ∈ [p0, p0 + a]T, β ∈ [0, 1], then for ∆1,gH -
differentiability,the FIDET (1) on T is equivalent to (2) and
for ∆2,gH -differentiability,the FIDET (1) on T is equivalent
to (3).

Proof: Let z be ∆1,gH -differentiable. The rd-
equicontinuity of Fβ ,Fβ ,Gβ and Gβ implies the rd-
continuity of F ,G. Further, the Lipschitz property ensures
that the fuzzy functions F ,G satisfy Lipschitz property in
the metric space (RF , D) as follows:

D(F(p, u(p)),F(p, v(p)))

= sup
β∈[0,1]

max{|Fβ(p, uβ(p), uβ(p))−Fβ(p, vβ(p), vβ(p))|,

|Fβ(p, uβ(p), uβ(p))−Fβ(p, vβ(p), vβ(p))|}
≤ `1 sup

β∈[0,1]

max{|uβ(p)− uβ(p))|, |vβ(p)− vβ(p))|}

= `1D(u, v).

In a similar way, D(G(p, s, u(s)), G(p, s, v(s))) ≤
`2D(u, v).

From the Lipschitz as well as boundedness condition,
it follows that FIDET (1) has unique ∆1,gH -differentiable
solution and a unique ∆2,gH -differentiable solution.

Conversely, suppose that (1) has a solution (zβ(p)), zβ(p))
with β ∈ [0, 1], whereas the Lipschitz condition implies the
uniqueness along with existence of fuzzy solution z(p). As z
is ∆1,gH -differentiable, then zβ and zβ are the endpoints of
[z(p)β ], solution of (2). Since the solution of (2) is unique,
we have
[z(p)β ] = [z(p)β , z(p)β ] = [z(p)]β , which means, FIDET
(1) is equivalent to (2).
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