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Abstract—In this paper, a penalty function method for
multiobjective interval bilevel linear programming (MIBLP)
problem is proposed. Firstly, interval order relation is used
to transform objective functions. The possibility level based
on interval reliability is designed to transform constraint
inequalities. Then the MIBLP problem is transformed into
multiobjective bilevel linear programming (MBLP) problem
with coefficients determination. Secondly, the MBLP problem
is converted to a nonlinear optimization problem by using the
knowledge of the dual gap, the effective solution, and the linear
theory. Then, for this nonlinear problem, we construct a second-
order differentiable function. A penalty term is constructed,
which combines this function with the dual gap. Consequently,
a penalty function algorithm is proposed. Finally, two numerical
examples are used to analyze and verify the feasibility of the
model and algorithm.

Index Terms—MIBLP, dual gap, differentiable function,
penalty function method, possibility level based on interval
reliability.

I. INTRODUCTION

THE bilevel programming (BLP) is a kind of optimiza-
tion problem of bilevel hierarchical structure, which can

describe the hierarchical relationship problem in real life.
It has strong practical application value in transportation,
management, resource allocation and so on, and has been
extensively studied by scholars. There are numerous litera-
ture on the theoretical knowledge and solving methods of the
BLP problem with reference [1].

At present, the problem of single objective programming
and multiobjective programming has been profoundly studied
[2], [3], [4]. In the past few decades, various researchers
have studied the BLP problem with a single objective [5].
Gradually, more and more scholars are interested in MBLP
and begin to study it [6]. But all these studies are focused
on the MBLP problem with coefficients determination. In
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fact, in real life, there are inevitably uncertainties in a large
number of bilevel decision-making problems due to the
inconsistent way of information collection and insufficient
depth of understanding of information. There are currently
two ways to deal with uncertain parameters. Stochastic
programming uses probability distributions to quantify ran-
dom parameters, and fuzzy programming uses membership
functions to describe fuzzy uncertainties. These two methods
are applied to the bilevel programming problem. Stochastic
bilevel programming and fuzzy bilevel programming are
generated, and a series of achievements have been made
in these two topics [7]. However, determining the uncertain
parameters using these two methods is often a complicated
task.

Interval programming is one way to cope with uncer-
tainties. Since the interval contains many numbers, it is
advisable to unify the uncertainty coefficients in the bilevel
programming problem into intervals. The coefficients are
expressed by the maximum and minimum values of the
intervals. There is no construction of membership functions
and probability distributions. In this way, the interval bilevel
programming problem is generated. For the BLP problem
with interval coefficients (IBLP), Calvete and Galé [8] de-
veloped KBB and KBW algorithms based on the method
of extreme point ranking to find the best and worst optimal
solutions, respectively. Later, Nehi and Hamidi [9] proposed
the RKBW algorithm, which solved the correctness problem
of finding the worst optimal solution in [8]. In addition, Ren
and Wang [10] proposed two cutting plane methods, and
gave the best and worst optimal solutions of IBLP. Abass
[11] adopted an order relation to deal with the uncertainty
coefficients, and transformed the original problem into a
bilevel problem with coefficients determination. Recently,
Ren and Wang [12] proposed a method based on reliability-
based possibility degree of interval to deal with interval
constraints. By using a kind of interval order relation, they
obtained the optimal solution of IBLP.

There has been limited work on general MIBLP. In this
paper, we extend IBLP to MIBLP. Section II presents interval
number and multiobjective bilevel programming. In Section
III, the interval order relation and the possibility level based
on interval reliability are used respectively to transform the
objective functions and constraint conditions of the MIBLP
problem. The MIBLP problem is transformed into the MBLP
problem with definite coefficients. In Section IV, a second-
order differentiable function is constructed. A penalty func-
tion method is proposed and the corresponding algorithm
is presented. In Section V, the algorithm is explained by
examples. In Section VI, the proposed penalty function
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algorithm is compared with the general penalty function
algorithm. Finally, the work of this paper is summarized.

II. PRELIMINARIES

In this article, the MIBLP problem is converted to the
MBLP problem by a corresponding treatment. In this section,
the concepts and results of interval number and multiobjec-
tive bilevel programming are introduced.

A. Related concepts of interval numbers

In this paper, some basic notions of interval numbers are
important. We first recall the relevant preliminary results
about interval numbers.

On the set of real number R, an interval number aI [13]
is defined as follows:

aI =
[
aL, aR

]
=
{
a | aL ≤ a ≤ aR, a ∈ R

}
,

where aL and aR are the minimum and maximum values
of aI , respectively. When aL = aR, aI is reduced to a real
number.

The midpoint and the radius of interval aI are defined
as m

(
aI
)

= aL+aR

2 and w
(
aI
)

= aR−aL
2 . An arbitrary

interval aI =
[
aL, aR

]
can be expressed as:

aI = m
(
aI
)
± w

(
aI
)
.

where m
(
aI
)

and w
(
aI
)

represent the midpoint and radius,
respectively.

Let us use I to represent the set of all closed intervals in
R. For any two intervals aI =

[
aL, aR

]
, bI =

[
bL, bR

]
∈ I ,

some arithmetic operations can be given as follows:
(i) aI + bI =

[
aL + bL, aR + bR

]
;

(ii) aI − bI =
[
aL − bR, aR − bL

]
;

(iii) kaI =

{ [
kaL, kaR

]
, k ≥ 0,[

kaR, kaL
]
, k < 0.

Since objective functions and inequality constraints are
involved in the optimization problem, the order relation
between any two intervals is particularly crucial. Ishibuchi
and Tanaka [14] proposed an interval order relation to deal
with the minimization problem.

Definition 1: [14] For a minimization problem, the order
relations between interval numbers aI =

[
aL, aR

]
and bI =[

bL, bR
]
, denoted by symbols ≤mr and <mr, are defined as

follows.
(i) aI ≤mr bI if and only if m

(
aI
)
≤ m

(
bI
)

and aR ≤
bR;

(ii) aI <mr b
I if and only if aI ≤mr bI and aI 6= bI .

For the MIBLP problem, the constraint coefficients are
interval values, and the indefinite coefficients make the prob-
lem complicated. In reference [14], the probability degree of
an interval indicates the degree to which an interval is better
or worse than another interval. This approach can be used to
deal with interval constraints.

Definition 2: [15] Let aI =
[
aL, aR

]
and bI =

[
bL, bR

]
be two intervals, then the probability level of reliability based
on interval aI ≤ bI is defined as:

Pr
(
aI ≤ bI

)
=

bR − aL

2w (aI) + 2w (bI)
,

where the value of Pr
(
aI ≤ bI

)
is within the interval

[−∞,+∞] rather than [0,1]. In particular, when interval
numbers aI and bI are degenerated into real numbers a and
b, respectively. The possibility degrees of a ≤ bI and aI ≤ b
are written as follows:

Pr
(
a ≤ bI

)
=
bR − a
2w (bI)

, Pr
(
aI ≤ b

)
=

b− aL

2w (aI)
.

Next, we introduce the basic definition on multiobjective
bilevel linear programming problem.

B. Basic concepts of multiobjective bilevel linear program-
ming problem

Since it is impossible to minimize or maximize the objec-
tives of bilevel multiobjective programming simultaneously,
optimistic optimization model or pessimistic optimization
model can be used to deal with this situation. The optimistic
MBLP considered is as follows:

min
x,y

(F1(x, y), F2(x, y), . . . , Fp(x, y))
T

s.t.A1x+B1y ≤ b1,
x ≥ 0,

where y solves
min
y

Dy

s.t.A2x+B2y ≤ b2,
y ≥ 0,

(1)

where x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, A1 ∈ Rr×n, B1 ∈
Rr×m, b1 ∈ Rr, A2 ∈ Rs×n, B2 ∈ Rs×m, b2 ∈ Rs.
x and y are decision-making variables of each level, re-
spectively. Fi(x, y) and Dy are objective functions, where
i = 1, 2, . . . , p,D ∈ Rq×m. Let both objective functions be
continuous and differentiable.

Let S={(x, y) |Akx+Bky|≤bk,k = 1, 2, x∈X+,y ∈ Y +}
be the constraint region of problem (1). For
each given x ∈ X+ denote the constraint
region of the second level problem by S̄(x) =
{y | Bky ≤ bk −Akx, k = 1, 2, y ∈ Y +}, and denote
the projection of S in the first level decision space by Πy=
{x∈Rn |∃y∈Rm,Akx+Bky≤bk, k = 1, 2, x∈X+, y∈Y +}.
Ψe(x) denote the set of the efficient solutions of the second
level problem, and IR = {(x, y) | x ∈ Πy, y ∈ Ψe(x)}
denote the feasible region. Then, problem (1) can be
reformulated as follows:

min
x,y

F (x, y) = (F1(x, y), F2(x, y), . . . , Fp(x, y))
T

s.t. y ∈ Ψe(x),

x ≥ 0.

(2)

Next, the assumptions required by the model are estab-
lished.

(H1) S is nonempty and compact, and Ψe(x) 6= ∅ for all
x ≥ 0.

(H2) The set X+ is a polytope.
Definition 3: (x, y) is called a feasible solution of prob-

lem (2) if (x, y) ∈ IR.
Definition 4: A feasible point (x∗, y∗) is called a Pareto

optimal solution to problem (2), if there exists no other
feasible point (x, y) such that F (x, y) ≤ F (x∗, y∗) and
F (x, y) 6= F (x∗, y∗) are satisfied for any (x, y) ∈ IR.
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For the MBLP problem, Benson [16] defined a function to
determine whether a point is an efficient solution. See [17],
[18] for similar methods. Inspired by the above references,
then we define l(x, y) = eTDy−h(x, y) for all x ≥ 0, where
e = (1, 1, . . . , 1)T ∈ Rq . Since we cannot directly find the
expression for h(x, y), the following problem arises:

min eTDw

s.t.w ∈ G(x, y)
(3)

where G(x, y) = {w | Dw ≤ Dy,w ∈ S̄(x)}, h(x, y) is the
optimal value for problem (3). Then, we have the following
results.

Lemma 1: For all x ≥ 0, y ∈ S̄(x), the following
assertions are satisfied.

(i) l(x, y) ≥ 0.
(ii) Ψe(x) = {y | l(x, y) = 0, y ∈ S̄(x)}.

Proof: See Lemma 2.3 in [19].
Lemma 1 shows that for l(x, y) = 0, the solution is an

efficient solution. Since l(x, y) contains h(x, y), we consider
the dual of problem (3).

max
u,v
− (b2 −A2x)

T
u− vTDy

s.t.−DT v −BT2 u ≤ DT e

u ≥ 0, v ≥ 0.

(4)

From the duality theory, h(x, y) is the optimal solution of
both the original problem and the dual problem.

Let Z=
{

(u, v)∈Rs×Rq |−DT v−BT2 u≤DT e,u≥0, v≥0
}

,
and π(x, y, u, v) = eTDy + vTDy + (b − Ax)Tu denote
the duality gap of problem (3). According to the duality
theory, π(x, y, u, v) ≥ 0 for all (x, y, u, v) ∈ S × Z.When
π(x, y, u, v) = 0, problems (3) and (4) have a common
optimal solution. We consider the following multiobjective
problem with a bilinear constraint:

min
x,y,u,v

F (x, y) = (F1(x, y), F2(x, y), . . . , Fp(x, y))
T

s.t.π(x, y, u, v) = 0,

(x, y) ∈ S,
(u, v) ∈ Z.

(5)

Let (x̄, ȳ, ū, v̄) be any feasible point to problem (5). Then,
we can obtain ȳ ∈ Ψe(x). Therefore, (x̄, ȳ, ū, v̄) is also a
feasible point to problem (2).

Lemma 2: If (x̃, ỹ) is a Pareto optimal solution to problem
(2), then there exists (ũ, ṽ) ∈ Z, such that (x̃, ỹ, ũ, ṽ) is a
Pareto optimal solution to problem (5). Vice versa.

Proof: See Lemma 2.4 in [19].

III. MULTIOBJECTIVE INTERVAL BILEVEL
PROGRAMMING PROBLEM

In general, there are multiple objective functions in the
two-level problems. The objective functions and constraints
are linear, and the coefficients are interval coefficients. This
optimization problem is called the MIBLP problem. As

follows:

min
x
F I(x, y) =

(
F I1 (x, y), F I2 (x, y), . . . , F Ip (x, y)

)T
s.t.
[
aLi1, a

R
i1

]
x+

[
bLi1, b

R
i1

]
y ≤

[
hLi , h

R
i

]
, i = 1, 2, . . . , r,

x ≥ 0,

where y solves

min
y
f I(x, y) =

(
f I1 (x, y), f I2 (x, y), . . . , f Iq (x, y)

)T
s.t.
[
aLj2, a

R
j2

]
x+

[
bLj2, b

R
j2

]
y ≤

[
hLj , h

R
j

]
, j = 1, 2, . . . , s,

y ≥ 0,
(6)

where x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm. x and y are decision-
making variables.

F I(x, y) =(
[
FL1 (x, y), FR1 (x, y)

]
,
[
FL2 (x, y), FR2 (x, y)

]
,

. . . ,
[
FLp (x, y), FRp (x, y)

]
)T ,

f I(x, y) =(
[
fL1 (x, y), fR1 (x, y)

]
,
[
fL2 (x, y), fR2 (x, y)

]
,

. . . ,
[
fLq (x, y), fRq (x, y)

]
)T ,

F I(x, y) and f I(x, y) are interval-valued objective functions.[
aLi1,a

R
i1

]
and

[
aLj2,a

R
j2

]
are n-dimensional interval vectors

whose components are all intervals.
[
bLi1, b

R
i1

]
and

[
bLj2, b

R
j2

]
are m-dimensional interval vectors.

[
hLi , h

R
i

]
and

[
hLj , h

R
j

]
are interval numbers. i = 1, 2, . . . , r, j = 1, 2, . . . , s.

In the MIBLP problem, the coefficients of objective func-
tions and constraint conditions contain interval numbers,
which is equivalent to an uncertain optimization problem.
The general idea is to convert it into a programming problem
with coefficients determination. In the following, how to
transform multiobjective interval bilevel programming into
multiobjective bilevel programming with coefficients deter-
mination will be discussed in detail.

A. The transformation of multiobjective interval objective
functions

The relation ≤m is used to transform the interval objective
functions of the first and second level problems, respectively.
The corresponding interval objective functions become two
objective functions with determined coefficients. Taking the
middle position and upper bound of the original interval
objective functions for each of these two functions, we obtain
the following upper and lower level functions:

min
x∈X

(m (F1(x, y)) , FR1 (x, y),m (F2(x, y)) , FR2 (x, y),

. . . ,m (Fp(x, y)) , FRp (x, y))T ,

min
y∈Y

(m (f1(x, y)) , fR1 (x, y),m (f2(x, y)) , fR2 (x, y),

. . . ,m (fq(x, y)) , fRq (x, y))T ,

where m (Fk(x, y)) =
FL

k (x,y)+FR
k (x,y)

2 , m (fl(x, y)) =
fL
l (x,y)+fR

l (x,y)
2 , k = 1, 2, . . . , p, l = 1, 2, . . . , q. Hence, the

number of objective functions at each level is doubled, 2p
and 2q, respectively. The interval-valued objective functions
become the objective functions with coefficients determina-
tion.
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B. The transformation of interval constraints

For the interval inequality constraints, in order to trans-
form them into the general constraints, we can use the
possibility degree method [20]. When the two intervals
are completely separated, most of the existing probability
degrees cannot reflect the reliability information. Recently,
Jiang et al. [15] introduced a possibility level based on inter-
val reliability to deal with interval constraints and effectively
explained the reliability of constraints.

According to Definition 2, the two-level constraints can
be transformed into the following forms, respectively.

UC :Pr
([
aLi1, a

R
i1

]
x+

[
bLi1, b

R
i1

]
y ≤

[
hLi , h

R
i

])
=

hRi −
(
aLi1x+ bLi1y

)
2

[
(aRi1x+bRi1y)−(aLi1x+bLi1y)

2 +
(hR

i −hL
i )

2

] ≥ λi,
LC :Pr

([
aLj2, a

R
j2

]
x+

[
bLj2, b

R
j2

]
y ≤

[
hLj , h

R
j

])
=

hRj −
(
a−j2x+ b−j2y

)
2

[
(a+j2x+b

+
j2y)−(a−j2x+b

−
j2y)

2 +
(h+

j −h
−
j )

2

] ≥ λ′j ,
where λi and λ′j are preset possibility levels based on interval
reliability for the ith and jth inequality constraints of the two-
level, respectively, λi, λ′j ∈ [−∞,+∞], i = 1, 2, . . . , r, j =
1, 2, . . . , s. Moreover, the larger the values of λi and λ′j , the
more reliable are the interval inequality constraints.

By simplifying the above formula, the linear constraints of
the two-level problems with coefficients determination can be
obtained, respectively.

UC :
[
λi
(
aRi1 − aLi1

)
+ aLi1

]
x+

[
λi
(
bRi1 − bLi1

)
+ bLi1

]
y

≤ hRi − λi
(
hRi − hLi

)
, i = 1, 2, . . . , r,

LC :
[
λ′j
(
aRj2 − aLj2

)
+ aLj2

]
x+

[
λ′j
(
bRj2 − bLj2

)
+ bLj2

]
y

≤ hRj − λ′j
(
hRj − hLj

)
, j = 1, 2, . . . , s,

After processing the interval objective functions and the
interval constraints inequality, the corresponding interval
coefficients are converted into certain coefficients. Therefore,
the MIBLP problem (6) is transformed into the multiobjec-
tive bilevel linear programming as follows:

min
x

(m (F1(x, y)) , FR1 (x, y),m (F2(x, y)) , FR2 (x, y), . . . ,

m (Fp(x, y)) , FRp (x, y))T

s.t.
[
λi
(
aRi1 − aLi1

)
+ aLi1

]
x+

[
λi
(
bRi1 − bLi1

)
+ bLi1

]
y

≤ hRi − λi
(
hRi − hLi

)
, i = 1, 2, . . . , r,

x ≥ 0,

where y solves

min
y

(m (f1(x, y)) , fR1 (x, y),m (f2(x, y)) , fR2 (x, y), . . . ,

m (fq(x, y)) , fRq (x, y))T

s.t.
[
λ′j
(
aRj2 − aLj2

)
+ aLj2

]
x+

[
λ′j
(
bRj2 − bLj2

)
+ bLj2

]
y

≤ hRj − λ′j
(
hRj − hLj

)
, j = 1, 2, . . . , s,

y ≥ 0.
(7)

Now, problem (7) is further simplified. First, the two-level
objective functions are reordered, respectively. The number
of objective functions becomes t, where t = 2p. The second

level objective functions can be simplified into a form con-
taining only decision-making variable y when the first level
decision-making variable x is given. The following optimistic
multiobjective bilevel programming model is adopted in this
paper.

min
x,y

(F1(x, y), F2(x, y), . . . , Ft(x, y))
T

s.t.
[
λi
(
aRi1 − aLi1

)
+ aLi1

]
x+

[
λi
(
bRi1 − bLi1

)
+ bLi1

]
y

≤ hRi − λi
(
hRi − hLi

)
, i = 1, 2, . . . , r,

x ≥ 0,

where y solves
min
y
Dy

s.t.
[
λ′j
(
aRj2 − aLj2

)
+ aLj2

]
x+

[
λ′j
(
bRj2 − bLj2

)
+ bLj2

]
y

≤ hRj − λ′j
(
hRj − hLj

)
, j = 1, 2, . . . , s,

y ≥ 0,
(8)

where D ∈ R2q×m. Aiming at the problem of MBLP (8),
in order to facilitate its solution and calculation, it is now
expressed with more concise symbols.

min
x,y

(F1(x, y), F2(x, y), . . . , Ft(x, y))
T

s.t.A1x+B1y ≤ b1,
x ≥ 0,

where y solves
min
y

Dy

s.t.A2x+B2y ≤ b2,
y ≥ 0,

(9)

where A1 = λi
(
aRi1 − aLi1

)
+ aLi1, B1 = λi

(
bRi1 − bLi1

)
+

bLi1, b1 = hRi − λi
(
hRi − hLi

)
, A2 = λ′j

(
aRj2 − aLj2

)
+

aLj2, B2 = λ′j
(
bRj2 − bLj2

)
+bLj2, b2 = hRj −λ′j

(
hRj − hLj

)
, i =

1, 2, . . . , r, j = 1, 2, . . . , s, A1 ∈ Rr×n, B1 ∈ Rr×m,b1 ∈
Rr, A2 ∈ Rs×n, B2 ∈ Rs×m, b2 ∈ Rs, D ∈ R2q×m.

The optimal solution of problem (9) is equivalent to the
optimal solution of problem (6) after the MIBLP problem (6)
is processed and simplified. In Section II-B, we discuss in
detail the related concepts of problem (9) and the basic con-
cepts of optimal solutions. The solution process of problem
(9) will be discussed in the following part.

IV. THE PENALTY FUNCTION METHOD AND ALGORITHM

In this section, the corresponding penalty function method
and algorithm are proposed, and the proof process of algo-
rithm convergence is given.

A. The proposed penalty function method

According to the definition in Section II-B, the solution
of problem (9) is obtained by solving problem (5). Notice
that problem (5) contains bilinear constraints, in order to deal
with nonlinear constraint term π(x, y, u, v) = 0, the penalty
function approach is mostly used to solve them.

In order to calculate the global optimal solution of problem
(2), the Mangasarian-Fromowitz constraint [21] is assumed
to hold. On the basis of this hypothesis, an accurate penalty
function method for MBLP problem is proposed.
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In fact, it is very difficult to obtain an exact optimal
solution. Inspired by literature [22], we construct a second-
order differentiable function, construct a penalty term by
using second-order differentiability, and obtain an exact
penalty function method. This method replaces the bilinear
constrained programming problems with relaxation subprob-
lems.

In real life, decision makers have a certain degree of
preference for each objective function. The objective func-
tions are combined with parameters, and the number of
functions becomes one. Correspondingly, problem (5) can
be transformed as:

min
x,y,u,v

F (x, y) = β1F1(x, y) + β1F2(x, y) + . . .+ βtFt(x, y)

s.t.π(x, y, u, v) ≤ ε

µ
,

(x, y) ∈ S,
(u, v) ∈ Z,

(10)

where ε > 0 and ε→ 0, µ > 0 and µ→ +∞,
t∑
i=1

βi = 1.

Next, we construct a second-order differentiable approxi-
mation problem of the exact penalty function. The second-
order differentiable function pε,µ(t) is designed as follows.

pε,µ(t) =


0 t ≤ 0

µ4

10ε4 t
5 0 < t < ε

µ ,

t+ ε4

6µ4
1
t3 −

16ε
15µ t ≥ ε

µ

where ε and µ are positive parameters. This function has the
following lemmas.

Lemma 3: For any ε > 0 and a fixed µ > 0, pε,µ(t) is
twice continuously differentiable on R, where

p′ε,µ(t) =

{
µ4

2ε4 t
4 0 ≤ t < ε

µ

1− ε4

2µ4
1
t4 t ≥ ε

µ

,

p′′ε,µ(t) =

{
2µ4

ε4 t
3 0 ≤ t < ε

µ

2ε4

µ4
1
t5 t ≥ ε

µ

.

Lemma 4: For any ε > 0 and a fixed µ > 0, lim
ε→0

pε,µ(t) =

t.
Lemma 4 means that pε,µ(π(x, y, u, v)) can approximate

π(x, y, u, v) when the parameter ε is sufficiently small and
a fixed µ > 0.

We call pε,µ(π(x, y, u, v)) the dual gap index. In fact, we
construct a function α(t) = max {0, pε,µ(t)}, where t ≤
0, pε,µ(t) = 0, t > 0, pε,µ(t) > 0. Using α[π(x, y, u, v)] as a
penalty term, we obtain the penalty problem:

min
x,y,u,v

F (x, y, u, v) = F (x, y) + µα[π(x, y, u, v)]

s.t.
t∑
i=1

βi = 1,

(x, y) ∈ S,
(u, v) ∈ Z,

(11)

where µ > 0 is a penalty parameter. Denote the feasible
region of problem (11) by W .

Remark 1: Since in the second-order differentiable func-
tion pε,µ(t), µ is a positive parameter with µ > 0. In the
penalty problem (11), µ is also a penalty parameter with
µ > 0. So in this case, these two parameters can take on the
same value.

In fact, solving problem (11) gives the solution to problem
(5). Under the assumptions of this article, there are the
following results.

Lemma 5: [23] For any given ε > 0, let
{(xk, yk, uk, vk)}k∈N be a sequence of optimal
solutions to problem (10). The positive increasing
sequence {µk}k∈N such that µk → +∞. Suppose
that for each µ, there is a (xµ, yµ, uµ, vµ) such that
θ(µ) = F (xµ, yµ) + µα [π (xµ, yµ, uµ, vµ)]. The sequences
{F (xk, yk)}k∈N and α {π (xk, yk, uk, vk)}k∈N are non-
decreasing and non-increasing, respectively.

Since F (x, y), α(t) and the constraint inequalities are
continuous. In order to prove the Lemma 5, an auxiliary
function θ(µ) is introduced after referring to literature [24],

where θ(µ) = inf{F (x, y) + µα(π(x, y, u, v)) :
t∑
i=1

βi =

1, (x, y)∈S, (u, v)∈Z} and µ > 0.
Proof: Consider t ≤ 0, α(t) = 0, let µ > 0, then

F (x, y) = F (x, y) + µα[π(x, y, u, v)] ≥ inf{F (x̂, ŷ) +
µα(π(x̂, ŷ, û, v̂))} = θ(µ).

Now set γ < µ, by definition of θ(γ) and θ(µ), the
following two inequalites hold:
F (xµ, yµ) + γα [π (xµ, yµ, uµ, vµ)] ≥ F (xγ , yγ) +
γα [π (xγ , yγ , uγ , vγ)] ,
F (xγ , yγ) + µα [π (xγ , yγ , uγ , vγ)] ≥ F (xµ, yµ) +
µα [π (xµ, yµ, uµ, vµ)] .

Adding these two inequalities and simplifying, according
to the properties of the norm we can get

(µ− γ) {α [π (xγ , yγ , uγ , vγ)]− α [π (xµ, yµ, uµ, vµ)]} ≥ 0.

Since µ > γ, then α [π (xγ , yγ , uγ , vγ)] ≥
α [π (xµ, yµ, uµ, vµ)]. It then follows from F (xµ, yµ) +
γα [π (xµ, yµ, uµ, vµ)] ≥ F (xγ , yγ)+γα [π (xγ , yγ , uγ , vγ)]
that F (xµ, yµ) > F (xγ , yγ) for γ ≥ 0. This completes the
proof.

According to [25], [26], there are the following theorems.
Theorem 1: For a given ε > 0, µ > 0 and µ → ∞,

let (x∗, y∗, u∗, v∗) be an optimal solution to problem (11),
which is feasible for problem (10). Then, (x∗, y∗, u∗, v∗) is
an optimal solution to problem (10).

Theorem 2: Let {(xk, yk, uk, vk)}k∈N be a sequence of
optimal solutions for problem (11). {εk} > 0 with {εk} →
0, and {µk} > 0 with µk → +∞. The sequence
{(xk, yk, uk, vk)}k∈N has accumulation points, any one of
them is a solution to problem (5).

According to Lemma 2 and the two theorems above, the
approximate solution of problem (5) can be obtained through
problem (11).

Remark 2: In theorem 2, {εk} is a positive sequence with
εk → 0 and a positive sequence {µk} with µk → +∞.
Problem (11) have an optimal solution when

{
εk
µk

}
k∈N

is a
very small constant (given precision).

B. The penalty function algorithm
Now, we propose the exact penalty function Algorithm 1

to solve problem (11).
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Algorithm 1. The penalty function algorithm for the MIBLP problem.

Step 0. Choose ε > 0, µ0 > 0, N ≥ 1 and set k = 0.

Step 1. Set (xk, yk, uk, vk) ∈ S×Z as the initial point of problem (11),

and the obtained solution is set as (xk+1, yk+1, uk+1, vk+1).

Step 2. If π (xk+1, yk+1, uk+1, vk+1) ≤ ε
µk

, stop, then (xk+1, yk+1)
is an optimal solution

to problem (6). Else, go to Step 3.

Step 3. Set µk+1 = Nµk, k = k + 1, and go to Step 1.

In Step 1, trust-region algorithm or genetic algorithm can
be used to solve the nonlinear programming problem.

In Step 2, since ε
µk

is a very small constant, then
π (xk+1, yk+1, uk+1, vk+1) is approximately equal to 0 for a
given precision. In fact, the optimal solution obtained in this
paper is approximate optimal solution.

The following is a convergence illustration of Algorithm
1.

Theorem 3: For a given ε > 0, if (xk, yk, uk, vk) is an
optimal solution to problem (11), then there exists µ∗k > 0
such that (xk, yk, uk, vk) is a feasible solution to problem
(10) for any µk > µ∗k.

Proof: First, let: W 0 ={
(x, y, u, v) ∈W : π(x, y, u, v) 6 ε

µ

}
,W 1 ={

(x, y, u, v) ∈W : π(x, y, u, v) > ε
µ

}
.

Suppose W 1 6= ∅. The minimum value
of F (x, y, u, v) on the set W 1 is given by

inf
x,y,u,v

{
F (x, y, u, v) : (x, y, u, v) ∈W 1

}
. Clearly, the

set W 1 is not closed (see [10]). Then the minimum
function of F (x, y, u, v) can be a finite value that is
not available. So, instead of getting the exact solution,
we can get the approximate solution. Now, suppose
that (xk, yk, uk, vk) ∈ W 1 is an approximate Pareto
optimal solution to problem (11) but not a feasible
solution to problem (3) for a given ε > 0. Clearly,
π (xk, yk, uk, vk) > ε

µk
.

Since the functions F (x, y) , pε,µ and
F (x, y, u, v) are continuous. Let m∗ =
min

{
F (x, y, u, v) : (x, y, u, v) ∈W 0

}
. Take

µ∗k > m∗−F (xk,yk)
εε(π(xk,yk,uk,vk))

. Since (xk, yk, uk, vk) is an
approximate Pareto optimal solution to problem (11), for all
(x, y, u, v) ∈W 0, we have
F (x, y) + µkα[π(x, y, u, v)] > F (xk, yk) +
µkα [π (xk, yk, uk, vk)] ,
specially, for any µk > µ∗k, we have
F (x, y) + µkα[π(x, y, u, v)] > F (xk, yk) +
µ∗kα [π (xk, yk, uk, vk)] > m∗.

This contradicts the definition of m∗. Hence, for µk > µ∗k,
the approximate Pareto optimal solution (xk, yk, uk, vk) of
problem (11) must belong to W 0. The theorem has been
proved.

V. NUMERICAL EXAMPLES

Two examples are presented below to illustrate the feasi-
bility and effectiveness of Algorithm 1. The detailed iterative
procedure of Algorithm 1 and the solution results are given
below.

Example 1: Consider the following MIBLP problem. Ex-
ample 1 adds an objective function to both levels, on the
basis of reference [11].

max
x
F I(x, y) = ([3, 6]x+ [4, 9]y, [1, 2]x+ [4, 5]y)T

where y solves

max
y
f I(x, y) = ([11, 13]x+ [7, 9]y, [3, 5]x+ [6, 8]y)T

s.t. [3, 5]x+ [4, 6]y ≥ 16,

x+ y ≤ 6,

x ≥ 0, y ≥ 0.

Firstly, according to the transformation method in Section
III, the objective functions and constraint conditions of the
MIBLP problem are processed, respectively. The MIBLP
problem is transformed into the MBLP problem with de-
termined coefficients, as shown below.

min
x
F I(x, y) = (−4.5x− 6.5y,−3x− 4y,

− 1.5x− 4.5y,−x− 4y)

min
y
f I(x, y) = (−12x− 8y,−11x− 7y,−4x− 7y,

− 3x− 6y)T

s.t. (2λ− 5)x+ (2λ− 6)y ≤ −16,

x+ y ≤ 6,

x ≥ 0, y ≥ 0.

Next, according to the dual theory and effective solution
of the second level problem, the above problem is converted
to a single level MBLP problem. We construct the following
penalty problem:

min
x,y,u,v

F I(x, y) = β1(−4.5x− 6.5y) + β2(−3x− 4y)

+ β3(−1.5x− 4.5y) + β4(−x− 4y)

+ µα[−21y − 8v1y − 7v2y − 6v3y

+ [−16− (2λ− 5)x]u1 + (6− x)u2]

where y solves
s.t. (2λ− 5)x+ (2λ− 6)y ≤ −16,

x+ y ≤ 6,

8v1 + 7v2 + 6v3 − (2λ− 6)u1 − u2 ≤ −21,
4∑
i=1

βi = 1,

x ≥ 0, y ≥ 0.

Example 1 is then discussed in detail using MATLAB
programming and the proposed penalty algorithm.

Step 0: When (β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25),
λ = 1, choose initial penalty parameters µ0 = 1, N = 5,
ε = 0.0001 and k = 0.

Step 1: Select the initial point
(
x0, y0, u01, u

0
2, v

0
1 , v

0
2 , v

0
3

)
= (1, 5, 0, 23, 0, 0, 0), and use trust-region algorithm to solve
the corresponding penalty problem.

Step 2: As
(
x1, y1, u11, u

1
2, v

1
1 , v

1
2 , v

1
3

)
= 1.1331e − 04 >

1.0000e− 04, then go to step 3.
Step 3: k = 1, µ1 = 5, and go to Step 1.
The first iteration is completed in Step 3. After fourth

iterations, we obtain (x∗, y∗) = (0, 6), and the first level
objective F I1 (x∗, y∗) = [24, 54], F I2 (x∗, y∗) = [24, 30].
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TABLE I: Numerical results with
(β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25), µ0 = 1.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

−3 1 1 (0, 6) [24, 54] [24, 30]

−2 1 1 (0, 6) [24, 54] [24, 30]

−1 1 2 (0, 6) [24, 54] [24, 30]

0 1 5 (0, 6) [24, 54] [24, 30]

0.5 1 3 (0, 6) [24, 54] [24, 30]

1 1 4 (0, 6) [24, 54] [24, 30]

1.5 1 5 (0, 6) [24, 54] [24, 30]

Since decision-makers have different preferences for each
objective function, this paper considers adjusting the parame-
ters βi of linear combination. In the same linear combination,
in order to explain the influence of different λi on the calcula-
tion results, λi can be adjusted, where λi ∈ [−∞,+∞]. Now
different parameters βi and λi are selected and the algorithm
above is used to solve Example 1.

When Algorithm 1 is used to solve the problem, different
λi can be adjusted. The initial value of this problem is chosen
to be

(
x0,y0,u0,v0

)
=(1, 5, 0, 23, 0, 0, 0). The optimal solution

and the first level objective function values are obtained and
shown in Table I, n indicates the number of iterations.

From table I, when λ goes from -3 to 1.5, neither of
the first level two objective functions change. The higher
the value of λ is, the higher the reliability of the constraint
inequality is. Therefore, λ = 1.5 can be selected to obtain the
optimal solution (0,6). In this case, the constraint inequality is
more reliable. Due to λ ∈ [−∞,+∞], only a few values are
listed here, this paper considers the extreme case of λ. When
λ > 1.6, the feasible region is empty. When λ is negative, the
optimal solution can be obtained through different iterations,
but the constraint is not reliable at this time. In real life, a
larger value of λ should be selected as far as possible.

Notice that the initial penalty parameters are all µ0 =
1, but different possibility level based on interval reliability
have different iterations. Now consider increasing the initial
parameter values. When n > 1, the initial parameter values
are changed, and the results obtained are shown in Table II.

TABLE II: Numerical results with
(β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25) and different

initial parameter values of u0.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

0 10 2 (0, 6) [24, 54] [24, 30]

0.5 10 3 (0.0051, 5.9949) [23.9949, 53.9848] [23.9848, 29.9848]

0.5 50 2 (0, 6) [24, 54] [24, 30]

0.5 70 1 (0, 6) [24, 54] [24, 30]

1 10 2 (0, 6) [24, 54] [24, 30]

1.5 10 2 (0, 6) [24, 54] [24, 30]

1.5 40 1 (0, 6) [24, 54] [24, 30]

From Table II, in general, when the initial penalty pa-
rameters increase, n decreases. However, when λ = 0.5,
the penalty parameter is increased to 10. The number of
iterations does not decrease, which is the same as µ0 = 1
and iterated three times. This is because in this paper the
penalty function is constructed using pε,µ(π(x, y, u, v)). The
parameter µ of second-order differentiable function pε,µ(t) is
the same as those of penalty problem (11). pε,µ(t) will select

different function according to the size relationship between
t and ε

µ .
Now adjust the parameters of the linear combination.

When (β1, β2, β3, β4) = (0.3, 0.2, 0.3, 0.2), the results are
shown in Table III. As for n > 1, we consider changing
the initial parameter values to reduce n, and the results are
shown in Table IV.

TABLE III: Numerical results with
(β1, β2, β3, β4) = (0.3, 0.2, 0.3, 0.2), µ0 = 1.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

−3 1 1 (0, 6) [24, 54] [24, 30]

−2 1 1 (0, 6) [24, 54] [24, 30]

−1 1 2 (0, 6) [24, 54] [24, 30]

0 1 3 (0, 6) [24, 54] [24, 30]

0.5 1 7 (0, 6) [24, 54] [24, 30]

1 1 4 (0, 6) [24, 54] [24, 30]

1.5 1 3 (0, 6) [24, 54] [24, 30]

1.8 1 − infeasible − −

TABLE IV: Numerical results with
(β1, β2, β3, β4) = (0.3, 0.2, 0.3, 0.2) and different initial

parameter values of µ0.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

0 30 2 (0, 6) [24, 54] [24, 30]

0 40 1 (0, 6) [24, 54] [24, 30]

0.5 30 3 (0, 6) [24, 54] [24, 30]

0.5 60 1 (0, 6) [24, 54] [24, 30]

1 30 3 (0, 6) [24, 54] [24, 30]

1 80 1 (0, 6) [24, 54] [24, 30]

1.5 0.4 1 (0, 6) [24, 54] [24, 30]

1.5 10 3 (0, 6) [24, 54] [24, 30]

1.5 40 1 (0, 6) [24, 54] [24, 30]

From Table III, we adjust the linear combination mode.
For λ which is the same as that in Table I, although n is
different, the optimal solution is the same. When λ = 1 is
selected, the optimal solution can be obtained under the high
λ. When λ = 1.8, no solution exists.

From Table IV, in general, increasing the initial penalty
parameter decreases n and the obtained optimal solution
remains unchanged. But we notice that when µ0 = 10, n
does not decrease, it’s still three. At this point, this paper
considers reducing the value of µ0. When µ0 = 0.4, n = 1.
When µ0 = 40, n = 1. This is because the penalty function
constructed from pε,µ(t) has a local extreme value. In this
case, this paper attempts to modify the initial values of the
penalty parameters several times. The observed solution is
found to be stable. The occurrence of local extreme values
of the penalty function are shown not to affect the optimal
solution.

For extreme value of linear combination parameter, when
(β1, β2, β3, β4) = (0.1, 0.05, 0.05, 0.8), the results are shown
in Table V. When n > 1, the initial value of penalty
parameter is tried to be changed, and the test is performed
in Table VI.

Table V shows that extreme values of parameters of linear
combination does not affect the optimal value and upper level
optimal solution of Example 1. When λ = 0 and λ = 1.5,
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TABLE V: Numerical results with
(β1, β2, β3, β4) = (0.1, 0.05, 0.05, 0.8), µ0 = 1.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

−3 1 2 (0, 6) [24, 54] [24, 30]

−2 1 2 (0, 6) [24, 54] [24, 30]

−1 1 6 (0, 6) [24, 54] [24, 30]

0 1 4 (0.0001, 5.9999) [23.9999, 53.9997] [23.9997, 29.9997]

0.5 1 6 (0.00215.9979) [23.9979, 53.9938] [23.9938, 29.9938]

1 1 2 (0, 6) [24, 54] [24, 30]

1.5 1 3 (0, 6) [24, 54] [24, 30]

TABLE VI: Numerical results with
(β1, β2, β3, β4) = (0.1, 0.05, 0.05, 0.8) and different initial

parameter values of µ0.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

−3 0.2 1 (0, 6) [24, 54] [24, 30]

−3 30 4 (0, 6) [24, 54] [24, 30]

−3 50 1 (0, 6) [24, 54] [24, 30]

−2 20 1 (0, 6) [24, 54] [24, 30]

−1 20 3 (0.0017, 5.9983) [23.9983, 53.9948] [23.9948, 29.9948]

−1 70 1 (0, 6) [24, 54] [24, 30]

0 50 2 (0.0050, 5.9950) [23.9950, 53.9851] [23.9851, 29.9851]

0 100 1 (0.0001, 5.9999) [23.9999, 53.9998] [23.9998, 29.9998]

0.5 30 1 (0, 6) [24, 54] [24, 30]

1 0.3 1 (0, 6) [24, 54] [24, 30]

1 10 3 (0.0056, 5.9944) [23.9944, 53.9831] [23.9831, 29.9831]

1 60 1 (0, 6) [24, 54] [24, 30]

1.5 50 1 (0, 6) [24, 54] [24, 30]

the optimal solution is (0.0001,5.9999) and (0.0021 5.9979),
respectively. The optimal solution is close to (0,6).

From table VI, when λ = −3 and λ = 1, the initial
penalty parameter are µ0 = 30 and µ0 = 10 , respectively.
n increases as µ0 increases. However, when the value of µ0

decreases or increases more, n decreases, and the optimal
solution is (0,6). This is because the penalty function con-
structed by pε,µ(t) has local extreme values, but it does not
affect the optimal solution, which will not be described here.

In summary, the penalty function algorithm can solve the
multiobjective interval programming problem efficiently and
quickly. The algorithm can stably obtain the optimal solution
according to different possibility level based on interval
reliability and linear combination parameters.

Example 2: Consider the following general MIBLP prob-
lem. The Example 2 adds an objective function to both levels,
on the basis of reference [11].

min
x
F I(x, y) = ([−1,−0.5]y, [1, 2]x+ [−2.5,−2]y)T

where y sollves

min
y
f I(x, y) = ([1, 2]y, [3, 4]y)T

s.t. [0.5, 1]x+ [1.9, 2]y ≥ [10, 10.5],

[−2,−1]x+ [1, 2]y ≥ [−6,−5],

[−3,−2]x+ [0.5, 1]y ≥ [−21,−20],

[−2,−1]x+ [−3,−2]y ≥ [−38,−37],

[0.5, 1]x+ [−3,−2]y ≥ [−18,−17],

x ≥ 0, y ≥ 0.

Firstly, the objective functions and constraint conditions

of Example 2 are transformed by the model in Section III to
obtain the MBLP problem with definite coefficients.

min
x
F I(x, y) = (−0.75y,−0.5y, 1.5x− 2.25y,

2x− 2y)T

min
y

where y sollves

s. t. f I(x, y) = (1.5y, 2y, 3.5y, 4y)T

(λ2 + 1)x+ (λ2 − 2) y ≤ −λ2 + 6,

(λ3 + 2)x+ (0.5λ3 − 1) y ≤ −λ3 + 21,

(λ4 + 1)x+ (λ4 + 2) y ≤ −λ4 + 38,

(0.5λ5 − 1)x+ (λ5 + 2) y ≤ −λ5 + 18,

x ≥ 0, y ≥ 0.

Next, similar to Example 1, we obtain the penalty function
as follows:

min
x,y,u,v

F I(x, y) = β1(−0.75y) + β2(−0.5y)

+ β3(1.5x− 2.25y) + β4(2x− 2y)

+ µα
{

11y + 1.5v1y + 2v2y + 3.5v3y + 4v4y+

[−0.5λ1 − 10− (0.5λ1 − 1)x]u1

+ [−λ2 + 6− (λ2 + 1)x]u2

+ [−λ3 + 21− (λ3 + 2)x]u3

+ [−λ4 + 38− (λ4 + 1)x]u4

+ [−λ5 + 18− (0.5λ5 − 1)x]u5
}

where y sollves
(0.5λ1 − 1)x+ (0.1λ1 − 2) y ≤ −0.5λ1 − 10,

(λ2 + 1)x+ (λ2 − 2) y ≤ −λ2 + 6,

(λ3 + 2)x+ (0.5λ3 − 1) y ≤ −λ3 + 21,

(λ4 + 1)x+ (λ4 + 2) y ≤ −λ4 + 38,

(0.5λ5 − 1)x+ (λ5 + 2) y ≤ −λ5 + 18,

− 1.5v1 − 2v2 − 3.5v3 − 4v4 − (0.1λ1 − 2)u1

− (λ2 − 2)u2 − (0.5λ3 − 1)u3

− (λ4 + 2)u4 − (λ5 + 2)u5 ≤ 11,

x, y, v1, v2, v3, v4, u1, u2, u3, u4, u5 ≥ 0.

There are five interval inequality constraints in Exam-
ple 2, but the solving process is similar to that in Ex-
ample 1. When the initial point is

(
x0, y0, u0, v0

)
=

(3, 11, 1, 1, 2, 1, 1, 1, 0, 0, 1) and the linear combination pa-
rameter is (β1, β2, β3, β4) = (0.4, 0.1, 0.4, 0.1). In order to
discuss the algorithm more concisely. We only discuss the
effect of different λ on the optimal solution and the first level
objective function values. The influence of different initial
penalty parameters on the optimal solution and the first level
objective function values.

When the value of λ for the five constraint inequalities are
equal. The results of the algorithm are shown in Table VII.
When n > 1, µ0 is changed, and the results of the algorithm
are shown in Table VIII.

From table VII, when λ increase, the value of the first
level objective functions increase. For example, when λ =
0.8 and λ = 1 , the interval of the value of the second
objective function changes from [-13.5417, -10.8333] to [-
6.1047, 0.6977]. But what we calculate is the minimum value
of the objective function. This is because λ becomes larger,
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TABLE VII: Numerical results with
(β1, β2, β3, β4) = (0.4, 0.1, 0.4, 0.1), µ0 = 1.

λ µ0 n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

−0.1 1 1 (0.0000, 4.9502) [−4.9502,−2.4751] [−12.3756,−9.9005]
0 1 1 (0.0000, 5.0000) [−5.0000,−2.5000] [−12.5000,−10.0000]
0.2 1 1 (0.0000, 5.1010) [−5.1010,−2.5505] [−12.7525,−10.2020]
0.4 1 2 (0.0000, 5.2041) [−5.2041,−2.6020] [−13.0102,−10.4082]
0.8 1 2 (0.0000, 5.4167) [−5.4167,−2.7083] [−13.5417,−10.8333]
1 1 1 (4.6512, 4.3023) [−4.3023,−2.1512] [−6.1047, 0.6977]
1.3 1 1 (3.5733, 5.0264) [−5.0264,−2.5132] [−8.9928,−2.9063]

TABLE VIII: Numerical results with
(β1, β2, β3, β4) = (0.4, 0.1, 0.4, 0.1) and different initial

parameter values of µ0.

λ µ n (x∗, y∗) F I1 (x∗, y∗) F I2 (x∗, y∗)

0.4 10 1 (0.0000, 5.2041) [−5.2041,−2.6020] [−13.0102,−10.4082]
0.8 0.3 1 (0.00005.4167) [−5.4167,−2.7083] [−13.5417,−10.8333]
0.8 10 5 (8.1481, 7.8889) [−7.8889,−3.9444] [−11.5741, 0.5185]
0.8 70 1 (0.00005.4167) [−5.4167,−2.7083] [−13.5417,−10.8333]

which reduces the feasible region of the penalty problem.
However, a larger λ means that the interval constraint has
higher reliability.

From Table VIII, local extreme values of the penalty
function also appear, and the final optimal solution is stable at
(0.0000 5.4167). To sum up, we choose the higher possibility
degree level λ = 0.8 and apply penalty function algorithm
to obtain the optimal solution (0.0000 5.4167). The upper
level objective function values are [-5.4167, -2.7083] and [-
13.5417, -10.8333], respectively.

When the value of λ for the five constraint inequal-
ities are unequal. The initial point is

(
x0, y0, u0, v0

)
=

(3, 11, 1, 1, 2, 1, 1, 1, 0, 0, 1), the linear combination form
is (β1, β2, β3, β4) = (0.4, 0.1, 0.4, 0.1), and µ0 = 1,
(λ1, λ2, λ3, λ4, λ5) = (0.8, 0.4, 0.6,−0.2, 0.7). The penalty
function algorithm only goes through one iteration and also
obtains the optimal solution (0.0000,5.4167). F I1 (x∗, y∗) =
[−5.4167,−2.7083] , F I2 (x∗, y∗) = [−13.5417,−10.8333].

According to the above discussion, different λ and linear
combination modes have an impact on the optimal solution
of the problem. In real life, the preferences of the decision-
makers should be taken into account and different preference
values should be set for the objective function. In the
constraint inequalities, the value of λ with high reliability
should be selected as far as possible.

VI. COMPARISON ANALYSIS

In order to study the efficiency of Algorithm 1, a com-
parative analysis with the general penalty function algorithm
is considered below. If the penalty function is constructed
without the second-order differentiable function, the dual gap
is directly added to the first level objective function. The

general penalty problem is obtained as follows:

min
x,y,u,v

F (x, y, u, v) = F (x, y) + µπ(x, y, u, v)

s.t.
t∑
i=1

βi = 1,

(x, y) ∈ S,
(u, v) ∈ Z,

(12)

The corresponding general penalty function algorithm is
similar to the one presented in Section IV, with the following
modifications in Step 2.

Step 2. If π (xk+1, yk+1, uk+1, vk+1) > 0, then
µk+1 = Nµk, k = k + 1, and go to Step 1. If
π (xk+1, yk+1, uk+1,Vk+1) < ε, stop, then (xk+1, yk+1) is
an optimal solution to problem (6).

When the linear combination parameters is
(β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25) and the initial
penalty parameter is µ0 = 10. The general penalty function
algorithm is used to solve Example 1. Table IX and Table
X show the solution results of Algorithm 1 and the general
penalty function algorithm, respectively.

TABLE IX: Result of algorithm 1 with
(β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25), µ0 = 10.

λ n (x∗, y∗, u∗, v∗) π (x∗, y∗, u∗, v∗)
Computation time

(sec)

−31 (0.0000,6.0000,0.0000,22.5219,
0.0480,0.1575,0.0059) 4.3250e− 07 0.243114

−21 (0.0000,6.0000,0.0000,23.3331,
0.1101,0.0870,0.1405) 6.0901e− 05 0.187693

−12 (0.0000,6.0000,0.0000,23.3134,
0.0858,0.1142,0.1379) 5.9543e− 07 0.175272

0 2
(0.0000,6.0000,0.0000,21.0028,

0.0000,0.0000,0.0005) 6.1834e− 08 0.216107

0.53
(0.0051,5.9949,0.0000,24.0504,

0.0005,0.0007,0.5069) 4.7667e− 08 0.505102

1 2
(0.0000,6.0000,0.0000,21.0045,

0.0000,0.0000,0.0008) 1.0824e− 07 0.329742

1.52
(0.0000,6.0000,0.0000,21.0000,

0.0000,0.0000,0.0000) 1.8729e− 06 0.261642

TABLE X: Result of general algorithm with
(β1, β2, β3, β4) = (0.25, 0.25, 0.25, 0.25), µ0 = 10.

λ n (x∗, y∗, u∗, v∗) π (x∗, y∗, u∗, v∗)
Computation time

(sec)

−31 (0.0000,6.0000,0.0000,82.4335,
3.1064,2.9027,2.7105) 1.1977e− 07 0.405990

−22 (0.0000,6.0000,0.0000,43.2191,
0.7910,1.0845,1.3833) 2.9729e− 07 0.503517

−13 (0.0000,6.0000,0.0000,58.2170,
1.8369,1.7542,1.7071) 1.1968e− 07 0.279900

0 3
(0.0000,6.0000,0.0000,98.9738,

4.0325,3.6532,3.3568) 5.9953e− 08 0.428077

0.53
(0.0000,6.0000,0.0000,21.3903,

0.0162,0.0184,0.0219) 1.9194e− 08 0.539147

1 3
(0.0000,6.0000,0.0000,21.0021,

0.0001,0.0001,0.0001) 6.0732e− 09 0.447953

1.52
(0.0000,6.0000,0.0000,35.5659,

0.1563,0.7959,1.2907) 2.3792e− 07 0.363594

From Table IX and Table X, when λ = −3, λ = 0.5
and λ = 1.5, the iteration times of Algorithm 1 are the
same as those of the general penalty function algorithm.
Algorithm 1 takes less time, but it also has some drawbacks.
Its accuracy is not as high as that of the general penalty
function algorithm. However, in general, π (x∗, y∗, u∗, v∗) is
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close to 0. It does not affect the optimal solution. The small
defect can be ignored. When λ = −2, λ = −1, λ = 0, λ = 1,
the Algorithm 1 has fewer iterations and shorter time than the
general penalty function algorithm. Obviously, the optimal
solution for both algorithms is (0,6).

To some extent, the proposed algorithm can reduce the
memory occupation, improve the solving efficiency, and
achieve a given accuracy. For the MIBLP problem, the
proposed method and algorithm in this paper can adequately
consider the preferences of decision makers. The uncertain
information contained in the interval coefficients is well used.
This is essential for guiding practical problems.

VII. CONCLUSION

In this paper, a penalty function method is proposed for a
class of MIBLP problem. Firstly, the related knowledge of
interval numbers and the multiobjective bilevel programming
is reviewed in this paper. Secondly, for the MIBLP problem,
the interval order relation and the possibility level based
on interval reliability are used respectively to deal with
the objective functions and constraints. In this way, the
MIBLP problem is converted to the MBLP problem with
coefficients determination. Next, linear programming, dual
gap and efficient solution of the lower programming problem
are used. The MBLP problem is formulated as a general
single objective optimization problem with dual gap. Here,
the dual gap is a bilinear constraint term. Then, to deal with
the bilinear constraint, a second-order differentiable function
is constructed. The penalty term is constructed by combining
the second-order differentiable function with the dual gap,
and the penalty term is added to the objective function.
The corresponding penalty problem is obtained and the
corresponding penalty function algorithm is given. Finally,
two examples are used to analyze and discuss Algorithm 1.
It can be concluded that Algorithm 1 has fewer iterations,
shorter time and higher accuracy than the general penalty
function algorithm. Moreover, the proposed MIBLP model
and the solution algorithm can deal with the uncertainty
information in real life more accurately. The preferences for
the decision-makers are fully considered to help them make
decisions on different levels of reliability.

In the past, there have been limited studies of the MIBLP
problem. This paper provides an idea about this direction. In
real life, this model can be applied to the management of the
bilevel supply chain and the design of the bilevel logistics
network. This is of great importance for solving practi-
cal problems. How to effectively transform multiobjective
problems into singleton objective problems, the treatment
of interval inequality constraints and the applications to
practical problems are directions for future research.
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