Domination Number of Generalized Complements of a Graph

Harshitha A, Gowtham H. J, Sabitha D’Souza*, and Pradeep G. Bhat

Abstract

Let G be a graph with vertex set V. A set $D \subseteq V$ is a dominating set of G if each vertex of $V-D$ is adjacent to at least one vertex of D. The $k(k(i))-$ complement of G is obtained by partitioning V into k partites and removing the edges between the vertices of different (same) partites in G and adding the edges between the vertices of different (same) partites which are not in G. This paper studies different domination numbers of k and $k(i)$ complements of graphs.

Index Terms-Dominating set; Domination number; k - complement; $k(i)$ - complement.

I. Introduction

CONSIDER a simple graph G with the vertex set V and edge set E. The distance from the vertex w_{i} to the vertex w_{j} of G is the number of edges in the shortest $w_{i}-w_{j}$ path. It is denoted by $d_{G}\left(w_{i}, w_{j}\right)$. The degree of a vertex w_{i} is the number of adjacent vertices of w_{i}, denoted by $\operatorname{deg}_{G} w_{i}$. The maximum (minimum) degree of G, denoted by $\Delta(G)(\delta(G))$, is the maximum (minimum) among degrees of all the vertices of G. Two vertices w_{i}, w_{j} are called neighbors if $\left(w_{i}, w_{j}\right) \in E$. Two adjacent vertices w_{i}, w_{j} are represented by $w_{i} \sim w_{j}$. The set $N\left(w_{i}\right)\left(N\left[w_{i}\right]\right)$ is called open (closed) neighborhood of w_{i} which represents the set of all adjacent vertices of w_{i} excluding (including) w_{i}. A subset of vertices of a graph G is called an independent set, if no two vertices of it is adjacent. The complement of G, \bar{G} is the graph obtained from G such that two vertices of \bar{G} are adjacent if and only if they are non-adjacent in G. Let P be the partition of V consisting of k partites. To obtain k-complement of G, remove the edges between the partites in G and add the edges between the partites which are not in G [1]. To obtain the $k(i)$-complement of G, remove the edges inside each partite which are in G and add the edges between those vertices which are not in G [2]. The $k, k(i)$ complements of a graph G are represented by $G_{k}^{P}, G_{k(i)}^{P}$ respectively.

In the past, various domination numbers have been defined and studied by eminent researchers. A few basic domination numbers are presented in table I. Consider $G(V, E)$ with

[^0]$D \subseteq V$. Cardinality of each minimum dominating set is the respective domination number.

TABLE I
VARIOUS DOMINATING SETS

Dominating sets	Notation of domination number
D is dominating set if $\forall w_{i} \in V-D \exists w_{j} \in D$ with $w_{i} \sim w_{j}$.	$\gamma^{\prime}(G)$
D is connected dominating set if $\langle D\rangle$ is connected [3].	$\gamma_{c}(G)$
D is total dominating set if $\forall w_{i} \in V \exists w_{j} \in D$ with $w_{i} \sim w_{j}$ [4].	$\gamma_{t}(G)$
D is global dominating set if it is a dominating set for both G and \bar{G} [5].	$\gamma_{g}(G)$
D is $k-$ global dominating set if it is a dominating set for both G and G_{k}^{P} [6].	$\gamma_{k g}(G)$
D is $k(i)-$ global dominating set if it is a dominat- ing set for both G and $G_{k(i) ~}^{P}$ [6].	$\gamma_{k(i) g}(G)$
D is a total global dominating set if it is total dominating set for G and a dominating set for \bar{G} [7].	$\gamma_{t g}(G)$
D is a $k-$ total global dominating set if it is total dominating set for G and a dominating set for G_{k}^{P} [6].	$\gamma_{k t g}(G)$
D is a $k(i)-$ total global dominating set if it is total dominating set for G and a dominating set for $G_{k(i)}^{P}$	$\gamma_{k(i) t g}(G)$
[6].	

For more on domination of graphs one can refer [9], [10]. In this paper, the authors explore different domination numbers for the generalized complements of a graph. As the generalized complement of a graph depends on the partition of the vertex set, the proposed work examines different partitions of graph to obtain the minimum and maximum domination numbers. Some relationship between domination numbers in the context of generalized complements are achieved.

II. Domination numbers of G and its $k / k(i)-$ COMPLEMENTS

Theorem 2.1: Let G be a connected graph with vertex set V.

1) Let $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be a partition of V with $\left|P_{i}\right|=n_{i}, 1 \leq i \leq k$. If each $\left\langle P_{i}\right\rangle$ has a vertex of degree $n_{i}-1,1 \leq i \leq k$ then $\gamma\left(G_{k}^{P}\right) \leq k$. The upper bound sharpness occurs if each vertex of any partite is adjacent to all the vertices of remaining partites.
2) If $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V such that for all $w_{x}, w_{y} \in P_{i}, d\left(w_{x}, w_{y}\right) \geq 2$, then $\gamma\left(G_{k(i)}^{P}\right) \leq$ k. The upper bound sharpness occurs for a completely disconnected graph.

Proof: Let G be a connected graph with vertex set V.

1) Suppose V is partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $\left|P_{i}\right|=n_{i}$ and each $\left\langle P_{i}\right\rangle$ has a vertex of degree $n_{i}-$ $1,1 \leq i \leq k$. In G_{k}^{P}, there exists at least one vertex in each $\left\langle P_{i}\right\rangle$ that dominates all other vertices of $\left\langle P_{i}\right\rangle$ for $1 \leq i \leq k$. Hence $\gamma\left(G_{k}^{P}\right) \leq k$.
If each vertex of P_{i} is adjacent to all the vertices of $P_{j}, 1 \leq i, j \leq k, i \neq j$, then G_{k}^{P} is a disconnected graph with connected components $\left\langle P_{i}\right\rangle, 1 \leq i \leq k$ such that each $\left\langle P_{i}\right\rangle$ is of order n_{i} consisting a vertex of degree $n_{i}-1$. Therefore $\gamma\left(G_{k}^{P}\right)=k$.
2) Suppose V is partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that for all $w_{x}, w_{y} \in P_{i}, d\left(w_{x}, w_{y}\right) \geq 2$. In $G_{k(i)}^{P}$ the distance between any two vertices in each $\left\langle P_{i}\right\rangle$ is one. Therefore there exists at least one vertex in each $\left\langle P_{i}\right\rangle$ that dominates all the vertices of $\left\langle P_{i}\right\rangle$. Hence $\gamma\left(G_{k(i)}^{P}\right) \leq k$.
For a completely disconnected graph, $G_{k(i)}^{P}$ is a graph with k connected components with each connected component is a complete subgraph. Hence $\gamma\left(G_{k(i)}^{P}\right)=$ k.

Theorem 2.2: Let G be a graph with $|V|=n$ having a vertex of degree $n-1$.

1) If $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V such that for any vertex w_{x} of degree $d, P_{1}=N\left[w_{x}\right]$, then $\gamma(G)=$ $\gamma\left(G_{k}^{P}\right)=1$ for $1 \leq k \leq n-d-1$.
2) If $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V with $P_{1}=$ $V-N\left(w_{x}\right)$ for $w_{x} \in V$, then $\gamma(G)=\gamma\left(G_{k(i)}^{P}\right)=1$ for $2 \leq k \leq n-1$.
Proof: Let G be a graph with $|V|=n$ having a vertex of degree $n-1$.
3) If $\operatorname{deg}_{G} w_{x}=n-1$ for $w_{x} \in V$, then $\gamma(G)=1$. Suppose V is partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=N\left[w_{x}\right]$, where $\operatorname{deg}_{G} w_{x}=d$. Then in G_{k}^{P}, all the vertices are adjacent to w_{x} by definition of G_{k}^{P} [1]. Thus w_{x} dominates all the vertices of G_{k}^{P} and $\gamma\left(G_{k}^{P}\right)=1$.
4) If $\operatorname{deg}_{G} w_{x}=n-1$ for $w_{x} \in V$, then $\gamma(G)=1$. Suppose G is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $P_{1}=V-N\left(w_{x}\right)$ for $w_{x} \in V$. In $G_{k(i)}^{P}$, all the vertices are adjacent to w_{x} by definition of $G_{k(i)}^{P}$ [2]. Thus w_{x} dominates all the vertices of $G_{k(i)}^{P}$ and $\gamma\left(G_{k(i)}^{P}\right)=1$.

Corollary 2.1: 1) For the graphs G and $G_{k}^{P}, \gamma(G)=$ $\gamma\left(G_{k}^{P}\right)=n$ if and only if $G \cong \overline{K_{n}}$ and $k=1$.
2) For the graphs G and $G_{k(i)}^{P}, \gamma(G)=\gamma\left(G_{k(i)}^{P}\right)=n$ if and only if $G \cong \overline{K_{n}}$ and $k=n$.
Theorem 2.3: Let D be a minimum dominating set of G and let $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be the partition of V.

1) If each P_{i} has exactly one vertex of D and its neighbors, then $\gamma_{k g}(G)=k$.
2) If each P_{i} has exactly one vertex of D and all its nonneighbors, then $\gamma_{k(i) g}(G)=k$.
Proof: Let $D=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a minimum dominating set of G and let $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be the partition of V.
3) Suppose each P_{i} contains exactly one vertex of D and all the vertices which are adjacent to that vertex. In G_{k}^{P}, each vertex is adjacent to exactly one vertex of D. Therefore D is also a dominating set for G_{k}^{P}.
4) Suppose each P_{i} contains exactly one vertex of D and all the vertices which are non-adjacent to that vertex. In $G_{k(i)}^{P}$, each vertex is adjacent to exactly one vertex of D. Therefore D is also a dominating set for $G_{k(i)}^{P}$.

Theorem 2.4: 1) Let $\gamma(G) \geq 2$ be the domination number of G with dominating set D such that all vertices of D are non-adjacent. If $P=\left\{P_{1}, P_{2}\right\}$ is a partition of V with $\left\langle P_{1}\right\rangle=\langle D\rangle,\left\langle P_{2}\right\rangle=\langle V-D\rangle$ and no vertex of $V-D$ is adjacent to all the vertices of D, then D is a k - global dominating set of G.
2) Let $\gamma(G) \geq 2$ be the domination number of G with dominating set D such that $\langle D\rangle$ be a complete subgraph of G. If $P=\left\{P_{1}, P_{2}\right\}$ with $\left\langle P_{1}\right\rangle=\langle D\rangle$, then D is a $k(i)-$ global dominating set of G.
Proof:

1) Let $\gamma(G) \geq 2$ be the domination number of G with dominating set D and all vertices of D be nonadjacent. Suppose $P=\left\{P_{1}, P_{2}\right\}$ is a partition of G with $\left\langle P_{1}\right\rangle=\langle D\rangle$ and no vertex of P_{2} is adjacent to all the vertices of D. In G_{k}^{P}, at least all the vertices of D must be in dominating set since all the vertices of D are non-adjacent in G. No vertex of G_{k}^{P} is an isolated vertex since no vertex of G is adjacent to all the vertices of D. The set D is a dominating set of G_{k}^{P} since each vertex of G_{k}^{P} is adjacent to at least one vertex of D.
2) Let $\gamma(G) \geq 2$ be the domination number of G with dominating set D such that $\langle D\rangle$ be a complete subgraph of G. Suppose $P=\left\{P_{1}, P_{2}\right\}$ with $\left\langle P_{1}\right\rangle=\langle D\rangle$, $\left\langle P_{2}\right\rangle=\langle V-D\rangle$. Then in $G_{k(i)}^{P}$, at least all the vertices of D must be in the dominating set of $G_{k(i)}^{P}$ since no two vertices of D are adjacent in $G_{k(i)}^{P}$ and the adjacency between the vertices of $V-D$ and D remains same in both G and $G_{k(i)}^{P}$. The set D is a dominating set of $G_{k(i)}^{P}$ since all the vertices of $G_{k(i)}^{P}$ is adjacent to at least one vertex of D.

Theorem 2.5: 1) If $G \cong \frac{n}{2} K_{2}$, and G is partitioned into $\frac{n}{2}$ partites such that each $\left\langle P_{i}\right\rangle=K_{2}$, then $\gamma_{t}(G)=$ n and $\gamma_{t}\left(G_{k}^{P}\right)=2$.
2) If $G \cong \frac{n}{2} K_{2}$ is partitioned into P_{1} and P_{2}, each consisting of independent set of vertices, then $\gamma_{t}(G)=n$ and $\gamma_{t}\left(G_{k(i)}^{P}\right)=2$.
Proof:

1) Let $G \cong \frac{n}{2} K_{2}$ and V be partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{\frac{n}{2}}\right\}$ with each $\left\langle P_{i}\right\rangle=K_{2}$. Obviously, total domination number of G is n. The graph G_{k}^{P} is a complete graph with n vertices and hence total domination number of G_{k}^{P} is 2 .
2) Let $G \cong \frac{n}{2} K_{2}$ be partitioned into P_{1} and P_{2}, each consisting of independent set of vertices. Obviously, total domination number of G is n. In $G_{k(i)}^{P},\left\langle P_{1}\right\rangle \cong$ $\left\langle P_{2}\right\rangle \cong K_{\frac{n}{2}}$ and hence $\gamma_{t}\left(G_{k(i)}^{P}\right)=2$.

Remark 2.1: 1) Suppose $G \cong K_{n}$, where n is even and is partitioned into $\frac{n}{2}$ partites P_{i} such that each $\left\langle P_{i}\right\rangle=K_{2}$. Then $\gamma_{t}\left(G_{k}^{P}\right)=n$.
2) Suppose G is the graph $G_{k(i)}^{P}$ obtained in (2) of Theorem 2.5. If G is partitioned into two partites P_{1} and P_{2} such that the graphs induced by both P_{1} and P_{2} is complete graphs with $\frac{n}{2}$ vertices. Then, total domination number of $G_{k(i)}^{P}$ is n.
Theorem 2.6: 1) $\gamma_{t}(G)=\gamma_{t}\left(G_{k}^{P}\right)=n$ if and only if $G \cong \frac{n}{2} K_{2}$ and $k=1$.
2) $\gamma_{t}(G)=\gamma_{t}\left(G_{k(i)}^{P}\right)=n$ if and only if $G \cong \frac{n}{2} K_{2}$ and $k=n$.
Proof:

1) Suppose $\gamma_{t}(G)=\gamma_{t}\left(G_{k}^{P}\right)=n$. If G consists of an isolated vertex, then $\gamma_{t}(G)$ is undefined. If G is a graph without isolates, then $\gamma_{t}(G) \leq n-\Delta(G)+1[4]$ and $\gamma_{t}(G)=n$ if and only if $\Delta(G)=1$. This is possible if and only if $G \cong \frac{n}{2} K_{2}$. Suppose $k>1$, then $\Delta\left(G_{k}^{P}\right) \geq$ 2 and hence $\gamma_{t}\left(G_{k}^{P}\right)<n$. Therefore, $G \cong \frac{n}{2} K_{2}$ and $k=1$. The converse part of the proof is trivial since G_{k}^{P} is the graph G itself.
2) Suppose $\gamma_{t}(G)=\gamma_{t}\left(G_{k(i)}^{P}\right)=n$. The first part of the proof is same as the proof of (1) in Theorem 2.6. Suppose $k=n$, then either $\Delta\left(G_{k(i)}^{P}\right) \geq 2$ or $G_{k(i)}^{P}$ has an isolate. Thus $\gamma_{t}\left(G_{k}^{P}\right)$ is either less than n or undefined. Therefore $G \cong \frac{n}{2} K_{2}$ and $k=n$. The converse part of the proof is trivial since $G_{k(i)}^{P}$ is the graph G itself.

Theorem 2.7: 1) $\gamma_{k t g}(G)=2$ with total dominating set $D=\left\{w_{x}, w_{y}\right\}$ if and only if $\gamma_{t}(G)=2$ with dominating set D and G is partitioned into $P=$ $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, 1 \leq k \leq\left|N\left(w_{x}, w_{y}\right)\right|+2$ such that $P_{1}=N\left[w_{x}\right] \cup N\left[w_{y}\right]$.
2) $\gamma_{k(i) t g}(G)=2$ with total dominating set $D=$ $\left\{w_{x}, w_{y}\right\}$ if and only if $\gamma_{t}(G)=2$ with dominating set D and G is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$, $2 \leq k \leq n$ such that $w_{x} \in P_{1}$ and $\left(V-N\left(w_{x}\right)\right) \nsubseteq P_{1}$, $w_{y} \in P_{2}$ and $\left(V-N\left(w_{y}\right)\right) \nsubseteq P_{2}$.
Proof:

1) Let G be a graph with total dominating set $D=$ $\left\{w_{x}, w_{y}\right\}$. Suppose $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of G such that $P_{1}=N\left[w_{x}\right] \cup N\left[w_{y}\right]$. In G_{k}^{P}, the common neighbors of w_{x} and w_{y} remain same. The vertices which are adjacent to the vertex w_{x} and non-adjacent to the vertex w_{y} in G, are adjacent to the vertex w_{y} and non-adjacent to the vertex w_{x} in G_{k}^{P} and vice versa. Hence all the vertices are dominated by either w_{x} or w_{y} and also w_{x} is adjacent to w_{y} in G_{k}^{P}. Therefore, $\gamma_{k t g}(G)=2$.
Conversely, suppose $\gamma_{t}(G)=2$ and the vertices w_{x} and w_{y} are in different partites. In G_{k}^{P}, w_{x} and w_{y} are non-adjacent. Hence $D=\left\{w_{x}, w_{y}\right\}$ can not be a total dominating set. Suppose $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V such that P_{1} consists of the vertices w_{x} and w_{y}. If there exists a vertex w_{z} which is adjacent to both w_{x} and w_{y} in G, but it belongs to the partite other than P_{1}, then in G_{k}^{P}, the vertex w_{z} is non-adjacent to w_{x} or w_{y}. Hence $D=\left\{w_{x}, w_{y}\right\}$ is not a dominating set.
2) Let G be a graph with total dominating set $D=$ $\left\{w_{x}, w_{y}\right\}$. Suppose $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V such that $w_{x} \in P_{1}$ and $\left(V-N\left(w_{x}\right)\right) \nsubseteq P_{1}$, $w_{y} \in P_{2}$ and $\left(V-N\left(w_{y}\right)\right) \nsubseteq P_{2}$. In $G_{k(i)}^{P}$, the vertices w_{x} and w_{y} are adjacent since they are in the different partites. All the vertices which are adjacent to w_{x} and w_{y} are adjacent in $G_{k(i)}^{P}$. Thus, the vertices w_{x} and w_{y} dominate all the remaining vertices. Hence D is the total dominating set of $G_{k(i)}^{P}$.
Conversely, suppose the vertices w_{x} and w_{y} are in the same partite, D can not be a total dominating set as w_{x} and w_{y} are non-adjacent in $G_{k(i)}^{P}$. Suppose $P=$ $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is the partition of V such that $w_{x} \in$ P_{1}. If there exists a vertex $w_{z} \in P_{1}$ with $w_{z} \sim w_{x}$ and $w_{z} \not \nsim w_{y}$ in G, then $w_{z} \nsucc w_{x}$ and $w_{z} \nsucc w_{y}$ in $G_{k(i)}^{P}$. Hence D can not be a total dominating set.

Theorem 2.8: Let D be a total dominating set of G.

1) If V is partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{\frac{\gamma_{t}}{2}}\right\}$ with each P_{i} has exactly two adjacent vertices of D and their neighbors, then D is a k - total global dominating set of G.
2) If V is partitioned into $\left\{P_{1}, P_{2}, \ldots, P_{\frac{\gamma_{t}}{2}}\right\}$ with each P_{i} has exactly two non-adjacent vertices w_{x}, w_{y} of D and the vertices which are non-adjacent to both w_{i}, w_{j}, then D is a $k(i)-$ total global dominating set of G.
Proof: Let D be a total dominating set of G.
3) Let $P=\left\{P_{1}, P_{2}, \ldots, P_{\frac{\gamma_{t}}{2}}\right\}$ be the partition V having P_{i} has exactly two adjacent vertices of D and their neighbors. Then the vertices adjacent to vertices of D in G are adjacent in $G_{\frac{\gamma t}{2}}^{P}$ also. Hence D is also a total dominating set of $G_{\frac{\gamma t}{2}}^{P^{2}}$. Thus $\gamma_{t}(G)=\gamma_{k t g}(G)$ with dominating set D.
4) Let $P=\left\{P_{1}, P_{2}, \ldots, P_{\frac{\gamma_{t}}{2}}\right\}$ be the partition of V having P_{i} has exactly two non-adjacent vertices w_{x}, w_{y} of D and non-adjacent vertices to both w_{x}, w_{y}. Then the vertices adjacent to vertices of D in G are adjacent in $G_{\frac{\gamma t}{\beta}(i)}^{P}$ also. Hence D is also a total dominating set of $G_{\frac{\gamma_{t}}{2}(i)}^{\stackrel{\mathcal{P}^{(}}{(i)}}$. Thus $\gamma_{t}(G)=\gamma_{k(i) t g}(G)$ with dominating set $D^{\frac{}{2}}$.

Theorem 2.9: Let D be a connected dominating set of a graph G on n vertices.

1) If V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=D$ and no vertex of D is adjacent to all the vertices of $P_{i}, 2 \leq i \leq k$, then $\gamma_{c}\left(G_{k}^{P}\right) \leq \gamma_{c}(G)$. Equality holds if G has a vertex of degree $n-1$.
2) If V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $P_{1}=V-D$ and each $P_{i}, 2 \leq i \leq k$ has exactly one vertex of D, then $\gamma_{c}\left(G_{k(i)}^{P}\right) \leq \gamma_{c}(G)$. Equality holds if G is a connected graph with $\Delta(G) \leq 2$.
Proof: Let G be a graph with connected dominating set D.
3) Suppose V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=D$ and no vertex of D is adjacent to all the vertices of $P_{i}, 2 \leq i \leq k$. In G_{k}^{P}, each vertex of P_{1} is adjacent to at least one vertex of any $P_{i}, 2 \leq i \leq k$. Therefore $\gamma_{c}\left(G_{k}^{P}\right) \leq \gamma_{c}(G)$.

If G has a vertex w_{x} of degree $n-1$, then $D=P_{1}=$ $\left\{w_{x}\right\}$ and $P_{i}, 2 \leq i \leq k$ consists of remaining vertices. But $\operatorname{deg}_{G_{k}^{P}} w_{x}=1$ and therefore $\gamma_{c}\left(G_{k}^{P}\right)=\gamma_{c}(G)=$ 1.
2) Suppose V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=V-D$, and each $P_{i}, 2 \leq i \leq k$ has exactly one vertex of D. In $G_{k(i)}^{P}$, the adjacency between the vertices inside each P_{i} changes. The vertices of D dominates all the vertices of $G_{k(i)}^{P}$ and D induces a connected subgraph of $G_{k(i)}^{P}$. Therefore $\gamma_{c}\left(G_{k(i)}^{P}\right) \leq \gamma_{c}(G)$.
If G is a connected graph with $\Delta(G) \leq 2$. Then P_{1} consists of two vertices say w_{x} and w_{y} so that each $P_{i}, 2 \leq i \leq k$ consists of exactly one vertex of the set D. The adjacency between all the pairs of vertices remain same in $G_{k(i)}^{P}$ except between w_{x} and w_{y}. Therefore $\gamma_{c}\left(G_{k(i)}^{P}\right)=\gamma_{c}(G)=n-2$.

Theorem 2.10: Let G be a graph with n vertices.

1) $\gamma_{c}(G)=\gamma_{c}\left(G_{k}^{P}\right)=1$ if and only if G has a vertex of degree $n-1$ and it is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=N\left[w_{x}\right], w_{x} \in V$.
2) $\gamma_{c}(G)=\gamma_{c}\left(G_{k(i)}^{P}\right)=1$ if and only if G has a vertex of degree $n-1$ and it is partitioned into $P=$ $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=\left\{w_{x}\right\} \cup\left(V-N\left(w_{x}\right)\right)$.
Proof: Let G be a graph with $|V|=n$.
3) If $\operatorname{deg}_{G} w_{y}=n-1$ for some $w_{y} \in V$ and it is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=$ $\left\{N\left[w_{x}\right]: w_{x} \in V\right\}$. Then vertex w_{y} dominates every vertex of G and vertex w_{x} dominates every vertex of G_{k}^{P}. Thus $\gamma_{c}(G)=\gamma_{c}\left(G_{k}^{P}\right)=1$.
Conversely, if $\operatorname{deg}_{G} w_{y} \neq n-1$ for all $w_{y} \in V$, then $\gamma_{c}(G) \geq 2$. If G has a vertex of degree $n-1$ and it is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with P_{1} has a vertex w_{y} of G and there exists a vertex $w_{x} \in P_{j}, 2 \leq$ $j \leq k$ with $w_{x} \sim w_{y}$. Then $\operatorname{deg}_{G_{k}^{P}} w_{x} \leq n-2$ and hence $\gamma_{c}\left(G_{k}^{P}\right) \geq 2$.
4) If $\operatorname{deg}_{G} w_{y}=n-1$ for some $w_{y} \in V$ and it is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ with $P_{1}=$ $\left\{w_{x}\right\} \cup\left(V-N\left(w_{x}\right)\right)$ for $w_{x} \in V$. Then vertex w_{y} dominates every vertex of G and vertex w_{x} dominates every vertex of $G_{k(i)}^{P}$. Thus $\gamma_{c}(G)=\gamma_{c}\left(G_{k(i)}^{P}\right)=1$. Conversely, if $\operatorname{deg}_{G} w_{y} \neq n-1$ for all $w_{y} \in V$, then $\gamma_{c}(G) \geq 2$. If G has a vertex of degree $n-1$ and it is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that P_{1} has a vertex w_{y} and there exists a vertex $w_{x} \in P_{j}, 2 \leq$ $j \leq k$ with $w_{x} \nsucc w_{y}$. Then $\operatorname{deg}_{G_{k(i)}^{P}} w_{y} \leq n-2$ and hence $\gamma_{c}\left(G_{k(i)}^{P}\right) \geq 2$.

Theorem 2.11: Let G be a connected graph with $|V|=n$.

1) $\gamma_{c}(G)=\gamma_{c}\left(G_{k}^{P}\right)=n-2$ if and only if $\Delta(G) \leq 2$ and $k=1$.
2) $\gamma_{c}(G)=\gamma_{c}\left(G_{k(i)}^{P}\right)=n-2$ if and only if $\Delta(G) \leq 2$ and $k=n$.
Proof: Let G be a connected graph on n vertices with $\Delta(G) \leq 2$.
3) Let D be the minimum connected dominating set of G. Since $\langle D\rangle$ is a connected subgraph, there must be a path between every pair of vertices of D. Since each
vertex can dominate at most two vertices, the graph induced by the vertices of D must be a path on $n-2$ vertices. If $k=1$, then $G_{k}^{P} \cong G$ and hence $\gamma_{c}(G)=$ $\gamma_{c}\left(G_{k}^{P}\right)=n-2$.
Conversely, suppose G is a connected graph on n vertices with $\Delta(G) \geq 3$, then there exists a vertex that dominates at least three vertices. Therefore $\gamma_{c}(G) \leq n-3$. Suppose $\Delta(G) \leq 2$ and G is partitioned into more than one partites, then there exists a vertex whose degree is at least three in G_{k}^{P}. Therefore $\gamma_{c}\left(G_{k}^{P}\right) \leq n-3$.
4) Let D be the minimum connected dominating set of G. Since $\langle D\rangle$ is a connected subgraph, there must be a path between every pair of vertices of D. Since each vertex can dominate at most two vertices, the graph induced by the vertices of D must be a path on $n-2$ vertices. If $k=n$, then $G_{k(i)}^{P} \cong G$ and hence $\gamma_{c}(G)=$ $\gamma_{c}\left(G_{k(i)}^{P}\right)=n-2$.
Conversely, suppose G is a connected graph on n vertices with $\Delta(G) \geq 3$, then there exists a vertex that dominates at least three vertices. Therefore $\gamma_{c}(G) \leq$ $n-3$. Suppose $\Delta(G) \leq 2$ and G is partitioned into less than n partites, then there exists a vertex whose degree is at least three in $G_{k(i)}^{P}$. Therefore $\gamma_{c}\left(G_{k(i)}^{P}\right) \leq n-3$.

Theorem 2.12: An independent dominating set D of a graph G is also an independent dominating set of G_{k}^{P} if and only if

1) For every vertex w_{x} in D, there exists a vertex w_{y} in $V-D$ such that $w_{x} \nsim w_{y}$ and
2) V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $P_{1}=D$.
Proof: Let G be a graph with independent dominating set D such that for every vertex w_{x} in D, there exists a vertex w_{y} in $V-D$ such that $w_{x} \nsim w_{y}$. Suppose V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $P_{1}=D$. In the graph G_{k}^{P}, all the vertices of D are non-adjacent. Also each w_{x} in D is adjacent to at least one vertex w_{y} since $w_{x} \nsim w_{y}$ and they belong to different partites. Therefore D is an independent dominating set for G_{k}^{P}.

Conversely, Suppose V is partitioned into $P=$ $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $P_{1}=D$. If there exists a vertex w_{x} in D which is adjacent to all the vertices of $V-D$, then in G_{k}^{P} it is non-adjacent to any of the vertex of $V-D$. Hence D is not a dominating set. Suppose for every vertex w_{x} in D, there exists a vertex w_{y} in $V-D$ such that $w_{x} \nsim w_{y}$. Let w_{x} and w_{y} be any two vertices of D. If V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that $w_{x} \in P_{i}$ and $w_{y} \in P_{j}$ for $i \neq j$, then in $G_{k}^{P}, w_{x} \sim w_{y}$ and hence D is not an independent set of G_{k}^{P}.

Theorem 2.13: An independent dominating set D of a graph G is also an independent dominating set of $G_{k(i)}^{P}$ if and only if V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that

1) no two vertices of D are in same partite and
2) if w_{x} is a vertex of G with w_{x} is adjacent to only one vertex w_{y} of D, then w_{x} and w_{y} are in different partites.
Proof: Let G be a graph with independent dominating set D.
3) Suppose V is partitioned into $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ such that no two vertices of D are in the same partite, then in $G_{k(i)}^{P}$, no two vertices of D are adjacent. Hence the vertices of D are independent.
4) Let $w_{x} \in V(G)$. There are two possibilities. Either w_{x} is adjacent to only one vertex of D or w_{x} is adjacent to more than one vertex of D. If w_{x} is adjacent to only vertex w_{y} of D, then w_{x} and w_{y} are in different partites and hence they are adjacent in $G_{k(i)}^{P}$. If w_{x} is adjacent to more than one vertex of D, say $u_{1}, u_{2}, \ldots, u_{l}$ and w_{x} and any one of $u_{i}, 1 \leq i \leq l$, are in same partite, then in $G_{k(i)}^{P}, w_{x}$ is adjacent to remaining $u_{j}, 1 \leq j \leq$ $l, i \neq j$. If w_{x} is adjacent to more than one vertex of D, say $u_{1}, u_{2}, \ldots, u_{l}$ and w_{x} and $u_{i}, 1 \leq i \leq l$, are in different partites, then in $G_{k(i)}^{P}, w_{x}$ is adjacent to all $u_{i}, 1 \leq i \leq l$.
Hence, all the vertices of $V-D$ in $G_{k(i)}^{P}$ is adjacent to at least one vertex of D and D is an independent set. Therefore, D is an independent dominating set of $G_{k(i)}^{P}$.

Conversely, suppose D is an independent dominating set of both G and $G_{k(i)}^{P}$.

1) If any two vertices w_{x}, w_{y} of D are in same partite, then in $G_{k(i)}^{P}, w_{x}$ and w_{y} are adjacent and hence D is not an independent set of $G_{k(i)}^{P}$.
2) If w_{x} is a vertex of G with w_{x} is adjacent to only one vertex w_{y} of D and w_{x} and w_{y} are in same partite. Then in $G_{k(i)}^{P}, w_{x}$ and w_{y} are non-adjacent. Also, w_{x} is non-adjacent to all the vertices of D since it is adjacent to only w_{y} of D and w_{x}, w_{y} are in same partite. Hence D is not a dominating set of $G_{k(i)}^{P}$.

III. CONCLUSION

Though generalized complements of a graph is introduced in the year 1998, there are less studies have been done on the topic. In this paper, the authors considered various domination numbers and obtained relationship between the domination number of graph and its $k / k(i)$ complements.

References

[1] E. Sampathkumar and L. Pushpalatha, "Complement of a graph: A generalization," Graphs and Combinatorics, vol. 14, pp. 377-392, 1998.
[2] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam, and P. G. Bhat, "Generalized complements of a graph," Indian Journal of Pure and Applied Mathematics, vol. 29, no. 6, pp. 625-639, 1998.
[3] E. Sampathkumar and H. B. Walikar, "The connected domination number of a graph," Journal Mathematical and Physical Sciences, vol. 13, no. 6, pp. 607-613, 1979.
[4] E. J. Cockayne, R. M. Dawes, and S. Hedetniemi, "Total domination in graphs," Networks, vol. 10, no. 3, pp. 211-219, 1980.
[5] E. Sampathkumar, "The global domination number of a graph," Journal Mathematical and Physical Sciences, vol. 23, no. 5, pp. 377385, 1989.
[6] S. D'Souza, S. Upadhyay, S. Nayak, and P. G. Bhat, "D- complement and d(i)- complement of a graph," IAENG International Journal of Applied Mathematics, vol. 52, no. 1, pp. 172-176, 2022.
[7] V. R. Kulli and B. Janakiram, "The total global domination number of a graph," Indian Journal of Pure and Applies Mathematics, vol. 27, no. 6, pp. 537-542, 1996.
[8] E. J. Cockayne and S. T. Hedetniemi, "Towards a theory of domination in graphs," Networks, vol. 7, no. 3, pp. 247-261, 1977.
[9] W. J. Desormeaux, T. W. Haynes, and M. A. Henning, "Domination parameters of a graph and its complement," Discussiones Mathematicae Graph Theory, vol. 38, no. 1, pp. 203-215, 2018.
[10] H. Karami, S. M. Sheikholeslami, A. Khodkar, and D. B. West, "Connected domination number of a graph and its complement," Graphs and Combinatorics, vol. 28, no. 1, pp. 123-131, 2012.

[^0]: * Corresponding author

 Manuscript received August 17, 2022; revised January 30, 2023.
 Harshitha A is a research scholar in the department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (email: harshuarao@gmail.com).
 Gowtham H. J is an assistant professor in the department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (email: gowtham.hj@manipal.edu).

 Sabitha D'Souza is an assistant professor in the department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104. (corresponding author, e-mail: sabitha.dsouza@manipal.edu).

 Pradeep G. Bhat is a professor in the department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (email: pg.bhat@manipal.edu).

