
A Role-Attribute Based Access Control Model for
Dynamic Access Control in Hadoop Ecosystem

Hafsa Ait idar, Hicham Belhadaoui, Reda Filali and Olaf Malassé

Abstract—Big Data is a term used to describe large and hard-
to-handle amounts of data that overwhelm businesses on a daily
basis. Apache Hadoop has emerged as a leading framework for
storing and processing Big Data in a timely fashion. Hadoop is
used in various sectors that often include private and sensitive
data, which must be protected from unauthorized access. This
paper proposes a new access control model called the Role-
Attribute Based Access Control for Hadoop, referred to as H-
RABAC, which inherits full advantages of RBAC and ABAC
models. This hybrid model enforces access control policies
dynamically based on user roles and data attributes. We further
outline the necessary modification to XACML authorization
policies to meet the security and privacy needs of Hadoop.
In addition, we present a real-world use case and application
of the H-RABAC model in the banking domain, followed by
experimental results that show that the overhead imposed by
our framework is minimal and acceptable for enforcing access
control policies and protecting sensitive data in Hadoop.

Index Terms—Sensitive data, RBAC, ABAC, Access control,
Authorization, XACML, Hadoop, Big Data.

I. INTRODUCTION

WE are inundated with data. At present, a huge amount
of data is produced by numerous sources, including

social applications, sensors, Internet of Things (IoT) devices,
business transactions, and many more [1]. It is estimated that
more than 59 zettabytes of data will be created, generated,
and consumed around the world this year [2]. Such massive
collections of structured, semi-structured, and unstructured
data, referred to as Big Data [3].

There is no doubt that Big Data has become an essential
part of every organization. Companies collect, prepare and
analyze a large volume of data to generate valuable insights,
predict customer needs, and increase revenues [1]. Leverag-
ing these data sets is not feasible with standard tools due to
their diversity and complexity. This requires resilient clusters
with high processing power and huge storage capabilities [4].

Big Data encompasses a wide variety of solutions. Hadoop
is considered the most popular one. Hadoop is a distributed
framework for storing and processing vast amounts of data
based on three main components: HDFS for data storage,
MapReduce for data processing, and YARN to manage clus-
ter resources [5][6]. Due to its salient features, specifically

Manuscript received December 26, 2021; revised December 28, 2022.
H. Ait idar is a PhD candidate at the National High School for Electricity

and Mechanics, University of Hassan II, Casablanca, Morocco. E-mail:
(hafsa.aitidar93@gmail.com).

H. Belhadaoui is a professor at the National High School for Electricity
and Mechanics, University of Hassan II, Casablanca, Morocco. E-mail:
(belhadaoui_hicham@yahoo.fr).

R. Filali is a professor at the National High School for Electricity
and Mechanics, University of Hassan II, Casablanca, Morocco. E-mail:
(filalihilalireda@gmail.com).

O. Malassé is a professor at ENSAM/ParisTech, METZ, France. E-mail:
(olaf.malasse@ensam.eu).

scalability, cost-effectiveness, fault tolerance, high availabil-
ity, etc., Hadoop has become ubiquitous for many fields,
including healthcare, government, finance, telecommunica-
tions, to mention a few of them.

Organizations are using Hadoop to handle their data assets.
Sensitive data that may reveal an individual’s identity or
a company’s trade secrets are present among these vast
amounts of data. For example, Personally Identifiable In-
formation (PII) (credit card numbers, biometric data, etc.),
financial data, customer and supplier information, and so
on. Such data must be protected to avoid potential danger
if recognized by undesired persons. However, securing this
data within Hadoop seems to be increasingly challenging.

Despite Hadoop’s popularity, security and privacy are
serious concerns that could impede its adoption. To fulfill
the security demands, researchers have investigated these
issues and have realized the need to build appropriate security
modules for Hadoop. Besides this, some Hadoop distribution
vendors enhance the official release of Hadoop to add new
functionalities. The major Hadoop distributions are Cloudera
CDH-6.3.4 (Cloudera Distribution Hadoop), Hortonworks
HDP-3.1.5 (Hortonworks Data Platform), and MapR. These
distributions have added functionalities focusing on: support,
reliability, governance, and security. Apache Sentry [7] and
Apache Ranger [8] are the most used security projects
introduced by Cloudera and Hortonworks to offer access
controls across various Hadoop elements.

Regardless of different approaches provided to improve
security in Hadoop, there is currently a lack of proper
security models to protect sensitive data stored in Hadoop.
To address this issue, we proposed in our previous works the
Dynamic Data Sensitivity Access Control (D2SAC) frame-
work [9]–[11]. The D2SAC is a dynamic and automated
framework that secures sensitive data as long as it resides
in the HDFS. In this paper, we continue enhancing our
work by proposing a hybrid access control model which
integrates roles and attributes to provide strong and flexible
access control. This new model is called Role-Attribute
Based Access Control (H-RABAC) for Hadoop. We further
propose an extension of XACML authorization policies to
control access first to Hadoop services and then to objects
within a Hadoop Service. To the best of our knowledge, our
paper is the first work to propose a hybrid access control
model with an extension of XACML policies in the context
of Hadoop security.

The remainder of this paper is organized as follows:
Section 2 contains an overview of security issues in Big
Data and access control models in Hadoop. We present the
proposed D2SAC framework and its components in Section
3. In Section 4, the proposed Role-Attribute Based Access
Control (H-RABAC) model is explained in detail, followed
by a definition of XACML authorization policies in Section

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



5. Section 6 describes the method for implementing the
H-RABAC model, and Section 7 provides an example of
applying this model. Section 8 contains the evaluation and
results of testing the D2SAC framework. Section 9 gives the
conclusion of our work and offers a future research direction.

II. LITERATURE REVIEW

Data security and privacy problems have been a grave
concern since the early ’70s [12]. Traditionally, securing an
organization’s data relies on three basic security principles:
confidentiality, integrity, and availability, widely known as
the CIA triad [12][13]. Confidentiality is a security prop-
erty focusing on protecting data from unauthorized access,
disclosure, and theft. Integrity is a concept dealing with
protecting data against unauthorized modifications over its
lifecycle. Finally, availability is a principle that ensures that
data is available to authorized users whenever they need it.
Several methods have been proposed to address privacy and
security issues over the last years, including authentication
mechanisms, access control models, data encryption, data
anonymization, etc.

At this time, businesses are increasingly embracing Big
Data to extract valuable knowledge from all the available
data and predict new trends using a variety of analytics
platforms. Unfortunately, most of the Big Data tools are
open source and were not designed with security and privacy
in mind. Furthermore, traditional security methods cannot
meet the volume, variety, velocity, and veracity of Big
Data. Therefore, securing Big Data platforms requires scaling
existing techniques and developing more advanced solutions.
Considering the current researches [14][15][5][16], Big Data
security and privacy issues are divided into five categories:
Hadoop security, cloud security, monitoring and auditing, key
management, and anonymization [14][15].

Hadoop [17] is an open-source framework that was ini-
tially designed to handle huge amounts of data in a trusted
environment, and thus, security was not considered here
[18][14]. The significant growth of Hadoop in organizations
managing highly sensitive data caused this framework to
be vulnerable to several attacks [5][19], for instance, im-
personation attacks, Denial of Service (DoS), CROSS-SITE
scripting (XSS), etc. According to authors in [5], Hadoop
vulnerabilities are grouped into software, web interface, and
network vulnerabilities. Yet these issues can be avoided by
providing efficient security measures to ensure Authentica-
tion, Authorization, and Auditing, also known as the three
A’s of security.

The early distributions of Hadoop use the POSIX style
permissions and Access Control Lists (ACLs) to specify
access to files and directories stored in HDFS [4][20]. Such
basic access control is no longer enough because of many
attacks targeting data in HDFS. Thus, various security ap-
proaches are discussed in [14][19][15], mainly the Kerberos
protocol to achieve powerful authentication using symmetric-
key cryptography [5]. The Bull eye algorithm to secure
and monitor all sensitive information, this approach scans
the data initially before its storage into the data node and
allows only permitted persons to read or write sensitive
data [21][19]. In addition, the Name Node Security Enhance
(NNSE) method is used to handle name node issues in
HDFS. This method suggests using two name nodes (one

is the master and the other is the slave) to assure data
availability in a secure way when the master node becomes
unavailable [21][14][19].

Furthermore, various tools and solutions were added to
enhance security in Hadoop [5][18]. Apache Ranger and
Apache Sentry are two important open source security frame-
works and pluggable authorization engines used to provide
access control in the Hadoop cluster [4][22]. Apache Ranger
offers a centralized platform to authenticated users (via
Kerberos) to set up and manage security policies for Hadoop
resources (HDFS, HBase, Hive, etc.). It also supports fine-
grained authorization and centralizes auditing of user access
within all Hadoop components [4][9]. Apache Sentry pro-
vides fine-grained and role-based authorization for both data
and metadata within Hadoop as well as it supports multi-
tenant administration [4][7]. Apache Knox Gateway [23]
is further used to provide a single access point to secure
Hadoop services from unauthorized users. It integrates with
the main authentication systems such as Kerberos, LDAP,
Active Directory (AD), etc., to simplify access to Hadoop
clusters [4][5].

Researchers are increasingly concerned with Hadoop se-
curity issues. There have been numerous papers that discuss
the major security challenges in Hadoop. Authorization and
access control are considered the most important security as-
pects to protect data from unauthorized access and determine
what users can do with data.

The Role-Based Access Control (RBAC) model was seen
as a suitable approach to manage users’ access permissions
for a while. Thus, using roles reduces the administrative
tasks for organizations and allows businesses to determine
their constraints with more flexibility [24]. However, due
to the rapid growth of data and users, utilizing roles in
Big Data applications is no longer sufficient. The Attribute-
Based Access Control (ABAC) model has received increased
intention because it provides great flexibility in making
access decisions [25]. In [26], NIST presented strategies to
embed roles with attributes, resulting in three approaches:
dynamic roles, attribute-centric, and role-centric [27], which
significantly inspired our contribution in this paper.

In [25], authors discuss the privacy issues in Big Data
context and consider how ABAC technology can protect sen-
sitive data against unauthorized access. A fine-grained access
control framework for Hadoop called Vigiles is proposed in
[28] to protect data from unauthorized access. Authors in [22]
introduce a formal multi-layer access control model, referred
to as HeAC, for Hadoop ecosystem based on native access
controls capabilities of Hadoop and authorization models
of Apache Ranger and Apache Sentry. They also present
an Object-Tagged Role-Based Access Control (OT-RBAC)
model, which preserves the advantages of RBAC model
and offers support for object attributes. Besides that, an
extension of OT-RBAC model is proposed in [4] to address
the security requirements for Hadoop. Thus, authors present
a fine-grained Attribute-Based Access Control model called
HeABAC, including the concept of cross Hadoop services
trust. A prototypical implementation for both OT-RBAC
and HeABAC models is introduced using Apache Ranger.
Reddy in [29] presents an access control framework to secure
sensitive data in HDFS, which depends entirely on the data
owner’s guidelines. A fine-grained access control policy is

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



proposed in [30] to ensure Big Data security in the cloud.
The authorization to access data in this approach depends
only on the data owners. In [20], authors propose a Content
Sensitivity-Based Access Control (CSBAC) framework to
prevent unauthorized access to sensitive information. CSBAC
uses the data sensitivity estimator to estimate the sensitivity
value of the data item with minimal user intervention, but
when the data has not been previously encountered, the
domain expert must be involved to train the neural network.

In what follows, we present an overview of the D2SAC
framework and its components. We then focus on the H-
RABAC model, the access control model of D2SAC.

III. PROPOSED D2SAC FRAMEWORK

Assuring data protection in the Hadoop environment is a
complex problem that often depends on several techniques.
To address this issue, we proposed in our previous works the
Dynamic Data Sensitivity Access Control (D2SAC) [9]–[11]
framework that aims to protect sensitive data from unau-
thorized access in the HDFS. The D2SAC is an automated
framework that uses the data itself to calculate its sensitivity
and requires no intervention of data owners to make access
control decisions. It also provides end-to-end security by
keeping information protected as long as it remains in the
HDFS. Two scenarios are embedded into our framework to
ensure sensitive data protection, as shown in Figure 1.

Scenario 1: users can load data into HDFS in several
different ways. When a user wants to create a data in the
HDFS (creation request), the sensitivity calculation process
is triggered. The Sensitivity Estimator Module (SEM) is thus
invoked to calculate the sensitivity value of each data in
an automated way without any effort from the data owner.
The SEM uses the mathematical model proposed in [11]
based on the AHP method [31] and the empirical average to
determine the data sensitivity, as shown in Figure 2. Then,
the sensitivity value is saved in the MetaDatabase along
with other metadata information managed by the Metadata
Generator Module (MGM).

Fig. 2. Sensitivity Estimator Module.

Scenario 2: when a user intends to access a data that is
already located in the HDFS (access request). In this case,
the Access Enforcement Module (AEM) receives the user’s
access request and returns the decision about this request
(entitled to access or not). This decision is based on the H-
RABAC model that will be explained in the next section.

IV. H-RABAC MODEL FOR HADOOP ECOSYSTEM

Access control is one of the essential requirements to
limit unauthorized access to data and protect resources in

the Hadoop environment. RBAC model is known to grant
rights to users based on their business activity, called a
role, while ABAC model provides a flexible and fine-grained
approach. It defines authorizations based on a set of char-
acteristics of subject, object, and environment. ABAC is
helpful in distributed and rapidly growing environments like
Hadoop environment and for cases where policy management
becomes tedious. For example, instead of a person with
the manager role always being able to access information,
ABAC may place additional restrictions on his access, such
as allowing access only at specific times or from a particular
location or IP address. This can enable creating policies with
detailed permissions to grant less privilege and thus reduce
security issues.

In this section, we present a new Role-Attribute Based
Access Control model for Hadoop (H-RABAC) that takes
full advantage of RBAC and ABAC models. The main
concept of the H-RABAC model is that users are assigned
to roles (as in the RBAC model), users and objects are
associated with a set of attributes (as in the ABAC model).
In addition to fully integrating RBAC and ABAC, the new
elements added to our model include roles with attributes and
authorization decisions based on extended XACML policies
that will combine roles, user attributes, role attributes, and
object attributes.

We will now define the conceptual model of H-RABAC,
as shown in Figure 3, followed by formal definitions as
specified in Table I.

The basic components of H-RABAC model are as follows:
Users (U), Groups (G), Subjects (S), Roles (R), Hadoop
Services (HS), Data and Objects (OB) belonging to Hadoop
Services, and Operations (OP) on objects.

Users, Groups, Subjects and Roles: A user is a person
seeking access to services and data within Hadoop. A group
is a set of users with the same needs and job requirements.
A subject is a process executed on behalf of the user to
fulfill operations in the Hadoop cluster. The subject is always
executed with full privileges of its creator. A role is a set of
permissions and privileges assigned to users and groups in
the system.

Hadoop Services: Hadoop ecosystem includes several
components like HDFS, HBase, Hive, Yarn, etc. Each
Hadoop service supports different types of data and objects
(file, table, topics, etc.) that users intend to access. It should
be noted that accessing service is primarily required before
accessing the supported data.

Objects and Data: An object is a resource managed by
a Hadoop service inside the cluster that requires protection
from unauthorized access. Examples of such resources are
files in HDFS, tables in Hive, etc.

Operations: An operation is an action that authorized
users could perform on data and objects. Each Hadoop
service supports several operations. For example, HDFS
has read or write operations, Hive has create, select, alter
operations, and so on.

As shown in Table I, most of the relations in our model
are many-to-many. A user can have multiple roles {r1...rn}
and each role can be assigned to many users. The URA
relation highlights the benefit of the RBAC model where
the management of users’ rights becomes easier by simply
granting or removing roles. A user can also be a member of

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 1. Proposed D2SAC.

several groups, and a group may contain an outlined number
of users. The prime advantage of the UGA relation is the
ability to assign and remove various attributes and roles from
users conveniently. Similarly, each group may be assigned
to multiple roles and each role can be attributed to different
groups as reflected by the GRA relation. A Hadoop service
may include numerous objects and an object can be used by
different Hadoop services as shown by the OHS relation.
Finally, several operations can be performed on objects inside
a Hadoop service.

Attributes are characteristics that are assigned to different
entities in our model. User attributes (UA) is the set of
attributes assigned to users, groups and subjects. Object
attributes (OBA) is the set of attributes assigned to data and
objects. Role attributes (RA) is the set of attributes assigned
to roles. Each attribute is a function that takes an entity
(U,G,OB,R) and returns one or more values from its range,
denoted by Range(att). The range of an attribute consists
of a finite set of atomic values. The attribute functions in
UA,OBA and RA map U,OB and R respectively to one
or a subset of attribute values in the range according to the
atomic-valued or set-valued attribute type.

Users are assigned to several groups (UGA relationship)
to simplify the administration of roles and attributes. When
a user becomes a member of a group, he inherits all the
roles and attributes of this group. Therefore, the effective
user attributes will then be the union of all attributes assigned
directly to users (ua ∈ UA) and attributes inherited through
group membership (ua(g),∀g ∈ UGA(u)). The effective
roles of user will then be the union of all roles assigned
directly to users (URA) and roles inherited through group
membership (GRA(g), ∀g ∈ UGA(u)), as shown in Table
I.

Furthermore, a subject created by a user (denoted by US

function) may have a subset or all of the values of the
effective roles and attributes of its user creator. It is required
that the subject attributes must not exceed the attributes of the
user creator (effectiveA(s) ⊆ effectiveA(US(s))) and
that the subject roles must not exceed the roles of the user
creator (effectiveR(s) ⊆ effectiveR(US(s))).

In addition, XACML authorization policies are defined
based on the H-RABAC model elements to control access
to Hadoop services and then to Hadoop objects.

V. AUTHORIZATION POLICIES FOR H-RABAC

We specify fine-grained access control rules and policies
to control every access to resources in the Hadoop services
(HS). The common policy language, XACML (eXtensible
Access Control Markup Language) [32], is used to define
authorization policies based on a set of characteristics of
subject, object, resource, and environment to determine
whether an authorization decision is approved or denied. The
XACML policy model consists of the following elements, as
shown in Figure 4:

• Rule is the fundamental element of a policy. It includes
a target, an effect, a condition, and possibly a set of
obligations or advices.

• Policy is expressed by a target, a set of rules, a rule-
combining algorithm, and may be a set of obligations
or advices allowing users to obtain a decision according
to a set of parameters.

• Policy Set is an aggregation of several policies and other
policy sets. It also contains a policy-combining algo-
rithm to combine the decision of policies and possibly
a set of obligations and advices.

• Target identifies a set of requests that a rule, policy, or
policy set is supposed to evaluate based on attributes

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



TABLE I
FORMAL DEFINITIONS OF H-RABAC MODEL

Basic Sets
- U is a finite set of users.
- G is a finite set of groups.
- R is a finite set of roles.
- S is a finite set of subjects.
- HS is a finite set of Hadoop Services.
- OB is a finite set of objects.
- OP is a finite set of operations.

Basic Relations and Functions
- URA ⊆ U ×R , a many-to-many mapping of user-to-role assignments, equivalently U → 2R

- GRA ⊆ G×R, a many-to-many mapping of group-to-role assignment, equivalently G→ 2R

- UGA ⊆ U ×G , a many-to-many mapping of user-to-group assignments, equivalently U → 2G

- OHS ⊆ OB ×HS, a many-to-many mapping of objects to Hadoop services, equivalently OB → 2HS

- OBP ⊆ OB ×OP , a many-to-many mapping of each object to a set of operations, equivalently OB → 2OP

- UA is a finite set of user attribute function.
- OBA is a finite set of object attribute function.
- RA is a finite set of role attribute function.
- For each attribute att in UA ∪ RA ∪ OBA, Range(att) represents a finite set of atomic values.
- attType: UA ∪RA ∪OBA = {set, atomic}, determines attributes as set or atomic valued.
- Each attribute function ua in UA maps a user or group (U or G) to one or a set of attribute values in the Range(ua) based on atomic or set-valued
attribute type. Formally,

∀ua ∈ UA, ua : U ∪G→
{

Range(ua) if attType(ua) = atomic
2Range(ua) if attType(ua) = set

- Each attribute function oba in OBA maps an object (ob in OB) to one or a set of attribute values in the Range(oba) based on atomic or set-valued
attribute type. Formally,

∀oba ∈ OBA, oba : OB →
{

Range(oba) if attType(oba) = atomic
2Range(oba) if attType(oba) = set

- Each attribute function ra in RA maps a role (r in R) to one or a set of attribute values in the Range(ra) based on atomic or set valued attribute type.
Formally,

∀ra ∈ RA, ra : R→
{

Range(ra) if attType(ra) = atomic
2Range(ra) if attType(ra) = set

Effective Roles and Attributes of User
- effectiveR : URA ⊆ U ×R, defined as effectiveR(u) = URA(u) ∪ (∀g∈UGA(u) ∪ GRA(g))
- For each attribute ua in UA:

effectiveA(u) = ua(u) ∪ (∀g∈UGA(u) ∪ ua(g))

Effective Roles and Attributes of subject
- US: S → U , a function mapping each subject s ∈ S to its user creator u ∈ U .
- For each attribute ua in UA and s in S:

effectiveA(s) : S →
{

Range(ua) if attType(ua) = atomic
2Range(ua) if attType(ua) = set

and effectiveA(s) ⊆ effectiveA(US(s))
- effectiveR : S → 2R , mapping each subject ∀s ∈ S to a set of roles and effectiveR(s) ⊆ effectiveR(US(s)).

Authorization Policies
- Global Policy: As its name suggests, the global XACML policy renders the authorization decision based on the result returned by Policy 1 and Policy 2.
- Policy 1: Authorization policy to control access to Hadoop services.
- Policy 2: Authorization policy to control access to data and objects inside a Hadoop service.

Access Decision
- A user u ∈ U (or its subject s ∈ S) with the role r ∈ R is authorized to access a Hadoop Service hs ∈ HS if attributes of user u and attributes of its
role r ∈ R satisfy the defined Policy 1(P1), Formally, P1access(u : U, r : R, hs : HS) = Permit.
- A user u ∈ U (or its subject s ∈ S) with the role r ∈ R is permitted to perform an action on an object ob ∈ OB in a Hadoop service hs ∈ Hs if attributes
of user u, attributes of its role r and attributes of object ob satisfy Policy 2(P2). Formally, P2operation(u : U, r : R, ob : OB, hs : HS) = Permit.
- A user u ∈ U (or its subject s ∈ S) with the role r ∈ R is authorized to execute an operation on an object ob ∈ OB in a Hadoop Service
hs ∈ HS if and only if both decisions of P1 and P2 are evaluated to permit. Formally, P1access(u : U, r : R, hs : HS) = Permit AND
P2operation(u : U, r : R, ob : OB, hs : HS) = Permit.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 3. Conceptual model of H-RABAC.

describing the subjects, resources, actions, and environ-
ment of the request.

• Condition is a boolean function that can be added to a
rule to further define the applicability of this rule.

• Effect determines the result of evaluating the request. It
is either "permit" or "deny".

• Obligation is an optional element that is provided along
with an authorization decision to enhance that decision
(either permit or deny).

• Advice is an additional piece of information in a rule,
policy, or policy set that is returned with an authoriza-
tion decision (permit or deny) and can be ignored.

• Policy-combining algorithm is the procedure of com-
bining authorization decisions from several policies.

• Rule-combining algorithm is the procedure of com-
bining authorization decisions from different rules.
Some examples of these algorithms are Deny-overrides,
Permit-overrides, First-applicable, etc.

To express permissions within the H-RABAC model, a
modification of XACML is required. XACML defines poli-
cies based on attributes, but it does not directly support
RBAC. Because of this, we extend the original XACML to
add new elements and modify some existing elements.

In the H-RABAC model, any user or application should
be first authorized to access the Hadoop service before
performing operations on its object. To meet this security
requirement, we define a global XACML policy that consists
of two individual authorization policies, one to control access
to Hadoop services and the other to manage access to
resources and objects within Hadoop services.

A. Global XACML policy

Access control policies in the Hadoop environment need
to be flexible and dynamic. For this purpose, we propose a
global policy that consists of a policy set element with an
empty target to match any user request and two main policies:
Policy 1 to control access to Hadoop services and Policy 2 to
control access to objects inside a Hadoop service, as shown
in Figure 5. This global policy can combine various sub-
policies with different rules and manage conflicts between
these policies. Conflicts can be between different policies or
rules used in a policy.

A user u ∈ U (or its subject s ∈ S) with the role r ∈ R
is authorized to execute an operation on an object ob ∈ OB
in a Hadoop service hs ∈ HS if and only if both decisions
of P1 and P2 are evaluated to permit. Formally,

P1access(u : U, r : R, hs : HS) = Permit ∧
P2operation(u : U, r : R, ob : OB, hs : HS) = Permit.

B. Access Control Policy for Hadoop Services

D2SAC is a multi-layer authorization framework that con-
trols access at the Hadoop service level and then at the data
and object level. Thus, the first authorization layer checks
whether a user is allowed to access a particular Hadoop
service. For this reason, we define an authorization policy for
each Hadoop service hs ∈ HS, as shown in Figure 6. This
policy outlines under which conditions a user u ∈ U with a
role r ∈ R can access a Hadoop service HS in the Hadoop
cluster. Thus, significant changes are performed, notably in
the policy’s target and rule’s target elements, respectively.

Policy 1 contains a target element that specifies that this
policy only applies to requests asking for access to a specific
Hadoop service. Once the proper policy has been verified, its
rules are evaluated. To support the RBAC model directly in
XACML, we add the role element in the rule’s target and
remove the resource element because this policy concerns
only access to Hadoop services. Both user attributes and
role attributes are used to make the access control decision.
Based on these attributes, if the rule’s condition is true, then
the rule’s effect returns a permit value giving access to that
Hadoop service. Otherwise, if the condition is false, then the
rule’s effect returns a deny value meaning that access to that
Hadoop service is not allowed.

A user u ∈ U (or its subject s ∈ S) with the role r ∈ R is
authorized to access a Hadoop service hs ∈ HS if attributes
of user u and attributes of its role r ∈ R satisfy the defined
Policy 1(P1), Formally, P1access(u : U, r : R, hs : HS) =
Permit.

C. Access control policy for Hadoop Objects

Authorizing access to data and objects (resources) within
a Hadoop service requires special handling since not all
resources are treated equally. A second authorization layer

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 4. Original XACML.

Fig. 5. Global XACML policy.

is proposed in our framework to check if a user has the
necessary permissions to access particular data in a Hadoop
service. Access control policies (Policy 2) are therefore
created to determine under which conditions a subject u ∈ U
with a role r ∈ R is authorized to perform an operation
op ∈ OP on an object ob ∈ OB in a Hadoop service
hs ∈ HS. Hence, significant changes are performed con-
cerning the original XACML.

Because some data are more sensitive than others, data
sensitivity and classification must be considered in this au-
thorization layer to ensure data protection. Data classification
is the process of categorizing data according to its degree of
sensitivity. For this reason, a sensitivity value is calculated
for each data using the proposed mathematical model in our

previous paper [11]. Based on this value, a classification label
is assigned to each data.

The policy’s target element specifies that this authorization
policy is defined for each classification level, as shown in
Figure 7. In addition, in the rule’s target element, we add
the subject’s role to reflect the benefits of the RBAC model,
and each role is associated with a set of attributes.

To render the access control decision, the user attributes,
the role of the user, its attributes (mainly the weight), and
the object attributes (especially the sensitivity) are used.
Based on these attributes, if the rule’s condition evaluates
to true, then the rule’s effect returns a permit value giving
the authorization to perform the demanded operation on that
object. Otherwise, if the condition evaluates to false, then the

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 6. Access control policy for Hadoop services.

rule’s effect returns a deny value meaning that the requested
operation on that object is not allowed.

A user u ∈ U (or its subject s ∈ S) with the role r ∈ R
is permitted to perform an action on an object ob ∈ OB in
a Hadoop service hs ∈ Hs if attributes of user u, attributes
of its role r and attributes of object ob satisfy Policy 2(P2).
Formally, P2operation(u : U, r : R, ob : OB, hs : HS) =
Permit.

VI. H-RABAC IMPLEMENTATION METHOD

The H-RABAC model uses dynamic XACML policies to
control access to each object in a Hadoop service. These
policies are dynamic because the answer to the same question
changes based on some dynamic element of the access
context, such as time of the day, IP address, or location from
which the user is trying to access an object.

The H-RABAC model incorporates user attributes, role
attributes, and object attributes into the access request using
a context enricher to provide fine-grained extensions. As
its name suggests, the context enricher enhances the user’s
initial request with additional attributes and information
used by the authorization policy conditions to approve or
deny the access request. Therefore, before the policy engine
evaluates the user’s access request, the context enrichers are
invoked to update the request’s context with necessary extra
information.

The Access Enforcement Module (AEM) is responsible
for managing access in our framework. The AEM intercepts
each user access request, then checks the stored authorization
policies already defined by the administrator in order to
return an access control decision. Thus, the procedure for
making an access decision in our model consists of 2
phases, as shown in Figure 8.

1. Policy Enforcement Phase
Each user sends an access request that we call the Initial

Access Request (IAR), which contains four authorization
requirements, which are: the requester’s identifier, the re-
quested object, the action that the user wants to perform on

that object, and the service he wants to access, as shown in
(1).

IAR⇒ {username, object, action,Hadoopservice} (1)

After receiving this initial request, the context enricher
enhances the IAR by adding additional user, role, and object
attributes depending on the active policy conditions, as shown
in (2). After that, the Enriched Access Request (EAR) is sent
for evaluation. For example, suppose a user, Bob wants to
access a report1 object to make changes, but the authorization
policy specifies that no user can modify this object after
11:00 p.m. In that case, the context enricher will add the
current time into Bob’s access request. This enriched request
will then be evaluated to return an access decision, granting
access to Bob if the request complies with the time condition
specified in the policy or denying access otherwise.

EAR⇒ {username, object, action, UA,RA,ObA,

contextattribute...}
(2)

2.Policy Evaluation phase
In this phase, the Enriched Authorization Request (EAR)

is evaluated by the AEM, which uses a policy engine that
compares the information in the EAR with the active security
policies and then makes an authorization result, as shown in
Figure 8. We explain each step (1)–(7) as follows:

1) During the pre-processing phase, the security adminis-
trators create XACML authorization policies that will
be used for access control and store them in a database.

2) Each user sends an access request called the Initial
Access Request (IAR), demanding access to a specific
resource.

3) After receiving the IAR request, the AEM invokes
the context enricher class to add attributes and needed
information.

4) - 4’) In this step, to build the EAR, user and role
attributes are retrieved from the User Information
Database, object attributes are retrieved from the Meta-
data Generator Module, and other environmental at-
tributes are also added if necessary.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 7. Access control policy for Hadoop objects.

5) The EAR is sent to the policy engine for evaluation
based on all these attributes.

6) The policy engine is the heart of the AEM. To evaluate
the EAR requests, it retrieves the appropriate policies
based on the policy’s target element and compares the
policy information against the EAR information to make
an access decision.

7) Finally, based on this comparison, the access decision
is sent to the requesting user, either permit or deny.

Our proposed implementation of the H-RABAC model
includes defining the authorization rules and all XACML
security policies using the Abbreviated Authorization Lan-
guage (ALFA) [33]. This language is typically designed
to provide a high-level description of XACML policies,
facilitate writing and reading for XACML policy writers, and
allow simple and quick verification of XACML policies by
the company’s stakeholders.

Therefore, we chose ALFA Plugin for Eclipse as a means
of editing XACML policies. Thus, all policies presented in
the next section are expressed using this plugin. We also
used the open-source decision engine WSO2 Balana [34] to
evaluate these policies. In addition, all incoming requests and
context enrichers are developed using Java Language.

Figure 9 shows the part of the code to create the Enriched
Access Request (EAR) based on the Initial Access Request
(IAR). The received IAR ("Bob23", "/sensitiveData/annual-
CreditCardReport.csv", "read", "HDFS") clearly shows that
the user Bob23 wants to read the "/sensitiveData/annual-
CreditCardReport.csv" file in HDFS. We first check if the
demanded file is already stored in the HDFS. If so, then the
necessary additional attributes of the user (role, department,
experience. . . ), role (weight, security level), object (sensi-
tivity, classification. . . ), and environment (location and time)
are added to the IAR to build the EAR. After that, the Balana
policy engine evaluates all incoming requests. After receiving

the EAR request, we initialized the Balana engine that checks
the stored security policies to find the appropriate policy
whose target element matches the incoming request. Then,
based on the comparison result, if the decision is equivalent
to permit, the user can run its Spark job that displays the
demanded data . Otherwise, a notification is sent to that user,
asking him to contact the administrator to find the reason for
this rejection, as shown in Figure 10 .

VII. H-RABAC MODEL APPLICATION

In this section, we will illustrate an application of the
H-RABAC model in the real world. For that, we consider
that data is already stored in the HDFS, and the sensitivity
value is calculated for each data before enforcing the access
control.

As demands for data protection in a moving environment
escalate, several businesses are involved, especially financial
institutions and banks that handle a wide variety of sensitive
data.

Let us suppose a banking organization, which we call
Organization A, uses Hadoop to store its continuously gen-
erated data. In this use case, we are interested in data
issued from the finance department of Organization A as
it is considered one of the critical departments dealing with
highly sensitive data due to its primary functions including
examining financial statements and reporting, accounting,
forecasting budgets, managing internal and external accounts,
etc. Thus, we specify access control rules and policies to
control every resource access in Organization A. We define
XACML policies to control access to both Hadoop service
and objects inside a Hadoop service.

A. Global XACML policy

A global access policy is defined as shown in Figure
11 . This policy applies to any requests (hence the lack

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 8. Procedure for making an access control decision.

of the target element), it contains two referenced policies:
hadoopServicesAccess (P1) and hadoopObjectsAccess (P2),
and it uses the denyOverrides policy-combining algorithm
to combine the results of these policies. In this combining
algorithm, if a decision returns deny, the final result is deny.
The denyOverrides algorithm is therefore used in cases where
a deny decision should have priority over a permit decision.

In addition, we define obligation and advice expressions
in this policy. If the access had been authorized (on permit
decision), a notification should be sent to the administrator,
including a message and the name of the user who accessed
the data. Otherwise, a notification must be sent to the
requested user if access has been denied (on deny decision).

B. Access Control Policy for Hadoop Services

The first authorization layer within our framework controls
access at the Hadoop service level. The hadoopService-
sAccess policy (P1) only applies to requests asking for
access to a specific Hadoop service. In this example, the
target clause concerns the Hadoop service of type HDFS.
As shown in Figure 12, the policy contains three rules
and uses the firstApplicable rules-combining algorithm. In
this algorithm, the order in which the rules are defined is
significant because each rule will be evaluated according to
its order of appearance in the policy. Thus, for a rule, if the
target matches and the condition is true, the policy evaluation
must stop, and the corresponding effect of the rule will be the
result of the policy evaluation (permit or deny). Otherwise,

if the target is false or the condition is false, the next rule in
the order will be evaluated, and so on.

The hadoopServicesAccess policy allows access to the
HDFS service for all users during working hours and blocks
access for junior users during off-hours.

• The first rule allows access to HDFS between 7:00 pm
and 7:00 am only for senior users. The access is denied
for users with other roles, and a message is sent to the
demanded users.

• The second rule allows access to HDFS service for users
with any roles (junior or senior) as long as the user
belongs to the finance department and is located in Paris.

• Finally, if none of the targets of the previous rules
match, this last rule is applied to return a deny decision.

C. Access Control Policy for Hadoop Objects

The hadoopObjectsAccess policy (denoted as P2) concerns
access to objects inside a Hadoop service. As shown in
Figure 13, the policy is applicable to requests with secret
resource classification. This policy contains two rules that
define the conditions under which a user can read or edit
secret data and uses the denyOverriders rules-combining
algorithm to make a decision.

After controlling access to Hadoop services, the sec-
ond layer provides access to Hadoop objects. Thus, the
hadoopObjectsAccess policy (denoted as P2) concerns access
to objects inside a Hadoop service. As shown in Figure 13,

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



String userName = "Bob23";
String operation = "read";
String resource = "/sensitiveData/annualCreditCardReport.csv";
String hadoopService = "HDFS";

try {
Configuration conf = new Configuration();
FileSystem fileSystem = FileSystem.get(new

URI("hdfs://ec2-nameNode.eu-west-3.compute.amazonaws.com:9000"), conf);

// Check if the file already exists
Path path = new Path(resource);
if (!fileSystem.exists(path)) {

System.out.println("This file does not exist in HDFS.");
return;

}

else {
String classification= objectAttributes.getClassification(resource);
double sensitivity= objectAttributes.getSensitivityOfData(resource);
long resourceID = objectAttributes.getIdOfData(resource);
String resourceProject = objectAttributes.getProject(resource);

String department = userAttributes.getDepartmentOfUser(userName);
String address = userAttributes.getAddressOfUser(userName);
int experience = userAttributes.getExperienceOfUser(userName);
String status = userAttributes.getStatusOfUser(userName);
String userProject = userAttributes.getProjectOfUser(userName);

String role= userAttributes.getRoleOfUser(userName);
double weight = roleAttributes.getWeightOfRole(role);
String securityLevel = roleAttributes.getSecurityLevelOfRole(role);

java.time.LocalTime time = java.time.LocalTime.now();
String location = ProjectConstant.subnet;

String EAR = policy.createEnrichedAccessRequest(hadoopService, classification, role,
operation, department, sensitivity, weight, time, location, address, experience,
status, userName, resourceID, securityLevel, userProject, resourceProject);

System.out.println("======= XACML Enriched Request =========");
System.out.println(EAR);
System.out.println("=======================================");

Fig. 9. Part of code to create the EAR.

the policy applies to requests asking for access to resources
(objects) with a secret classification. This policy contains two
rules, which define the conditions under which a user can
read or edit secret data and uses the denyUnlessPermit rules-
combining algorithm to make a decision. In this combining
algorithm, if any decision is permit, the result will be permit.
Otherwise, the result will be deny.

• The first rule allows users with junior or senior roles to
read secret data during working hours (from 7:00 am to
7:00 pm) if and only if the user’s role weight is equal
to or greater than the sensitivity of the secret data and
the user is working on the project the data is part of.

• The second rule permits senior users with a high se-
curity level and more than seven years of experience
to edit data classified as secret or below only from the
intranet (192.168.2.0), and if their role weight is equal
to or greater than the sensitivity of the requested data.

Figure 14 illustrates an example of applying these defined

policies. In this example, the user Bob with the direct
attributes (ID: 1001, Diploma: Financial Engineer, Depart-
ment: Finance, Experience: 10 years, Project: Contribu-
tion) is assigned to the Interne Group, thereby inheriting
the attributes of this group (CompanyName: OrganizationA,
Address: Paris, Status : Interne) which are added to his
direct attributes. Further, each role in our model has a set
of attributes. Bob is associated with the senior manager role
having the following attributes (ID: 34, Security-Level: high,
Weight: 0.57). In addition, when Bob creates a subject, it
inherits a subset of Bob’s attributes (Role: Senior Manager,
Department: Finance, Status: interne, Experience: 10 years)
as needed. The CreditCardReport object is also associated
with a set of attributes (Sensitivity: 0.36, Classification:
Secret, Project: Contribution).

Based on Bob’s attributes, the subject created by Bob, the
attribute of the senior manager role, and the attributes of
the CreditCardReport object, it is clear that rules defined in

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



policy.initBalana();
PDP pdp = policy.getPDPNewInstance();
String response = pdp.evaluate(EAR);

System.out.println("============= XACML Response =============");
System.out.println(response);
System.out.println("=========================================");

try {
ResponseCtx responseCtx = ResponseCtx.getInstance(policy.getXacmlResponse(response));
AbstractResult result = responseCtx.getResults().iterator().next();

if(AbstractResult.DECISION_PERMIT == result.getDecision()){
System.out.println("\n" + userName + " is authorized to " + operation + " the "

+resource+ " \n\n");

List<ObligationResult> obligations = result.getObligations();
for(ObligationResult obligation : obligations){

List<AttributeAssignment> assignments = ((Obligation)
obligation).getAssignments();

for(AttributeAssignment assignment : assignments){
System.out.println("Obligation : " + assignment.getContent() +"\n\n");

}
}
//Initialize SparkSession
SparkSession spark = SparkSession.builder()

.appName("scala read from hdfs")

.config("spark.master", "local")

.getOrCreate();
//Read request
Dataset<Row> df = spark.read()

.option("header", "true")

.option("sep", ";")

.csv("hdfs://ec2-nameNode.eu-west-3.compute.
amazonaws.com:9000/sensitiveData/
annualCreditCardReport.csv");

//Display Data
df.filter("status = ’debit’")

.groupBy("gender","age")

.agg(count("*").as("numberOfDebtors"))

.orderBy(desc("numberOfDebtors"))

.show((int) df.count(), false);

} else {
System.out.println("\n" + userName + " is NOT authorized to " + operation + " the "

+ resource + " \n");
List<Advice> advices = result.getAdvices();
for(Advice advice : advices){

List<AttributeAssignment> assignments = advice.getAssignments();
for(AttributeAssignment assignment : assignments){

System.out.println("Advice : " + assignment.getContent() +"\n\n");
}

}
}

} catch (ParsingException e) {
e.printStackTrace();

}
}

} catch (Exception e) {
e.printStackTrace();
}

Fig. 10. Part of code to evaluate requests.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 11. Global XACML policy.

authorization Policies P1 and P2 are satisfied by this subject
. Thus, Bob is allowed to access the Hadoop HDFS service
and the read operation on the CreditCardReport object is also
authorized to Bob.

Let’s assume that another user, Anne, from the same
department and project but with a different role (let us say
junior role with a weight of 0.3) tries to perform a read
action on the same object, CreditCardReport, during working
hours. In this case, the rules defined in P1 are satisfied,
which means that Anne will be allowed to access the Hadoop
HDFS service, but the first rule defined in P2 will not be
satisfied since the weight of the junior role is less than the
sensitivity of the CreditCardReport object. Thus, according
to the global authorization policy described above, Anne will
not be authorized to perform the read operation on the report
file.

VIII. EXPERIMENTS AND RESULTS

To validate the proposed D2SAC framework, several ex-
periments have been performed to evaluate the performance
of this framework on the one hand and the overhead imposed
by D2SAC on the other. Thus, in this section, we provide a
detailed description of the Hadoop cluster configuration, the
datasets used, and the analyses of the experiments.

A. Hadoop cluster setup

To evaluate the proposed D2SAC framework, we config-
ured and deployed a Hadoop 3.3.3 cluster using the Amazon
Web Services (AWS) Cloud platform. Our cluster consisted
of five Elastic Cloud Computing (EC2) instances. We chose a
high-performance xlarge general-purpose (t2.xlarge) instance
with 4 CPUs and 16GB of memory for the NameNode,

and for the DataNodes, we chose the large general-purpose
(t2.large) instance type with 2 CPUs and 8GB of memory
[35]. For all machines in our cluster, Linux (Ubuntu Server
22.04 LTS) was chosen as the Amazon Machine Image
(AMI).

We also allocated an elastic public IP address for each
instance and set up password-less SSH on instances to
connect easily to these instances. Thus, to access Hadoop
instances, we need to SSH with the public IP address and
the created key pair (the .pem file). In this Hadoop cluster,
we set the replication factor to 3 and the data block size
to 128MB. Furthermore, to compare the overhead imposed
by the D2SAC framework, we deployed another Hadoop
cluster with the same hardware configuration (instances,
AMI, replication factor, block size. . . ) but without using the
proposed framework.

B. Data used

To evaluate the correctness and overhead of the proposed
framework, we used datasets generated from Kaggle [36].
Kaggle is an online platform for data scientists that al-
low users to find, collaborate and publish datasets. This
platform aims to help professionals achieve their goals by
solving data science challenges through powerful tools and
resources. Kaggle offers the possibility to explore, analyze,
and download quality data from several domains (education,
retail, healthcare. . . ) and supports various dataset formats
(csv, json, zip, etc.). In this work, we used banking datasets
generated from Kaggle, which contained sensitive informa-
tion about customers of OrganizationA, such as credit card
number, credit card type, IBAN, balance, etc. All of these
datasets were divided into datasets of size 1GB to 10GB into

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 12. Hadoop services access policy.

steps of 1GB.
To access these datasets and retrieve the requested infor-

mation, we used the Spark 3.1.3 engine that was installed on
the EC2 instances and developed three Spark jobs to run on
these datasets. These Spark jobs were implemented in Java
and executed in Hadoop using the Java API. The first Spark
job (S1) filtered all the data corresponding to a customer
with a debit credit card. It displayed their information (cus-
tomerNumber, firstName, lastName, iban, balance) to know
the debtor customers. The second Spark job (S2) counted the
number of customers for each country and each credit card
type and ranked them in descending order. The third Spark
job (S3) filtred customers with debit cards and then grouped
them by gender and age to count the total number of debtor
customers.

C. Results

In this section, we analyze the overhead required by the
D2SAC framework to access different datasets via Spark
jobs. The overhead depicted here is the time our framework
takes to display data on a standard output device.

Figure 15 compares the running time for Spark jobs on
different datasets ranging from 1GB to 10GB. The keys S1,
S2 and S3 stand for the three Spark jobs presented in the
previous section. We can see that the processing time of

Spark job (S2) is higher, closely followed by Spark job (S1)
and finally Spark job (S3), which takes less time to run. This
is because each Spark job contains different transformations
and actions; some operations are more complex than others.

The Spark job S2 has to perform the groupBy() transfor-
mation, which is considered a wide transformation requiring
shuffling and merging data to obtain the final result. Then, the
S2 has to run the count() aggregate method on the grouped
data to count the number of customers and rank them. Thus,
the processing time of S2 is significantly affected due to
shuffling data across different nodes resulting in taking more
time to run.

The Spark job S1 has to display all records corresponding
to customers with a debit credit card. In this job, the
transformation functions select and filter are used to select
the required columns from the rows satisfying the condition
given in the filter function. In the Spark job S3, the filter
function is firstly used to keep only debtor customers, then
groupBy() wide transformation and the count() aggregate
function are applied only to the filtered data, meaning that
the amount of data has been reduced before performing the
large transformation. Thus, the processing time of S3 is
lower when compared to S1 and S2, as shown in Figure
15. The more expensive the requested operations in a Spark
job are, the higher the running time to return the desired

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 13. Hadoop objects access policy.

Fig. 14. H-RABAC model use of case.

result. Therefore, optimizing spark jobs through appropriate
caching, optimal data format, and job monitoring to get the
best performance and speed up the jobs is highly recom-
mended.

Figures 16, 17 and 18 compare the running times of Spark
jobs S1, S2, and S3 between the proposed D2SAC frame-
work and a Hadoop implementation (naïve implementation)
using the same datasets. The processing time of Spark jobs
increases rapidly as the size of datasets increases. This is
explained by the fact that all records in a dataset need to be
processed to get results since they are structured data. Thus,
the jobs running on a large dataset take longer to terminate

either in our framework or in Hadoop.

On average, about 4.4% overhead is imposed by the
D2SAC framework to access different datasets via these
Spark jobs. This is a necessary trade-off to protect sensitive
data from unauthorized access. We can justify this overhead
by the time required for the D2SAC framework to control
access to Hadoop services and objects. To this end, the
D2SAC must retrieve the appropriate access control policies,
evaluate the user requests and render an access decision. The
demanded data is then displayed to the user if and only
if this user is authorized to run its Spark job. Therefore,
the overhead required by the D2SAC framework is not an

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 15. Comparison of running time of Spark jobs on different datasets.

obstacle to its usability but a necessity to control access and
protect sensitive data in Hadoop.

IX. CONCLUSION

There is no doubt that Big Data has brought significant
benefits to enterprises, but the use of Big Data comes with
commensurate risks. The need to protect data and secure
sensitive information often arises. Access control is one of
the essential requirements to limit unauthorized access in
the Hadoop ecosystem. Therefore, in our previous papers,
we proposed the D2SAC framework that provides end-to-
end lifecycle protection by keeping sensitive data protected
as long as it remains in the HDFS.

This paper proposes extensions to the D2SAC framework.
It concentrates on the Access Enforcement Module responsi-
ble for providing dynamic access control. Thus, we propose
a hybrid access control model called the H-RABAC model
that inherits the benefits of both RBAC and ABAC models.
The conceptual model of H-RABAC is presented, followed
by formal definitions of each component. We additionally
highlight extensions applied to XACML authorization poli-
cies by adding new elements to meet the Hadoop security
requirements. By doing so, we first control access to Hadoop
services and then to resources within Hadoop services.

For future work, we aim to improve the mathematical
model used within the Sensitivity Estimator Module to re-
calculate the data sensitivity as the sensitivity value evolves,
leading to changes in access control decisions. We also intend
to use Cloud Computing to implement our framework to
validate the efficiency and flexibility of D2SAC.

REFERENCES

[1] V. Pendyala, "The Big Data Phenomenon," in Veracity of Big Data,
Berkeley, CA: Apress, 2018, pp. 1–15.

[2] IDC, The premier global market intelligence company.
https://www.idc.com/

[3] A. Gandomi and M. Haider, "Beyond the hype: Big Data concepts,
methods, and analytics," Int. J. Inf. Manag., vol. 35, no. 2, pp.
137–144, Apr. 2015.

[4] M. Gupta, F. Patwa, and R. Sandhu, "An Attribute-Based Access
Control Model for Secure Big Data Processing in Hadoop Ecosystem,"
in Proceedings of the Third ACM Workshop on Attribute-Based
Access Control, Tempe AZ USA, Mar. 2018, pp. 13–24.

[5] G. S. Bhathal and A. Singh, "Big Data: Hadoop framework vulnera-
bilities, security issues and attacks," Array, vol. 1–2, p. 100002, Jan.
2019.

[6] N. Zanoon, A. Al-Haj, and S. M. Khwaldeh, "Cloud Computing and
Big Data is there a relation between the two: a study," Int. J. Appl.
Eng. Res., vol. 12, no. 17, pp. 6970–6982, 2017.

[7] Apache Sentry. https://sentry.apache.org/
[8] Apache Ranger. https://ranger.apache.org/
[9] Ait idar Hafsa, K. Aissaoui, H. Belhadaoui, and R. F. Hilali, "Dynamic

Data Sensitivity Access Control in Hadoop Platform," in 2018 IEEE
5th International Congress on Information Science and Technology
(CiSt), 2018, pp. 105–109.

[10] Ait idar Hafsa, H. Belhadaoui, and R. Filali, "A Conceptual Model
for Dynamic Access Control in Hadoop Ecosystem," in Advances on
Smart and Soft Computing, vol. 1188, F. Saeed, T. Al-Hadhrami, F.
Mohammed, and E. Mohammed, Eds. Singapore: Springer Singapore,
2021, pp. 421–430.

[11] Ait idar Hafsa, H. Belhadaoui, and R. Filali, "A Mathematical Model
to Calculate Data Sensitivity in Hadoop Platform Using the Analytic
Hierarchy Process Method," IAENG Int. J. Comput. Sci., vol. 47, no.
4, pp. 765–774, 2020.

[12] E. Bertino and E. Ferrari, "Big Data Security and Privacy," in A
Comprehensive Guide Through the Italian Database Research Over the
Last 25 Years, vol. 31, S. Flesca, S. Greco, E. Masciari, and D. Saccà,
Eds. Cham: Springer International Publishing, 2018, pp. 425–439.

[13] NIST Big Data Public Working Group, "NIST Big Data Interoperabil-
ity Framework: volume 4, security and privacy, version 2," National
Institute of Standards and Technology, Gaithersburg, MD, NIST SP
1500-4r1, Jun. 2018.

[14] D. S. Terzi, R. Terzi, and S. Sagiroglu, "A survey on security and
privacy issues in Big Data," in 2015 10th International Conference for
Internet Technology and Secured Transactions (ICITST), 2015, pp.
202–207.

[15] B. Bashari Rad, N. Akbarzadeh, P. Ataei, and Y. Khakbiz, "Security
and Privacy Challenges in Big Data Era," Int. J. Control Theory Appl.,
vol. 9, no. 43, pp. 437–448, 2016.

[16] H. Ye, X. Cheng, M. Yuan, L. Xu, J. Gao, and C. Cheng, "A survey
of security and privacy in Big Data," in 2016 16th International Sym-
posium on Communications and Information Technologies (ISCIT),
2016, pp. 268–272.

[17] Apache Hadoop. https://hadoop.apache.org/
[18] P. P. Sharma and C. P. Navdeti, "Securing Big Data Hadoop: a review

of security issues, threats and solution," Int J Comput Sci Inf Technol,
vol. 5, no. 2, pp. 2126–2131, 2014.

[19] B. Saraladevi, N. Pazhaniraja, P. V. Paul, M. S. S. Basha, and P.
Dhavachelvan, "Big Data and Hadoop-a Study in Security Perspec-
tive," Procedia Comput. Sci., vol. 50, pp. 596–601, 2015.

[20] T. K. Ashwin Kumar, H. Liu, J. P. Thomas, and X. Hou, "Content sen-
sitivity based access control framework for Hadoop," Digit. Commun.
Netw., vol. 3, no. 4, pp. 213–225, Nov. 2017.

[21] M. Behera and A. Rasool, "Big Data Security Threats and Prevention
Measures in Cloud and Hadoop," in Data Management, Analytics and
Innovation, vol. 808, V. E. Balas, N. Sharma, and A. Chakrabarti, Eds.
Singapore: Springer Singapore, 2019, pp. 143–156.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Fig. 16. Analysis of the overhead imposed by the D2SAC framework to access datasets via Spark job 1.

Fig. 17. Analysis of the overhead imposed by the D2SAC framework to access datasets via Spark job 2.

Fig. 18. Analysis of the overhead imposed by the D2SAC framework to access datasets via Spark job 3.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



[22] M. Gupta, F. Patwa, and R. Sandhu, "Object-Tagged RBAC Model for
the Hadoop Ecosystem," in Data and Applications Security and Privacy
XXXI, vol. 10359, G. Livraga and S. Zhu, Eds. Cham: Springer
International Publishing, 2017, pp. 63–81.

[23] G. Kapil, A. Agrawal, A. Attaallah, A. Algarni, R. Kumar, and R. A.
Khan, "Attribute based honey encryption algorithm for securing Big
Data: Hadoop distributed file system perspective," PeerJ Comput. Sci.,
vol. 6, p. e259, Feb. 2020.

[24] Y. A. Younis, K. Kifayat, and M. Merabti, "An access control model
for cloud computing," J. Inf. Secur. Appl., vol. 19, no. 1, pp. 45–60,
Feb. 2014.

[25] A. Cavoukian, M. Chibba, G. Williamson, and A. Ferguson, "The
importance of ABAC: attribute-based access control to Big Data:
privacy and context," Priv. Big Data Inst. Ryerson Univ. Tor. Can.,
2015.

[26] D. R. Kuhn, E. J. Coyne, and T. R. Weil, "Adding attributes to role-
based access control," Computer, vol. 43, no. 6, pp. 79–81, 2010.

[27] X. Jin, R. Sandhu, and R. Krishnan, "RABAC: role-centric attribute-
based access control," in International Conference on Mathematical
Methods, Models, and Architectures for Computer Network Security,
2012, pp. 84–96.

[28] H. Ulusoy, M. Kantarcioglu, E. Pattuk, and K. Hamlen, "Vigiles:
Fine-grained access control for mapreduce systems," in 2014 IEEE
International Congress on Big Data, 2014, pp. 40–47.

[29] Y. B. Reddy, "Access control for sensitive data in hadoop distributed
file systems," in Third International Conference on Advanced Com-
munications and Computation, INFOCOMP, 2013, pp. 17–22.

[30] Q. Yuan, C. Ma, and J. Lin, "Fine-grained access control for Big Data
based on CP-ABE in Cloud Computing," in International Conference
of Young Computer Scientists, Engineers and Educators, 2015, pp.
344–352.

[31] T. L. Saaty, "Decision making with the analytic hierarchy process,"
Int. J. Serv. Sci., vol. 1, no. 1, pp. 83–98, 2008.

[32] eXtensible Access Control Markup Language (XACML) Version 3.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[33] Abbreviated Language for Authorization Version 1.0. 2015.
[34] Wso2 Balana, https://github.com/wso2/balana.
[35] AWS Instance Specifications, https://aws.amazon.com/fr/ec2/instance-

types.
[36] Kaggle, https://www.kaggle.com.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_21

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 




