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Abstract—In this paper, we study a trust region penalty
method for multiobjective nonlinear bilevel optimization (MN-
BLO). Firstly, the MNBLO is transformed into unconstrained
programming according to multiobjective programming, KKT
optimal condition, penalty function method, and effective set
strategy. Secondly, a trial step evaluation criterion and a radius
update method are applied to the proposed penalty algorithm.
Next, the convergence of the algorithm is explained by some
related assumptions and theorems. Finally, we illustrate the
feasibility of the algorithm with numerical examples.

Index Terms—Adaptive trust region radius, MNBLO, Non-
monotone technology, Penalty function method.

I. INTRODUCTION

THE MNBLO problem is a nested optimization problem
with the first and second level structures. Each of these

has corresponding decision variables, constraints, and multi-
ple conflicting objectives, and it has nonlinear expression
in it. The second level decision-makers have to optimize
their own goals under the parameters given by the first level
decision-makers. The first level decision-makers select the
corresponding parameters to optimize their goals according
to the decisions made by the second level decision-makers.

In this article, a penalty method based on an adaptive
trust region mechanism is studied. The ”optimistic mode”
MNBLO is as follows:

min
x,y

(F1(x, y), F2(x, y), . . . , Fs(x, y))
T

s.t.G(x, y) ≤ 0,

where y solves

min
y

(f1(x, y), f2(x, y), . . . , ft(x, y))
T

s.t.g(x, y) ≤ 0,

(1)

where x ∈ Rn1 , y ∈ Rη2 , x and y are decision variables.
Fi(x, y) and fj(x, y) denote decision objectives. G(x, y) and
g(x, y) are both constraints. i = 1, 2, . . . , s, j = 1, 2, . . . , t.

For multiobjective programming, it is common to choose
a solution among effective solutions based on the propensity
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of decision-makers. The basic idea of dealing with multi-
objective problem is to transform it into a single objective
programming by using evaluation functions. Common meth-
ods are linear weighting, ideal points, weighted quadratic
summation, and minimax. In addition, it is noted that the
global criterion method (GCM) [1] is the most widely used
scaling method in solving the multiobjective optimization
problem. The GCM is a compromise method that minimizes
the deviation and minimization of the objective function from
its ideal points.

Next, different approaches are considered to deal with the
two-level objective functions of problem (1), respectively.
For the first level multiobjective problem, the global criterion
method is combined with Lp -criterion. The linear weighted
method is used for the second level multiobjective problem.
These two methods convert the two-level objective functions
into the following single objectives, respectively:

F (x, y) =

{
s∑

k=1

(
Fk(x, y)− Fmin

k

Fmax
k − Fmin

k

)p} 1
p

(2)

f(x, y) =
t∑

k=1

βkfk(x, y) (3)

where 1 ≤ p <∞,
t∑

k=1

βk = 1. Fmax
k and Fmin

k represent the

best and worst optimal solutions of the kth objective function
under both constraints, respectively. The most commonly
used approach in upper level multiobjective processing is to
take p = 2, which is known as the global criterion method in
L2 norm. Then transform problem (1) into a single-objective
nonlinear bilevel programming (NBLP):

min
x,y

F (x, y)

s.t.G(x, y) ≤ 0

where y solves
min
y
f(x, y)

s.t.g(x, y) ≤ 0

(4)

where x ∈ Rn1 , y ∈ Rn2 , functions F : Rn1+n2 → R, f :
Rn1+n2 → R,G : Rn1+n2 → Rm1 , g : Rn1+n2 → Rm2 .

In general, the solution of single objective NBLP refers
to [2]. We consider replacing the lower problem in problem
(4) with its KKT optimality condition [3], and obtain NP
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problem:

min
x,y

F (x, y)

s.t G(x, y) ≤ 0,

∇yf(x, y) +∇yg(x, y)λ = 0,

g(x, y) ≤ 0,

λjgj(x, y) = 0, j = 1, . . . ,m2,

λj ≥ 0, j = 1, . . . ,m2.

(5)

where λ ∈ Rm2 is the Lagrange vector corresponding to
inequality constraint g(x, y). λjgj(x, y) = 0 is called the
complementary relaxation condition, see [4] for details. If
(y∗, λ∗) satisfies the KKT optimal condition of the second
problem at x∗, then (x∗, y∗, λ∗) is the optimal solution of
problem (5). Next, we express problem (5) as follows:

min
x̄
F (x̄)

s.t Ce(x̄) = 0, e ∈ E,
Ci(x̄) ≤ 0, i ∈ I,

(6)

where x̄ = (x, y, λ)T , E = {1, . . . , n2 +m2} and I =
{1, . . . ,m1 + 2m2}, E ∩ I = ∅. Assume that the second
derivatives of F (x̄), Ce(x̄), and Ci(x̄) are all continuous.

Inspired by the active set method in reference [5], we
consider defining a matrix Z(x̄), whose diagonal elements
are:

zi(x̄) =


1 i ∈ E,
1 Ci(x̄) ≥ 0, i ∈ I,
0 Ci(x̄) < 0, i ∈ I,

(7)

Using this matrix, inequality constraints in problem (6)
become equality constraints, and the equality constraint pro-
gramming (ECP) is obtained:

minimize F (x̄)

s.t. D(x̄)TZ(x̄)D(x̄) = 0
(8)

where the component of D(x̄) is Cl(x̄), and l ∈ E ∪ I . See
reference [5] for more details.

For the ECP problem (8), the penalty function method [6]
can be applied to transform it into an unconstrained nonlinear
programming (UNP):

minimize F̂ (x̄) = F (x̄) + ρ
2‖Z(x̄)D(x̄)‖2

s.t. x̄ ∈ Rn1+n2+m2 ,
(9)

where ρ ∈ R is a penalty parameter greater than 0. So far,
the MNBLO problem (1) has been transformed into uncon-
strained optimization problem (9). Now this paper mainly
focuses on problem analysis and algorithm discussion for
problem (9). In the algorithm in this paper, the minimization
problem (9) satisfying the first-order necessary condition is
equivalent to problem (6).

In his article [7] in 1970, Powell first proposed the trust
region method with strong global convergence to solve the
unconstrained programming problem. However, the tradi-
tional trust region approach [8] requires some criteria to
judge the trial step.

The quadratic trust region subproblem of question (9) is
as follows:

minimize Φk (dk) = Fk +∇FTk d

+ 1
2d
THkd+ ρk

2

∥∥Zk (Dk +∇DT
k d
)∥∥2

s.t. ‖d‖ ≤ ∆k,

(10)

where trust region radius ∆k > 0. Hk are the Hessian matrix
of F (x̄k) or its approximation. In order to test whether
the trial step dk obtained from the above problem (10) is
accepted. Define a ratio:

rk =
Aredk
Pred k

(11)

where Aredk the actual reduction of the function value of
problem (9). Predk represents the predicted reduction of the
subproblem (10). Their definitions are as follows:

Aredk = F̂ (x̄k)− F̂ (x̄k + dk)

= F (x̄k)− F (x̄k+1)

+
ρk
2

[
‖ZkDk‖2 − ‖Zk+1Dk+1‖2

]
,

(12)

Predk = Φk(0)− Φk (dk)

= −∇FTk dk −
1

2
dTkHkdk

+
ρk
2

[
‖ZkDk‖2 −

∥∥Zk (Dk +∇DT
k dk

)∥∥2
]
,

= − (∇Fk + ρk∇PkZkPk)
T
dk −

1

2
dTkBkdk

(13)

where Bk = Hk + ρk∇DkZk∇DT
k . Since Φk (dk) is the

minimum value at the current iteration point X k, Predk is
nonnegative. Therefore, when rk is less than or close to 0,
dk is rejected, and ∆k should be reduced. When rk is close
to 1, dk is accepted and ∆k should be expanded.

For convenience, we will simplify as follows: Fk =
F (x̄k) , Dk = D (x̄k) ,∇Fk = ∇F (x̄k) ,∇Dk =
∇D (x̄k) , Zk = Z (x̄k). {ki} represents the ith trial step in
the kth iteration, which is expressed as concisely. All norms
take the l2 norm.

The paper is structured as follows. In Section 2, the
algorithm based on nonmonotone technique and adaptive
radius is proposed. In Section 3, we discuss the convergence
in two cases. In Section 4, the algorithm is verified with
numerical examples. Finally, the work done is summarized.

II. TRUST REGION ALGORITHM

A. Evaluation criterion of trial step based on nonmonotone
technique

The three key factors that affect the numerical performance
of trust region algorithm are initial radius, evaluation crite-
rion of trial step and radius updating strategy. We first con-
sider the unconstrained programming problem under general
conditions, and then apply the proposed trial step evaluation
criterion rk to the trust region algorithm of MNBLO.

For the general unconstrained programming problem
min
x∈Rn

f(x), let fk = f (xk), gk = ∇f (xk), and Bk ∈
Rn×n be ∇2f (xk) or its approximate Hessian matrix. The
quadratic subproblem is min

d∈Rn
mk(d) = fk+gTk d+ 1

2d
TBkd,

where ‖d‖ ≤ ∆k. Deng et al. [9] applied the nonmonotone
technique to the trust region algorithm and modified the ratio.
The nonmonotone term fl(k) is expressed as:

fl(k) = f
(
xl(k)

)
= max

0≤j≤m(k)
{fk−j} , k = 0, 1, 2, . . . ,

(14)
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where m(0) = 0, 0 ≤ m(k) ≤ min {N1,m(k − 1) + 1},
and N1 is a nonnegative integer. The reference function
fl(k) is monotone nonincreasing, and equation (14) is called
the maximum nonmonotone rule. After rk is modified by
nonmonotone technology, the general nonmonotone ratio can
be obtained as follows:

r̃k =
fl(k) − f (xk + dk)

mk(0)−mk (dk)
. (15)

However, the numerical performance of nonmonotone
technique depends heavily on the select of constant N . In
2012, Ahookhosh and Amini [10] proposed a more efficient
nonmonotone technology than formula (14) to get rid of the
dependence on N . By convex combination, the nonmonotone
ratio can be obtained:

r̂k =
Rk − f (xk + dk)

mk(0)−mk (dk)
, (16)

where Rk = ηkfl(k) + (1− ηk) f (xk), ηk ∈ [ηmin, ηmax],
ηmin ∈ [0, 1), ηmax ∈ [ηmin, 1].
r̂k is applied to solve the MNBLO problem, and the

nonmonotone ratio is obtained:

rk =
Rk − F̂ (xk + dk)

Φk(0)− Φk (dk)
, (17)

where Rk = ηkF̂l(k) + (1− ηk) F̂ (xk), ηk ∈ [ηmin, ηmax],
ηmin ∈ [0, 1), ηmax ∈ [ηmin, 1]. F̂l(k) = F̂

(
xl(k)

)
=

max
0≤j≤Φ(k)

{
F̂k−j

}
, k = 0, 1, 2, . . ., Φ(0) = 0, 0 ≤ Φ(k) ≤

min {N1,Φ(k − 1) + 1}.

B. Adaptive trust region radius
Numerous scholars consider the adaptive trust region ra-

dius to reduce computation. In 1997, Sartenear [11] proposed
a method to automatically determine the initial radius by
using the initial gradient information. But this approach does
not reduce the amount of computation. In 2000, Zhang [12]
effectively used the gradient and second derivative informa-
tion to propose an adaptive algorithm, where ∆k = cp ‖gk‖ak ,
p is a positive integer, 0 < c < 1, ak = max {‖Bk‖ , 1}.
In 2002, in the algorithm proposed by Zhang et al. [13],
∆k = cp ‖gk‖

∥∥∥B̂−1
k

∥∥∥, where B̂k = Bk + iI , i is an
integer. However, his method requires an estimate of matrices
Bk and B̂−1

k in each iteration. In 2006, Li [14] proposed
another effective adaptive trust region algorithm, and let
∆k = ‖dk−1‖

‖yk−1‖ ‖gk‖, yk−1 = gk−gk−1. This method does not
need to compute matrices and contains gradient information.

Inspired by these methods, the following radius update
strategy is adopted:

∆k = cpk max

{
1,
‖dk−1‖
‖yk−1‖

}
‖gk‖ , (18)

where gk represents the first order derivative of problem (9)
at x̄, gk = ∇Fk + ρk∇DkZkDk, yk−1 = gk − gk−1. p is an
integer, 0 < ck < 1, cpk is an adjustment parameter, and the
adjustment of ∆k+1 depends on cpk, which is defined as:

cpk+1 =


min

{
σ2c

p
k, (c

p
k)

max

}
r̄k ≥ µ2

cpk µ1 ≤ r̄k < µ2

σ1c
p
k r̄k < µ1

, (19)

where 0 < σ1 < 1 < σ2, 0 < µ1 < µ2 < 1, (cpk)
max

is the
maximum value of cpk in k cycles.

C. A nonmonotone adaptive trust region algorithm

Known methods for solving trust region subproblems
mainly include the broken line method [15], preconditioned
conjugate gradient method [16] and mixed broken line
method [17]. We adopt the preconditioned conjugate gradient
method to solve dk.

Algorithm 1. Conjugate gradient method to solve trial
step dk

Step 1. Given ε0 > 0, let d0 = 0 ∈ Rn1+n2+m2 , w0 =
− (∇Fk + ρk∇DkZkDk) , v0 = w0, i := 1, i =
1, 2, . . . , n1 + n2 +m2.
Step 2. Calculate Bk = Hk + ρk∇DkZk∇DT

k , αi =
wTi wi
vTi Bkvi

, calculate γi such that ‖di + γivi‖ = ∆k, if
vTi Bkvi ≤ 0, let dk = di + γivi, and terminate the
algorithm. Otherwise, let di+1 = di + αivi, wi+1 =
wi − αiBkvi, turn to Step 3 .
Step 3. If wi+1

w0
≤ ε0, let dk = di+1, and terminate the

algorithm. Otherwise, turn to Step 4.

Step 4. Calculate θi =
wTi+1wi+1

wTi wi
, and a new direction

vi+1 = wi+1 + θivi, let i := i+ 1, turn to Step 2.

Subsequently, we apply the nonmonotone ratio of formula
(17) and the adaptive trust region update strategy of formula
(18) and formula (19) to evaluate dk. See Algorithm 2.

Algorithm 2. Adaptive trust region radius update algo-
rithm

Step 1. Given 0 < µ1 < µ2 < 1, 0 < σ1 <
1 < σ2, ηk ∈ [ηmin, ηmax] , ηmin ∈ [0, 1),
ηmax ∈ [ηmin, 1] , p := 0, 0 < ck < 1.
Let rk = Rk−F̂ (xk+dk)

Φk(0)−Φk(dk) . If r̄k < µ1, let ∆k =

σ1c
p
k max

{
1, ‖dk−1‖
‖yk−1‖

}
‖gk‖ , p := p + 1, recalculate

dk.
Step 2. If µ1 ≤ r̄k < µ2, let x̄k+1 = x̄k + dk,∆k+1 =

cpk max
{

1, ‖dk−1‖
‖yk−1‖

}
‖gk‖ .

Step 3. If r̄k ≥ µ2, let x̄k+1 = x̄k + dk,∆k+1 =

min
{
σ2c

p
k, (c

p
k)

max

}
max

{
1, ‖dk−1‖
‖yk−1‖

}
‖gk‖ .

For positive penalty parameter ρk, we refer to the method
[18] to update ρk, see Algorithm 3.

Algorithm 3. Update penalty parameter

Step 1. Calculate Predk = Φk(0)−Φk (dk), if Predk ≥
‖∇DkZkDk‖min {‖∇DkZkDk‖ ,∆k}, let ρk+1 = ρk.
Otherwise, turn to Step 2 .
Step 2. Let ρk+1 = 2ρk.

Finally, for ε1, ε2 > 0, when ‖∇Fk‖+‖∇DkZkDk‖ ≤ ε1
or ‖dk‖ ≤ ε2, the algorithm terminates. See Algorithm 4 for
our proposed algorithm.
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Algorithm 4. Nonmonotone adaptive trust region algo-
rithm

Step 0.Given an initial point x̄0 ∈ Rn+n2+m1 , select
parameters ε1 > 0, ε2 > 0, 0 < µ1 < µ2 <
1, 0 < σ1 < 1 < σ2, ηk ∈ [ηmin, ηmax] , ηmin ∈
[0, 1), ηmax ∈ [ηmin, 1], let ρ0 = 1, k = 0, 0 < ck <
1, p := 0,∆0 = ‖∇F0‖+ ‖∇D0Z0D0‖
Step 1. If ‖∇Fk‖+ ‖∇DkZkDk‖ ≤ ε1, stop.
Step 2. Use Algorithm 1 to calculate trial step dk.
Step 3. If ‖dk‖ ≤ ε2, stop.
Step 4. Let x̄k+1 = x̄k + dk .
Step 5. Calculate Zk+1 using formula (7).
Step 6. Algorithm 2 is used to update ∆k.
Step 7. Algorithm 3 is used to update penalty parameter
ρk·
Step 8. Calculate yk = gk+1 − gk = ‖∇Fk+1‖ +
‖∇Dk+1Zk+1Dk+1‖ − ‖∇Fk‖ − ‖∇DkZkDk‖, see
Remark 2 for the update mode of Bk+1. Let k :=
k + 1, p := 0, turn to Step 1.

Remark 1: The trust region subproblem in Step 2 is as
follows:

minimize Φk (dk) = Fk +∇FTk d

+ 1
2d
THkd+ ρk

2

∥∥Zk (Dk +∇DT
k d
)∥∥2

s.t. ‖d‖ ≤ ∆k = cpk max
{

1, ‖dk−1‖
‖yk−1‖

}
‖gk‖ ,

(20)

where cpk is formula (19).
Remark 2: BFGS update formula [19] in is as follows: Bk+1 = δkI − δk dkd

T
k

dTk dk
+

yky
T
k

dTk yk
, dTk yk > 0

Bk+1 = Bk +
yk
∗(y∗k)T

dTk y
∗
k

− Bkdkd
T
kBk

dTkBkdk
, dTk yk ≤ 0

(21)

where the scaling parameter δk =
dTk yk
‖dk‖2

, y∗k = yk +

‖gk‖
(

1− dTk yk
‖dk‖2

)
dk.

III. CONVERGENCE ANALYSIS

A. Assumptions

The assumptions required are given below. Let the iteration
sequence produced by Algorithm 4 be {x̄k}k≥0, and Ω is a
convex set on Rn1+n2+m2 . For any k, x̄k and x̄k + dk are
in Ω.
Assumptions:
(i) For any x̄ ∈ Ω, F (x̄) and D(x̄) are second-order

differentiable functions.

(ii) Let F (x̄),∇F (x̄),∇2F (x̄), D(x̄) and ∇D(x̄) be
uniformly bounded on Ω.

(iii) The sequences {Hk} and {Bk} are uniformly bounded.

(iiii) ∇F (x̄) is Lipschitz continuous on Ω.

B. Related lemmas

The lemmas needed for the subsequent proof of conver-
gence are given below.

Lemma 1: [5] Under the conditions of Assumptions (i)-
(iiii), Z(x)D(x) is Lipschitz continuous on Ω.

We can conclude that g (x̄k) = ∇F (x̄k) +
ρk∇D (x̄k)Z (x̄k)D (x̄k) is Lipschitz continuous on
Ω. That is, there exists a constant L such that the following
formula holds:

‖g (x̄k)− g (ȳk)‖ ≤ L ‖x̄k − ȳk‖ ,∀x̄k, ȳk ∈ Ω (22)

Similar to the conclusions in literature [20], lemmas 2 and
3 can be obtained.

Lemma 2: Under the conditions of Assumptions (i)-(iiii),
for any k > k̄, there exists a constant c1 > 0 ( All the
constants in this article are independent of k), such that the
following formula holds:

Predk ≥ c1
∥∥∇Fk + ρk∇DkZkDk

∥∥min

{
∆k,

∥∥∇Fk + ρk∇DkZkDk
∥∥∥∥Bk∥∥
}
. (23)

Proof: See Lemma 3.7 in [21].
Lemma 3: Under the conditions of Assumptions (i)-(iiii),

there exists a constant c2 > 0 such that the following formula
holds:

| F̂k − F̂ (xk + dk)− Predk |≤ c2ρk ‖dk‖2 (24)

Proof: See Lemma 3.6 in reference [21].
Lemma 4: Under the conditions of Assumptions (i)-(iiii),

dk is the optimal solution of the problem (10), then

Predk ≥
cpkk ‖∇Fk + ρk∇DkZkDk‖2

2Mk

(25)

where Mk = max {1, ‖Bk‖} , pk is the maximum p value
obtained by k iterations in Algorithm 2.

Proof: dk is the optimal solution of the subprob-
lem (10), then ∆k ≥

c
pk
k ‖∇Fk+ρk∇DkZkDk‖

max{1,‖Bk‖} , so d′k =

− c
pk
k (∇Fk+ρk∇DkZkDk)

max{1,‖Bk‖} is a feasible solution of the subprob-
lem (10).

Predk = − (∇Fk +ρk∇PkZkPk)
T
dk −

1

2
d
T
kBkdk

≥ − (∇Fk + ρk∇PkZkPk)
T
d
′
k −

1

2

(
d
′
k

)T
Bkd

′
k

=
c
pk
k ‖∇Fk + ρk∇DkZkDk‖2

max {1, ‖Bk‖}

−
1

2

(
c
pk
k

)2
(∇Fk + ρk∇DkZkDk)T Bk (∇Fk + ρk∇DkZkDk)

max {1, ‖Bk‖}2

≥
c
pk
k ‖∇Fk + ρk∇DkZkDk‖2

max {1, ‖Bk‖}
−

1

2

c
pk
k ‖∇Fk + ρk∇DkZkDk‖2

max {1, ‖Bk‖}

=
1

2

c
pk
k ‖∇Fk + ρk∇DkZkDk‖2

max {1, ‖Bk‖}
.

(26)

Proof is complete.
Lemma 5: If the iteration sequence generated by Algo-

rithm 4 is {x̄k}k≥0, then

F̂k ≤ Rk, ∀k ∈ N (27)

Proof: From formula (14), we can obtain

F̂k+1 = ηk+1F̂k+1 + (1− ηk+1) F̂k+1

≤ ηk+1F̂l(k+1) + (1− ηk+1) F̂k+1

= Rk+1.

(28)

Formula (27) is obtained.
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Lemma 6: If the iteration sequence produced by Algo-
rithm 4 is {x̄k}k≥0, then the nonmonotone sequence

{
F̂l(k)

}
decreases monotonically.

Proof: According to the definitions of Rk and F̂l(k),

Rk=ηkF̂l(k)+(1−ηk) F̂k≤ηkF̂l(k)+(1−ηk) F̂l(k) = F̂l(k).
(29)

Assuming that x̄k+1 is accepted, it can be known from the
adaptive trust region radius update strategy that

F̂l(k) − F̂ (xk + dk)

Φk(0)− Φk (dk)
≥ Rk − F̂ (xk + dk)

Φk(0)− Φk (dk)
≥ µ1, (30)

For any k ∈ N ,

F̂l(k) − F̂ (xk + dk) ≥ µ1 (Φk(0)− Φk (dk)) ≥ 0. (31)

Hence,

F̂l(k) ≥ F̂k+1, ∀k ∈ N. (32)

If k ≥ N1, and Φ(k + 1) ≤ Φ(k) + 1, it can be obtained
from formula (32)

F̂l(k+1) = max
0≤j≤Φ(k+1)

{
F̂k−j+1

}
≤ max

0≤j≤Φ(k)+1

{
F̂k−j+1

}
= max

{
F̂l(k), F̂k+1

}
≤ F̂l(k)

(33)

If k < N1, then Φ(k) = k. For any k, F̂k ≤ F̂0, so F̂l(k) =

F̂0. To sum up,
{
F̂l(k)

}
decreases monotonically. Lemma 6

is proved.
Lemma 7: In Algorithm 4 inline Algorithm 2, the loop

iteration terminates after a finite number of steps.
Proof: Proof by contradiction. Assuming Algorithm 2

iterates indefinitely, then

rpk < µ1, p→∞. (34)

So, when p→∞, cpk → 0.
Therefore, ‖dpk‖ ≤ ∆k → 0, dpk is the solution of the

subproblem with respect to p in k iterations. Notice that x̄
is not the optimal solution, then there exists a constant ε1 >
0 that makes ‖∇Fk + ρk∇DkZkDk‖ + ‖∇DkZkDk‖ >
ε1 hold, assuming ‖∇Fk + ρk∇DkZkDk‖ > ε1

2 and
‖∇DkZkDk‖ > ε1

2 . Combined with Lemmas 3 and 4, then∣∣∣∣∣ F̂k − F̂ (xk + dpk)

Φk(0)− Φk (dpk)
− 1

∣∣∣∣∣ =

∣∣∣∣∣ F̂k − F̂ (xk + dpk)− Predpk
Predpk

∣∣∣∣∣
≤

2Mkc3ρk ‖dpk‖
2

cpk ‖∇Fk + ρk∇DkZkDk‖2

≤ 8MkO (∆k)
2

cpkε1
2

.

(35)

As p → ∞, formula (35) tends to 0, giving the formula
below

lim
p→∞

F̂k − F̂ (xk + dpk)

Φk(0)− Φk (dpk)
= 1. (36)

In combination with equations (17), (36) and Lemma 5, it
can be obtained

rpk =
Rk − F̂ (xk + dpk)

Φk(0)− Φk (dpk)
≥
F̂k − F̂ (xk + dpk)

Φk(0)− Φk (dpk)
, (37)

In this case, rpk ≥ µ1 contradicts the hypothesis rpk < µ1,
and Lemma 7 is proved.

C. Proof of convergence

1) Convergence as penalty parameter tends to infinity:
According to the algorithm in Section 2.3, we know that
k → ∞, ρk → ∞. Lemmas 8 and 9 indicate that when
ρk →∞, {x̄k}k≥0 satisfies the FJ condition or the infeasible
FJ condition [21].

Lemma 8: Under the conditions of Assumptions (i)-(iiii)
hold and ρk→∞, for any k∈{ki} and lim

ki→∞
‖ZkiDki‖=0,

if there is an iterated sequence {ki} of index set satisfying
‖ZkDk‖ > 0. Then the iterated sequence of index set
satisfying {ki} of {x̄k}k≥0 satisfies FJ condition under limit
case.

Proof: See Lemma 3.9 in [21].
Lemma 9: Under the conditions of Assumptions (i)-(iiii)

hold and ρk →∞, for any k ∈ {ki}, if there is an iterated se-
quence {ki} of index set satisfying ‖ZkDk‖ ≥ ε > 0. Then
the iterated sequence of index {ki} satisfies the infeasible FJ
condition under limit case.

Proof: See Lemma 3.8 in [21].
2) Convergence when penalty parameter is bounded:

Assuming that ρk is bounded, for any k ≥ k̄, there is
ρk = ρ̄ <∞.

Lemma 10: Under the conditions of Assumptions (i)-(iiii),
there is ‖∇Fk + ρ̄∇DkZkDk‖+ ‖∇DkZkDk‖ > ε1 at any
iteration k. There exists a constant c3 > 0, such that the
following formula holds.

Predk ≥ c3∆k. (38)

Proof: See Lemma 3.10 in [21].
Lemma 11: Under the conditions of Assumptions (i)-(iiii),

if for any k, ‖∇Fk + ρ̄∇DkZkDk‖ + ‖∇DkZkDk‖ > ε1,
then Ared kj ≥ µ1 Pred kj is satisfied for some finite j. In
other words, an admissible trial step is obtained by a finite
step computation.

Proof: Since for any k, ‖∇Fk + ρ̄∇DkZkDk‖ +
‖∇DkZkDk‖ > ε1, combined with Lemmas 3 and 10, then∣∣∣∣∣ F̂k − F̂

(
xk + dkj

)
Φk(0)− Φk

(
dkj
) − 1

∣∣∣∣∣ =

∣∣∣∣∣ F̂k − F̂
(
xk + dkj

)
− Predkj

Predkj

∣∣∣∣∣
≤
c2ρk

∥∥dkj∥∥2

c3∆kj

≤
c2ρk∆kj

c3
.

(39)

In the iterative process of the algorithms in Section 2.3, let
k ≥ k̃ and kj ≥ k̃, when k → ∞,

∑
k→∞

∆kj = 0. Thus, the

right end of formula (39) tends to 0. From equation (17) and
Lemma 5, we can obtain

rk =
Rk − F̂

(
xk + dkj

)
Φk(0)− Φk

(
dkj
) ≥ F̂k − F̂

(
xk + dkj

)
Φk(0)− Φk

(
dkj
) . (40)
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This means that the trial step is accepted, i.e. rk ≥ µ1, the
Lemma 11 is proved.

3) Global convergence:
Theorem 1: Under the conditions of Assumptions (i)-(iiii),

iteration sequence {x̄k}k≥0 satisfies the following formula:

lim inf
k→∞

[‖∇Fk‖+ ‖∇DkZkDk‖] = 0. (41)

Proof: To demonstrate that equation (41) is true, con-
sider proving that lim infk→∞[‖∇Fk + ρ̄∇DkZkDk‖+
‖∇DkZkDk‖] = 0 is true. Use the idea of counterproof.
Assume that for any k, there exists a constant ε1 > 0 and an
infinite set

Γ = {k | ‖∇Fk + ρ̄∇DkZkDk‖+ ‖∇DkZkDk‖ > ε1} .
(42)

It can be known from equation (17) and Lemma 11

µ1Predk ≤ Rk − F̂ (xk + dk) . (43)

It can be known from formula (43) and Lemma 5 above

µ1Predk ≤ F̂l(k) − F̂ (xk + dk) . (44)

From formula (44) and Lemma 4, we get

F̂l(k) − F̂l(k)+1 ≥ µ1 Predk

≥
µ1c

pk
k ‖∇Fk + ρk∇DkZkDk‖2

2Mk
.

(45)

From Lemma 6 and the assumption (iii),
{
F̂l(k)

}
is mono-

tone nonincreasing and F̂k is bounded,
{
F̂l(k)

}
converges.

According to the assumption (iii), there exists a positive
constant M , such that for any k there exists Mk ≤M , then

∑
k∈Γ

µ1c
pk
k ‖∇Fk + ρk∇DkZkDk‖2

2M
<∞, (46)

where pk is the maximum p value obtained by k iterations
in Algorithm 2. In the iteration of Algorithm 2, when k ∈ Γ
and k → +∞, pk → +∞.

According to the definition of pk(k ∈ Γ), the solution d̄k
of the subproblem

minimize Φk (dk) = Fk +∇FTk d

+ 1
2d
THkd+ ρk

2

∥∥Zk (Dk +∇DT
k d
)∥∥2

s.t. ‖d‖ ≤ cpk−1
k max

{
1, ‖dk−1‖
‖yk−1‖

}
‖gk‖ = ∆k

t ,

(47)

is not acceptable, where t > 0 is a constant. So

rk =
Rk − F̂

(
xk + d̄k

)
Φk(0)− Φk (dk)

< µ1, k ∈ Γ. (48)

According to Lemma 7, when k ∈ Γ and
k → +∞, there is rk ≥ µ1, which contradicts
formula (48). Hence, the hypothesis is not true,
lim infk→∞ [‖∇Fk + ρ̄∇DkZkDk‖+ ‖∇DkZkDk‖] = 0.
Theorem 1 is proved.

IV. NUMERICAL TEST

An algorithm for solving the MNBLO problem is pre-
sented and its global convergence is proved. Algorithm 4
is applied in this section to solve the following MNBLO
problems. Examples 1-3 are selected refer to [22–24], and
Example 4 is adapted from [21].

Parameter setting: Given the initial point x̄0, select ε0 >
0. ε1 = 10−6, ε2 = 10−8, µ1 = 0.25, µ2 = 0.75, σ1 =
0.25, σ2 = 1.5, c0 = 0.2, η0 = 0.2, ηmin = 0.15, ηmax = 0.9.
ηk is updated as follows.

ηk =

{
η0/2, k = 1

(ηk−1 + ηk−2) /2, k ≥ 2
(49)

The algorithm is compiled and run on MATLAB R2016a.

Example 1:



min
x

(
y2 − x1,−x2

2 − 2y1

)
min
y

(
2x2y

3
1 ,−x2

1 − y2
2

)
s.t. x1 − 2.5 ≤ 0

y2 − 2x1 ≤ 0

1− x2
2y1 ≤ 0

x2 − 4y1 ≤ 0

x1, x2, y1, y2 ≥ 0.
Using equations (2), (3) and KKT optimality condition,

the following NP problem is obtained.

minx,y

{(
F1(x,y)−Fmin

1

Fmax
1 −Fmin

1

)2

+
(
F2(x,y)−Fmin

2

Fmax
2 −Fmin

2

)2
} 1

2

s.t. 6β1x2y
2
1 − λ2x

2
2 − 4λ3 − λ4 = 0,

−2β2y2 + λ1 − λ5 = 0,

λ1 (y2 − 2x1) = 0,

λ2

(
1− x2

2y1

)
= 0,

λ3 (x2 − 4y1) = 0,

λ4y1 = 0, λ5y2 = 0,

x1 − 2.5 ≤ 0,

y2 − 2x1 ≤ 0,

1− x2
2y1 ≤ 0,

x2 − 4y1 ≤ 0,

(x1, x2)
T ≥ 0, (y1, y2)

T ≥ 0,

(λ1, λ2, λ3, λ4, λ5)
T ≥ 0,

where (λ1, λ2, λ3, λ4, λ5)
T ≥ 0 is the Lagrange multiplier

vector, βi is the linear combination of parameter, i = 1, 2.
Fmax
k and Fmin

k represent the best and worst optimal
solutions of the kth objective function of all constraints,
respectively, k = 1, 2. By using formulas (7), (8) and (9),
we convert the NP problem into an unconstrained problem.

By using Algorithm 4 and MATLAB programming, the
optimal solution (x1, x2, y1, y2) = (2.5, 3, 1, 2) is obtained.
The objective functions (F1, F2) = (−0.5,−11), (f1, f2) =
(6,−10.25).

Example 2:



minx
(

5
3x

2, 5
2 (y − 10)2

)
s.t. −x+ y ≤ 0,

0 ≤ x ≤ 15,

miny
(
x+ 2y − 30, x+ 0.5y2

)
s.t. 0 ≤ y ≤ 15.

Using equations (2), (3) and KKT optimality
condition, the following NP problem is obtained.
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minx,y

{(
F1(x,y)−Fmin

1

Fmax
1 −Fmin

1

)2

+
(
F2(x,y)−Fmin

2

Fmax
2 −Fmin

2

)2
}

s.t. −x+ y ≤ 0,

0 ≤ x ≤ 15,

2β1 + β2y − λ1 + λ2 = 0,

λ1y = 0,

λ2(y − 15) = 0,

0 ≤ y ≤ 15,

(λ1, λ2)
T ≥ 0.

As above, Algorithm 4 is applied to obtain the op-
timal solution (x, y) = (4.9953, 5.0111). The objec-
tive functions (F1, F2) = (41.5884, 62.2228), (f1, f2) =
(−14.9825, 17.5509).

Example 3:



maxx
(
xy, x2 + y2

)
x ≥ 0

maxy
(
x3 + y, 4ex + y2

)
s.t. x2 + y2 ≤ 12.5

x2y − 1 ≥ 0

x− y ≥ 0

4y − x ≥ 0

y ≥ 0.

Using equations (2), (3) and KKT optimality
condition, the following NP problem is obtained.

minx,y

{(
F1(x,y)−Fmin

1

Fmax
1 −Fmin

1

)2

+
(
F2(x,y)−Fmin

2

Fmax
2 −Fmin

2

)2
} 1

2

s.t. β1 + 2β2y + 2λ1y − λ2x
2 + λ3 − 4λ4 − λ5 = 0,

λ1

(
x2 + y2 − 12.5

)
= 0,

λ2

(
1− x2y

)
= 0,

λ3(y − x) = 0,

λ4(x− 4y) = 0,

λ5y = 0,

x2 + y2 ≤ 12.5,

x2y − 1 ≥ 0,

x− y ≥ 0,

4y − x ≥ 0,

x, y ≥ 0,

(λ1, λ2, λ3, λ4, λ5)
T ≥ 0.

As above, Algorithm 4 is applied to obtain the op-
timal solution (x, y) = (2.5000, 2.4932). The objec-
tive functions (F1, F2) = (6.2330, 12.4660), (f1, f2) =
(18.1182, 54.9460).

Example 4:



minx (y2
1 + y2

3 − y1y3 − 4y2 − 7x1 + 4x2,

y2
1 + 5x2)

s.t. x1 + x2 ≤ 1

(x1, x2)T ≥ 0

miny1,y2 (y2
1 + 1

2y
2
2 + 1

2y
2
3 +y1y2+(1− 3x1) y1

+ (1 + x2) y2,
1
3y

2
3 − 4x1y1)

s.t. 2y1 + y2 − y3 + x1 − 2x2 + 2 ≤ 0

(y1, y2, y3)T ≥ 0.

Using equations (2), (3) and KKT optimality
condition, the following NP problem is obtained.

min
x,y1,y2,y3

{(
F1(x,y)−Fmin

1

Fmax
1 −Fmin

1

)2

+
(
F2(x,y)−Fmin

2

Fmax
2 −Fmin

2

)2
}

s.t. β1 (2y1+y2+ 1−3x1)− 4β2x1+2λ1−λ2 =0,

β1 (y2 + y1 + 1 + x2) + λ1 − λ3 = 0,

β1y3 + 2
3β2y3 − λ1 − λ4 = 0,

λ1 (2y1 + y2 − y3 + x1 − 2x2 + 2) = 0,

λ2y1 = 0, λ3y2 = 0, λ4y3 = 0,

x1 + x2 ≤ 1,

2y1 + y2 − y3 + x1 − 2x2 + 2 ≤ 0,

(x1, x2)
T ≥ 0, (y1, y2, y3)

T ≥ 0,

(λ1, λ2, λ3, λ4)
T ≥ 0.

As above, Algorithm 4 is applied to obtain
the optimal solution (x1, x2, y1, y2, y3) =
(0.5380, 0.2620, 0.0000, 0.0000, 1.9160). The objective
functions (F1, F2) = (0.9531, 1.3100), (f1, f2) =
(1.8355, 1.2237).

As can be seen from the solution results, the optimal
solutions for examples 1-3 are the same as the results in
reference. In Example 4, an objective is added to both levels
of objective based on reference [21]. The optimal solution is
obtained by using Algorithm 4.

V. CONCLUSION

There have been few studies on the application of non-
monotone technique and adaptive radius update strategy
to the MNBLO problem. For the MNBLO problem, the
proposed nonmonotone adaptive algorithm overcomes the
shortcoming of slow convergence. Theorem 1 shows that the
algorithm can maintain global convergence. The feasibility
of the proposed penalty method is further explained by
numerical experiments.
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