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Abstract—A novel method for data assimilation of a
multivariable system that describes the behavior of water level,
flow, and precipitation variables is presented. The proposed
multivariable auto-regressive model considers correlations
between the water level, flow, and precipitation and is directly
estimated using measurements. In order to obtain the system
parameters, a regularized estimation of the model is applied.
This estimation is achieved by using the Tikhonov regularization
method with generalized cross-validation for parameter
selection. The proposed approach is evaluated using data from
a Colombian river located in the Chocó department. Therefore,
the resulting multivariable autoregressive regularized model
is compared with three simultaneous univariable models.
An additional comparison is performed by considering a
least squares solution for parameter estimation. In addition,
the proposed approach is also evaluated for data from the
meteorological information center of Argentina. As a result, the
proposed regularized method for data assimilation adequately
tracks the data dynamics even for rank-deficient scenarios.

Index Terms—Identification, regularization, multivariable,
auto-regressive, data assimilation.

I. INTRODUCTION

CHocó department in Colombia is one of the places with
the highest average annual precipitation rates. Three

main rivers flow through the Chocó department: the Atrato,
the Baudó, and the San Juan [1]. Due to their relevance, a
monitoring system is required to preserve the security of their
nearby inhabitants. The Institute of Hydrology, Meteorology
and Environmental Studies of Colombia (IDEAM) is the
authority in charge of monitoring and predicting the possible
risk to the communities of any variation in level, flow,
and precipitation around all the rivers in Colombia. Several
stations of monitoring variables, such as level, flow, and
precipitation, are installed to evaluate the risk of the towns
located around the rivers [2]. However, these monitoring
systems do not provide an early warning system. In [3]
several prediction methods for emergency management are
presented based on statistic analysis, artificial intelligence,
and simulation method. In [4] an early warning system based
on fuzzy logic model is proposed in order to determine
the status of flood disaster. In [5] a analysis of real-time
modelling methods for flood forecasting is presented where
the system identification and forecasting is preferred due to
the system dynamics based on data measurements. Another
example is presented in [6], where a decision support system
is proposed for early prediction of water rise levels, based on
a neural network. However, these methods require an expert
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knowledge of the system dynamics or large amount of data
to obtain an adequate performance.

Several methods for system identification can be used
to estimate multivariable data [7], [8]. The methods are
based on a polynomial linear representation, including AR
models with exogenous inputs [9]. Data assimilation is an
alternative to updating the model parameters and improving
the estimation of a system. In [10] and [11] are proposed
estimation methods based on a Piecewise Auto-Regressive
eXogeneous (PWARX) in order to model precipitation, level,
and flow data based on. However, the methods do not
include correlation and time variability which is inherent
to the system dynamics. For example, in [12], a neural
network is combined with an ensemble Kalman filter to
emulate a dynamic model. In [13], a large fraction of data
are used for operational weather forecasts based on the
ensemble methodology. In addition, in [14] are evaluated the
prediction performances of flood models of a Multiple-Input
Single-Output (MISO) Auto regressive with Exogenous Input
(ARX) and MISO Auto regressive Moving Average with
Exogenous Input (ARMAX) where the ARMAX structure
shows a better performance than the ARX structure in terms
of the mean squared error. In [15] a prediction model based
on multi-layer perceptron networks is presented with and
optimized algorithm that improves the peformance of an
hydrologycal model. However, these approaches require a
large amount of data for reliable estimations (in some cases,
as in [15], more than 20 years of data measurements). On
another hand, in [16] are proposed optimal combinations
for ARX-based forecast models, where the nonlinear models
estimate more adequately the system dynamics.

A requirement in some scenarios is to design an estimation
method to estimate model dynamics where a reduced amount
of data is available [17], which results in a rank-deficient
inverse problem [18], [19]. An ill-posed, rank-deficient,
and ill-conditioned inverse problem can be solved using
regularization approaches like Tikhonov regularization. For
example, in [20], a multivariable AR model is proposed to
describe the dynamic model of a time series and improve
the solution of an inverse problem for state estimation.
In [21], an alternative to estimate a model based on
a regularized approach is proposed where the estimator
successfully suppresses the adverse effects of the output
noise. The regularization parameter selection is computed
using the generalized cross-validation method, as proposed
in [22], [23]. Another approach to obtain the estimation is
presented in [24], where a novel stochastic gradient algorithm
based on minimum Shannon entropy is proposed to estimate
the parameters of an ARX model with random impulse noise
by using a reduce amount of data.

This work presents a novel method for data assimilation
of a multivariable system that describes the behavior of
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water level, flow, and precipitation variables. The proposed
multivariable AR model considers correlations between
the water level, flow, and precipitation and is directly
estimated using real measurements. In order to estimate
system parameters, a regularized estimation of the model
is performed using Tikhonov regularization method with
generalized cross-validation for regularization parameter
selection. The main contributions of the proposed approach
are: first, only a reduced amount of data is required to
train the system, second, a linear multivariable model with
correlations among inputs and outputs is proposed to model
the system dynamics, and third, the proposed approach can
be generalized to several data-sets by including single output
or multiple outputs. The proposed approach is evaluated
by using data measured from a Colombian river located
in the Choco department in Colombia and data from
the meteorological information center of Argentina. The
proposed multivariable autoregressive regularized estimated
model is compared with three simultaneous univariable
models. An additional comparison is performed by
considering a least squares solution for parameter estimation.
This paper is organized as follows: In section II are presented
the multivariable AR model and the multivariable AR
regularized solution. In section III are introduced the results
and discussions of data estimation for two databases and
several order validations. And finally, in section IV are
presented the conclusions and future works.

II. THEORETICAL FRAMEWORK

A. AR multivariable model

Consider an AR multivariable model described as follows:

y[k] +A1y[k − 1] +A2y[k − 2] + · · ·+Apy[k − p] = e[k]
(1)

where Ai ∈ Rm×m are the model matrix parameters, with
i = 1, . . . , p being p the order of the system, e[k] ∈ Rm×1

the noise with m the number of outputs, and y[k] ∈ Rm×1

the measurement defined as:

y[k] =


y1[k]
y2[k]

...
ym[k]

 (2)

Equation (3) can be rewritten as follows:

yT [k] + yT [k − 1]AT
1 + · · ·+ yT [k − p]AT

p = eT [k] (3)

and then

yT [k] =
[
−yT [k − 1] · · · yT [k − p]

] A
T
1
...

AT
p

+ eT [k]

(4)

By considering the values of k = 0, . . . ,K, being K the
total number of samples, the following matrix relation can

be obtained:
yT [1]

...
yT [k]

...
yT [K]


︸ ︷︷ ︸

Y

=


−yT [0] · · · 0

...
−yT [k − 1] · · · −yT [k − p]

...
−yT [K − 1] · · · −yT [K − p]


︸ ︷︷ ︸

M

A
T
1
...

AT
p


︸ ︷︷ ︸

Θ

+


eT [1]

...
eT [k]

...
eT [K]


︸ ︷︷ ︸

ϵ

(5)

resulting in a discrete time measurement equation, as
proposed in [18], as follows:

Y = MΘ+ ϵ (6)

where matrix Y ∈ RK×m holds the measurements,
M ∈ RK×(m×p) is the Hankel matrix that holds the past
measurements, and Θ ∈ R(m×p)×m is the matrix that include
the AR model parameters, and ϵ ∈ RK×m represents the
non-modeled features of the system, i.e. observation noise,
and is assumed to be additive, white and Gaussian with zero
mean and with covariance matrix defined by Cϵ.

B. Multivarible AR Regularized Solution

The naive solution of an inverse problem associated to (6)
can be achieved by the least squares solution. This can be
performed by defining a functional given by

JLS = ∥Y −MΘ∥22,Cϵ
(7)

or

JLS = (Y −MΘ)TC−1
ϵ (Y −MΘ) (8)

and
∂JLS

∂Θ
= MTC−1

ϵ MΘ−MTC−1
ϵ Y (9)

by equaling (9) to zero, the following equation is obtained:

Θ̂LS = (MTC−1
ϵ M)−1MTC−1

ϵ Y (10)

being ΘLS the least-squares solution of the AR model of
(6). If Cϵ = I the solution for ΘLS proposed in (10) can be
simplified to

Θ̂LS = (MTM)−1MTY (11)

However, when the problem is rank-deficient, ill-posed
or ill conditioned [18], the application of the Tikhonov
Regularization Method can be performed, by defining a
functional as follows:

JTikh = ∥Y −MΘ∥22,Cϵ
+ λ2 ∥Θ∥22 (12)

or

JTikh = (Y −MΘ)TC−1
ϵ (Y −MΘ) + λ2ΘTΘ (13)
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and

∂JTikh

∂Θ
= MTC−1

ϵ MΘ−MTC−1
ϵ Y + λ2Θ (14)

by equaling (14) to zero, the following equation is obtained:

Θ̂Tikh = (MTC−1
ϵ M + λ2I)−1MTC−1

ϵ Y (15)

being λ the regularization parameter, being Θ̂Tikh the
regularized AR solution of (6). Equation (15) can be
simplified by defining Cϵ = I , resulting in

Θ̂Tikh = (MTM + λ2I)−1MTY (16)

It is worth mentioning that the regularization parameter λ
is computed by using the generalized cross validation (GCV)
method [25]. This method chooses a regularization parameter
λ that minimizes the following functional:

Γ(λ) =
∥Y −MΘλ∥22

(trace(I −Mλ))2
(17)

being the influence matrix Mλ defined by

Mλ = M(MTM + λ2I)−1MT (18)

and Θλ defined as

Θλ = (MTM + λ2I)−1MTY (19)

It is worth noting that for the selection of the regularization
parameter λ, the function (17) must be evaluated several
times for several λ values.

C. AR Hydrological model

In order to consider the correlation of water level, water
flow and precipitation, a multivariable AR model structure is
selected as presented in (3), being y[k] defined as follows:

y[k] =

yL[k]yF [k]
yP [k]

 (20)

where yL[k] is the water level at sample k, yF [k] is the
water flow, and yP [k] is the precipitation. Therefore, the
multivariable AR model can be defined as

y[k] = −
p∑

j=1

Ajy[k − j] + e[k] (21)

being Aj ∈ R3×3 the model parameters.
The model parameters are estimated by using (15),

resulting in a regularized AR multivariable estimated model
represented by ΘTikh, as follows:

ΘTikh =

A
T
1
...

AT
p

 (22)

The model (22) is updated for each new measurement, by
performing the data assimilation task.

An univariable AR model can also be defined for each
variable as follows:

yL[k] = −
p∑

j=1

aLj y[k − j] + eL[k] (23)

yF [k] = −
p∑

j=1

aFj y[k − j] + eF [k] (24)

yP [k] = −
p∑

j=1

aPj y[k − j] + eP [k] (25)

being aLj ∈ R the model parameters for the water
level variable, aFj ∈ R the model parameters for the
water flow variable, and aPj ∈ R the model parameters
for the precipitation variable. The model parameters for
each variable are estimated by using (15), resulting in a
regularized AR univariable estimated model represented by
ΘL, ΘF and ΘP , as follows:

ΘL
Tikh =

a
L
1
...
aLp

 ,ΘF
Tikh =

a
F
1
...
aFp

 ,ΘP
Tikh =

a
P
1
...
aPp

 (26)

The model parameters for each variable presented in (26) are
also updated for each new measurement, by performing the
data assimilation task.

It is worth mentioning that the parameters can also be
estimated by using the least squares method as described
in (10). In that case, the resulting parameters for the
multivariable AR model described in (22) are defined as
ΘLS , and the parameters (26) for level, flow and precipitation
variables are defined as ΘL

LS , ΘF
LS an ΘP

LS respectively.

III. RESULTS

A. Experimental setup
In order to validate the multivariable AR regularized

estimation method for data assimilation, a data set of
hydrological variables of Level, Flow and Precipitation
are analyzed. The data set is measured at a hydrological
station of the Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM). The IDEAM hydrological
station number 11047010 is located at the Colombia country,
in the Chocó Department, Municipality of Quibdo, at the
Atrato river. The sample time is 12 hours, and a total amount
of 1478 samples are considered.

In Table III-A is presented the geographical location of
the hydrological station where the data-set is measured.

TABLE I
LOCATION OF THE HYDROLOGICAL STATION

Station Coordinates
Longitude 76° 39’ 44.13” W
Latitude 5° 41’ 52. 77” N N
Altitude 20.83 MASL

The performance evaluation of the Multivariable AR
regularized estimation is compared with univariable models
estimated by using the same regularized approach. In
addition, the proposed approach is also compared with the
least squares solution by considering a sufficient amount
of data. The performance is analyzed in terms of the least
squares error. Additional analysis is performed using a
reduced amount of data for parameter estimation.
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B. Regularized AR Univariable estimation results

The estimation results for the AR model parameters
are computed for each of the variables: Level, Flow, and
Precipitation. The regularized AR univariable solution by
using Tikhonov is compared with the real data and the least
squares AR estimation. The regularization parameter λ is
selected independently for each data set using the GCV
method. A system of order 10 is selected to exemplify the
proposed approach’s behavior.

In Fig. 1 is presented the selection of the regularization
parameter by using GCV method for the Level variable.

Fig. 1. Selection of the regularization parameter λ by using the GCV
method for Level variable.

The selected value for λ regularization parameter is
λ = 42.1861. By using this value, the vector of estimated
parameters ΘL for the Level variable by using the regularized
AR estimation method can be computed. It is worth
noting that the regularization parameter implies a smoothing
effect in the estimated signal, where an increase in the
regularization parameter can be viewed as a smoother
estimated signal.

In (27) are shown the vectors for estimated parameters by
using the regularized AR method ΘL

Tikh and the least squares
method ΘL

LS for a system of order 10.

ΘL
LS =



0.8174
−0.1804
0.1300
−0.0007
−0.007
0.1326
−0.0918
0.1929
−0.1506
0.1525


,ΘL

Tikh =



0.6396
−0.0095
0.0715
0.0298
0.0159
0.0878
−0.0094
0.1083
−0.0463
0.1053


(27)

By considering the estimated parameters of (27) for the
regularized AR model ΘL

Tikh, and the least squares AR
model ΘL

LS for a system of order 10, a comparison with
the real data can be performed. In Fig. 2 is presented the
comparison of the estimated signals by using the real data,
ΘL

LS and the ΘL
Tikh is presented. An additional zoom of the

first 200 samples is also shown to clarify the results.

Fig. 2. Comparison of the estimated signals by using the real level data,
ΘL

LS and the ΘL
Tikh, order 10

In Fig. 3 is presented the selection of the regularization
parameter by using GCV method for the Flow variable.

Fig. 3. Selection of the regularization parameter λ by using the GCV
method for Flow variable.

The selected value for λ regularization parameter is λ =
223.3113. By using this value, the vector of estimated
parameters ΘF for Flow variable by using the regularized
AR estimation method can be computed.

In (28) are shown the vectors for estimated parameters by
using the regularized AR method ΘF

Tikh and the least squares
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method ΘF
LS for a system of order 10.

ΘF
LS =



0.6132
0.0008
0.0325
0.0221
0.0022
0.0811
0.0259
0.0676
−0.0169
0.1388


,ΘF

Tikh =



0.4613
0.0827
0.0417
0.0314
0.0218
0.0660
0.0474
0.0605
0.0264
0.1169


(28)

By considering the estimated parameters of (28) for the
regularized AR model ΘF

Tikh, and the least squares AR
model ΘF

LS for a system of order 10, a comparison with
the real Flow data can be performed. In Fig. 4 is presented
the comparison of the estimated signals by using the real
data, ΘF

LS and the ΘF
Tikh is presented. An additional zoom

of the first 200 samples is also shown.

Fig. 4. Comparison of the estimated signals by using the real Flow data,
ΘF

LS and the ΘF
Tikh, order 10

In Fig. 5 is presented the selection of the regularization
parameter by using GCV method for the Precipitation
variable.

Fig. 5. Selection of the regularization parameter λ by using the GCV
method for Precipitation variable

The selected value for λ regularization parameter is
λ = 33.1963. By using this value, the vector of estimated
parameters ΘF for Precipitation variable by using the
regularized AR estimation method can be computed.

In (29) are shown the vectors for estimated parameters by
using the regularized AR method ΘP

Tikh and the least squares
method ΘP

LS for a system of order 10.

ΘP
LS =



0.1548
0.1467
0.0332
0.1137
0.1068
0.0442
0.0940
0.0983
0.0513
0.0292


,ΘP

Tikh =



0.11852
0.1138
0.0537
0.0947
0.0899
0.0589
0.0833
0.0843
0.0611
0.0461


(29)

By considering the estimated parameters of (29) for the
regularized AR model ΘP

Tikh, and the least squares AR
model ΘP

LS for a system of order 10, a comparison with
the real Precipitation data can be performed. In Fig. 6 is
presented the comparison of the estimated signals by using
the real data, ΘP

LS and the ΘP
Tikh is presented. An additional

zoom of the first 200 samples is shown in order to clarify
the results.
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Fig. 6. Comparison of the estimated signals by using the real Precipitation
data, ΘP

LS and the ΘP
Tikh, order 10

An additional comparison of the estimated results for the
regularized AR method and the least squares AR method for
a system of order 30 are presented in Fig. 7, Fig. 8, and Fig.
9. It can be seen that the obtained results are similar to the
ones presented in Fig. 2, Fig. 4 and Fig. 6.

Fig. 7. Comparison of the estimated signals by using the real Level data,
ΘP

LS and the ΘP
Tikh, order 30.

Fig. 8. Comparison of the estimated signals by using the real Flow data,
ΘP

LS and the ΘP
Tikh, order 30.

Fig. 9. Comparison of the estimated signals by using the real Precipitation
data, ΘP

LS and the ΘP
Tikh, order 30.

It is worth mentioning that the selection of the
regularization parameter λ is directly related to how much
we want to penalize or adjust the flexibility of our model.

C. Regularized AR multivariable estimation results

The regularized AR multivariable solution by using
Tikhonov is also compared with the real data and the least
squares AR estimation. The selection of the regularization
parameter λ is performed for each data-set by using the
GCV method. A system of order 10 is selected in order to
exemplify the behavior of proposed approach.
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Three λ values are obtained by using the GCV method
related to each of the variables analyzed: Level, Flow and
Precipitation. In Fig. 10 is presented the selection of the
regularization parameter by using GCV method for the Level
variable.

Fig. 10. Selection of the regularization parameter λ by using the GCV
method for Level variable

In Fig. 11 is presented the selection of the regularization
parameter by using GCV method for the Flow variable.

Fig. 11. Selection of the regularization parameter λ by using the GCV
method for Flow variable

In Fig. 11 is presented the selection of the regularization
parameter by using GCV method for the Precipitation
variable.

Fig. 12. Selection of the regularization parameter λ by using the GCV
method for Precipitation variable

The selected values of λ for each variable are λL =
32.3677, λF = 149.51, λP = 34.9909. By considering
these values the mean of λL, λF and λP is selected as the
regularization parameter for the regularized AR multivariable
estimated solution, as λ = 72.28.

In (30) and (31) are shown the matrices of estimated
parameters by using the regularized AR method ΘTikh and
the least squares method ΘLS for a system of order 10.

ΘLS =



0.5898 0.0098 −0.0033
0.1733 0.8223 0.0076
0.5969 0.1230 0.1225
0.0281 −0.0012 0.0041
−0.3180 −0.1342 0.0183
0.3011 0.1065 0.1182
0.0160 0.01959 −0.0044
0.2094 0.1111 −0.0021
0.0956 0.02219 0.0028
0.0127 −0.0087 0.0021
−0.0091 0.02068 −0.0073
0.2143 0.0307 0.0832
0.0168 −0.0002 0.0007
0.3114 0.1271 0.0118
−0.3450 0.1539 0.0809



(30)

ΘTikh =



0.5883 0.0199 −0.0023
0.1445 0.7242 0.0103
0.2978 0.0747 0.0664
0.0245 −0.0069 0.0040
−0.2332 −0.0351 0.01676
0.1756 0.0635 0.0649
0.0202 0.0203 −0.0041
0.1527 0.0854 0.0010
0.0748 0.0293 0.0148
0.0093 −0.0074 0.0018
0.0403 0.0450 −0.0040
0.1136 0.0299 0.0483
0.0198 −0.0009 0.0006
0.2794 0.1266 0.0117
−0.1349 0.0839 0.0464



(31)
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By considering the estimated parameters of (30) and (31)
for the regularized multivariable AR model ΘTikh, and the
least squares AR model ΘLS for a system of order 10,
a comparison with the real Level, Flow and Precipitation
data can be performed. In Fig. 13, Fig. 14 and Fig. 15 are
presented the comparison of the estimated signals by using
the real data, an the estimated model parameters ΘLS and
ΘTikh, for level, flow and precipitation respectively.

Fig. 13. Comparison of the estimated signals by using the real level data,
and estimated data by using ΘLS and the ΘTikh for a system of order 10

Fig. 14. Comparison of the estimated signals by using the real flow data,
and estimated data by using ΘLS and the ΘTikh for a system of order 10

Fig. 15. Comparison of the estimated signals by using the real precipitation
data, and estimated data by using ΘLS and the ΘTikh for a system of order
10

A comparison of the estimated results for the univariable
and multivariable AR model estimated by Tikhonov
regularization and least squares is also presented. The mean
squared error is used for this comparison by considering
models of orders 2 to 30. Fig. 16 shows the error comparison
analysis for the Level variable, estimated for the univariable
AR model with the least squares method (ELS) and the
Tikhonov method (ELST), and the multivariable AR model
with the least squares method (ELM), and the Tikhonov
method (ELMT).

Fig. 16. Level variable estimation error comparison for the univariable
AR model with the least squares method (ELS) and the Tikhonov method
(ELST), and for the multivariable AR model with the least squares method
(ELM), and the Tikhonov method (ELMT)

A similar comparison is presented in Fig. 17 for the flow
variable.
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Fig. 17. Flow variable estimation error comparison for the univariable
AR model with the least squares method (EFS) and the Tikhonov method
(EFST), and for the multivariable AR model with the least squares method
(EFM), and the Tikhonov method (EFMT)

A similar comparison is presented in Fig. 18 for the
precipitation variable.

Fig. 18. Precipitation variable estimation error comparison for the
univariable AR model with the least squares method (EFS) and the Tikhonov
method (EFST), and for the multivariable AR model with the least squares
method (EFM), and the Tikhonov method (EFMT)

From Fig. 16, Fig. 17 and Fig. 18 it can be seen that
the lower error is achieved by the multivariable AR models,
being the regularized AR model the least error.

D. Estimation under a Rank-deficient scenario

An additional evaluation is performed by using a
reduced amount of data. This evaluation allows to verify
the performance of the proposed approach under near
rank-deficient conditions. In Fig. 19, Fig. 20 and Fig. 21
are presented the estimation results for an univariable AR
system for level, flow and precipitation data respectively. The
estimation is performed for 40 data samples with a system
of order 30.

Fig. 19. Estimation results for an univariable AR system for level order
30 with a sample of 40 data.

Fig. 20. Estimation results for an univariable AR system for flow order
30 with a sample of 40 data.

Fig. 21. Estimation results for an univariable AR system for precipitation
order 30 with a sample of 40 data.

It can be seen that the regularized AR model estimated
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adequately the real data with lower estimation error than the
least squares approach.

E. Validation of univariable AR model for a Parana river
level data sample

In order to validate the proposed regularized AR model,
a data sample from the province of Formosa in Argentina is
considered. This station shows the river level in the Paraná
basin from April 4, 2021, to April 4, 2022. The data is
measured by Argentina’s Meteorological Information Center
(CIM) [10]. A comparison analysis is performed for the
estimation of model parameters by using the Tikhonov and
the least squares estimation methods. The resulting model
parameters are presented in (32).

ΘL
LS =



0.5974
0.3094
0.1146
0.0192
0.0288
0.0246
−0.0024
0.0019
−0.0558
−0.0408


,ΘL

Tikh =



0.5974
0.3094
0.1146
0.0191
0.0288
0.0246
−0.0024
0.0019
−0.0558
−0.0408


(32)

In Fig. 22 are presented the estimation results for the level
of a model of order 10.

Fig. 22. Estimation results by using the least squares and the Tikhonov
estimation methods by a model of order 10

Additional results are obtained by considering an
estimated model of order 30. In Fig. 23 are presented the
estimation results for the level of a model of order 30.

Fig. 23. Estimation results by using the least squares and the Tikhonov
estimation methods by a model of order 30

In order to evaluate the performance of the proposed
approach, a comparison analysis in terms of the mean
squared error is computed. In Fig. 24 are shown the
estimation error by using least squares (ELS) and Tikhonov
regularization (ELST).

Fig. 24. Estimation error for a system of order 30 by using the estimated
model by least squares (ELS) and Tikhonov regularization (ELST)

IV. CONCLUSIONS

This work evaluates a multivariable regularized AR model
for hydrological variables. These results are critical in
understanding the required model for predicting a real-time
risk evaluation of variables. It can be seen that a large order
model is required to adequately describe the data behavior,
which is validated for several orders (from 1 to 30). The
proposed approach adequately models Colombian river data
and can be generalized for other systems. In addition, when
a reduced amount of data is required, the regularized AR
model still tracks the data adequately. It is worth mentioning
that the procedure to update model parameters is performed
according to the data assimilation techniques, typically a
sequential time-stepping process, in which estimation is
compared with the new measurements, and then the model
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is updated to reflect all the observations. In addition, the
regularized multivariable AR model can describe the data
behavior’s correlation. Instead, the univariate model can not
model this correlation. In future works, a model for data
assimilation that considers an AR with exogenous inputs
and a dynamical neural network for model identification
will be considered. An additional evaluation by considering
the terrain’s topography can also be computed to design an
effective Flood Early Warning System.
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