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Abstract—In this paper, a modified generalized relaxed s-
plitting (MGRS) preconditioner is established to accelerate the
convergence of the associated Krylov subspace methods, which
is often used to solve generalized saddle point problems. Some
spectral characteristics of the preconditioned matrices are also
studied. Finally, numerical experiments are also reported to
show the efficiency of the proposed preconditioner.

Index Terms—saddle point problem, preconditioner, krylov
subspace method, matrix splitting.

I. INTRODUCTION

In the current study, we are interested in efficient solutions
of the following generalized saddle point problems, which
arise from the discretization of two-dimensional linearized
Navier-Stokes equations [1], [2], [3], [17], [18]:

Au ≡

 A1 0 BT
1

0 A2 BT
2

−B1 −B2 C


 u1

u2

p

 =

 f1

f2

−g

 ≡ b, (1)

where A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 are nonsymmetric
positive definite matrices, B1 ∈ Rm×n1 , B2 ∈ Rm×n2 have
full row rank, and C ∈ Rm×m is a symmetric positive semi-
definite matrix, u, b ∈ Rn+m, u1, f1 ∈ Rn1 , u2, f2 ∈ Rn2

and u1, u2, p are the unknown vectors. These assumptions
guarantee the existence and uniqueness of the solution of
the linear system (1).

The coefficient matrix A of the system (1) is often
large-scale and sparse, the preconditioned Krylov subspace
methods have been preferably considered to approximate
the solution of generalized saddle point problems (1), e-
specially the preconditioned GMRES [10] method. A lots
of preconditioners are introduced in the past few years for
generalized saddle point problems, such as the block diagonal
preconditioners [4], constraint preconditioners [8], Hermitian
and skew-Hermitian splitting (HSS) preconditioners [5], [6],
[7], dimensional split preconditioners [1], [2], [3], and other
matrix splitting preconditioners [12], [13], [14]. Moreover,
the effectiveness of these block preconditioners has been also
verified in aspects of both theoretical and numerical results.
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Each type of block preconditioners has its own advantages
and disadvantages, and they might play out differently in
accelerating Krylov subspace methods for solving various
generalized saddle-point systems.

Recently, when C = 0, based on the dimensional splitting
(DS), Benzi and Guo [1] had proposed a DS preconditioner

PDS =
1

2α

 αI +A1 0 BT
1

0 αI 0

−B1 0 αI

 αI 0 0

0 αI +A2 BT
2

0 −B2 αI

 ,

where α is a positive parameter and I is the identity matrix.
In order to get a better approximation of the coefficient

matrix A, Benzi et al. [2] proposed an improved variant of
the DS preconditioner, which is called the relaxed dimen-
sional factorization (RDF) preconditioner of the form:

PRDF =
1

α

 A1 0 BT
1

0 αI 0

−B1 0 αI


 αI 0 0

0 A2 BT
2

0 −B2 αI

 .

When C ̸= 0, Cao et al. [3] introduced a modified
dimensional splitting (MDS) preconditioner as follows:

PMDS =
1

α

 αI +A1 0 BT
1

0 αI 0

−B1 0 αI



×

 αI 0 0

0 αI +A2 BT
2

0 −B2 αI + C

 .

Therefore, we can get the difference between the MDS pre-
conditioner PMDS and the generalized saddle point matrix
A

PMDS −A =

 αI − 1
αB

T
1 B2

1
αB

T
1 C

0 αI 0

0 0 αI

 . (2)

In this paper, a variant of the MDS preconditioner is
proposed for the generalized saddle point problems (1)
in Section II, which is much better approximation to the
coefficient matrix A of the generalized saddle point problems
than the MDS preconditioner. In Section III, some properties
of the preconditioned matrix are established. In Section IV,
numerical experiments are given to show the effectiveness
of the new preconditioner. Finally, the paper closes with
conclusions in Section V.
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II. THE MODIFIED GENERALIZED RELAXED SPLITTING
(MGRS) PRECONDITIONER

In this section, based on the following modified dimen-
sional splitting iteration method{

(αI +A1)u
(k+ 1

2 ) = (αI −A2)u
(k) + b,

(αI +A2)u
(k+1) = (αI −A1)u

(k+ 1
2 ) + b,

where

A1 =

 A1 0 BT
1

0 0 0

−B1 0 0

 , A2 =

 0 0 0

0 A2 BT
2

0 −B2 C

 ,

and A = A1 + A2 [3], we can establish a variant of the
generalized relaxed splitting preconditioner

PMGRS =
1

α

 A1 0 BT
1

0 αI 0

−B1 0 αI

 αI 0 0

0 A2 BT
2

0 −B2 C

 . (3)

By direct calculation, the preconditioner PMGRS has the
following block structure

PMGRS =

 A1 − 1
αB

T
1 B2

1
αB

T
1 C

0 A2 BT
2

−B1 −B2 C

 ,

and the difference between the preconditioner PMGRS and
the generalized saddle point matrix A is given by

PMGRS −A =

 0 − 1
αB

T
1 B2

1
αB

T
1 (C − αI)

0 0 0

0 0 0

 . (4)

Compared with (2), the block diagonal matrices in (4) vanish.
Therefore, we expect that, the preconditioner PMGRS is
much better approximation to the coefficient matrix A of the
generalized saddle point problems than the MDS precondi-
tioner and can perform better than the MDS preconditioner
PMDS in the preconditioned Krylov subspace methods.

First, we need the following lemma.
Lemma 2.1: Let

M1 =

 A1 0 BT
1

0 αI 0

−B1 0 αI


and

M2 =

 αI 0 0

0 A2 BT
2

0 −B2 C

 .

Then

M−1
1 =


Â−1

1 0 − 1
α Â

−1
1 BT

1

0 1
αI 0

1
αB1Â

−1
1 0 1

α2 I − Â−1
1 S1



M−1
2 =


1
αI 0 0

0 A−1
2 − S2 −A−1

2 BT
2 Ĉ

−1

0 Ĉ−1B2A
−1
2 Ĉ−1

 .

where Â1 = A1 + 1
αB

T
1 B1, S1 = B1Â

−1
1 BT

1 , Ĉ = C +

B2A
−1
2 BT

2 , and S2 = A−1
2 BT

2 Ĉ
−1B2A

−1
2 .

Proof. We can factorize M1 as

M1 =

 I 0 1
αB

T
1

0 I 0

0 0 I


 A1 +

1
αB

T
1 B1 0 0

0 αI 0

0 0 αI



×

 I 0 0

0 I 0

− 1
αB1 0 I

 .

Then

M−1
1 =

 I 0 0

0 I 0
1
αB1 0 I


 Â−1

1 0 0

0 1
αI 0

0 0 1
αI



×

 I 0 − 1
αB

T
1

0 I 0

0 0 I



=


Â−1

1 0 − 1
α Â

−1
1 BT

1

0 1
αI 0

1
αB1Â

−1
1 0 1

α2 I − Â−1
1 S1

 ,

where Â1 = A1 +
1
αB

T
1 B1, and S1 = B1Â

−1
1 BT

1 .
We can factorize M2 as

M2 =

 I 0 0

0 I 0

0 −B2A
−1
2 I


 αI 0 0

0 A2 0

0 0 Ĉ



×

 I 0 0

0 I A−1
2 BT

2

0 0 I

 .

where Ĉ = C +B2A
−1
2 BT

2 . Then

M−1
2 =

 I 0 0

0 I −A−1
2 BT

2

0 0 I




1
αI 0 0

0 A−1
2 0

0 0 Ĉ−1



×

 I 0 0

0 I 0

0 B2A
−1
2 I



=


1
αI 0 0

0 A−1
2 − S2 −A−1

2 BT
2 Ĉ

−1

0 Ĉ−1B2A
−1
2 Ĉ−1

 ,

where S2 = A−1
2 BT

2 Ĉ
−1B2A

−1
2 .

The implementation of the preconditioner PMGRS also
needs to solve a system of linear equations at each step of
the generalized minimum residual (GMRES) method. The
system of linear equations is of the form

PMGRS

 z1

z2

z3

 =

 r1

r2

r3

 . (5)
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The preconditioner PMGRS can be factorized as

PMGRS =

 I 0 1
α
BT

1

0 I 0

0 0 I

 A1 + 1
α
BT

1 B1 0 0

0 I 0

−B1 0 I


×

 I 0 0

0 I 0

0 −B2A
−1
2 I

 I 0 0

0 A2 BT
2

0 0 C +B2A
−1
2 BT

2

 .

Then, by Lemma 2.1, we have z1

z2

z3

 =

 I 0 0

0 A−1
2 −A−1

2 BT
2 (C +B2A

−1
2 BT

2 )−1

0 0 (C +B2A
−1
2 BT

2 )−1

×

 I 0 0

0 I 0

0 B2A
−1
2 I

 (A1 + 1
α
BT

1 B1)−1 0 0

0 I 0
1
α
B1(A1 + 1

α
BT

1 B1)−1 0 I


×

 I 0 − 1
α
BT

1

0 I 0

0 0 I

 r1

r2

r3

 .

III. SPECTRAL PROPERTY OF THE PRECONDITIONED
MATRIX

The following theorem provides the spectrum results of
the preconditioned matrix P−1

MGRSA.
Theorem 3.1: Let the preconditioner PMGRS be defined

in (3), then the preconditioned matrix P−1
MGRSA has an

eigenvalue 1 with multiplicity at least n, and the remain-
ing eigenvalues are 1 − λ, where λ satisfy the following
generalized eigenvalue problem

S1A
−1
2 BT

2 + S1(C − αI) = αλĈx.

Proof. Using the equalities (3) and (4), we have

P−1
MGRSA = I − P−1

MGRS (PMGRS −A)

= I −


1
αI 0 0

0 A−1
2 − S2 −A−1

2 BT
2 Ĉ

−1

0 Ĉ−1B2A
−1
2 Ĉ−1



×


0 −Â1

−1
BT

1 B2 Â1B
T
1 (C − αI)

0 0 0

0 − 1
αS1

1
αS1(C − αI)


= I −

[
0 M12

0 M22

]
,

where
M22 = XY,

with

X =

[
−A−1

2 BT
2 Ĉ

−1

Ĉ−1

]
∈ R(n2+m)×m,

Y =
[
− 1

αS1
1
αS1(C − αI)

]
∈ Rm×(n2+m).

Therefore, M22 has an eigenvalue 0 of multiplicity at least
n2 and the remaining eigenvalues are the eigenvalues of the
matrix Y X , where

Y X =
1

α
S1A

−1
2 BT

2 Ĉ
−1 +

1

α
S1(C − αI)Ĉ−1.

Then the preconditioned matrix P−1
MGRSA has an eigenvalue

1 with multiplicity at least n, and the remaining eigenvalues
are 1 − λ, where λ satisfy the following generalized eigen-
value problem

S1A
−1
2 BT

2 + S1(C − αI) = αλĈx.

Remark 3.1: By Theorem 3.1, we can get, the degree
of the minimal polynomial of the preconditioned matrix
P−1
MGRSA is at most m + 1. Therefore, the dimension of

the Krylov subspace K(P−1
MGRSA, b) is at most m+ 1.

IV. NUMERICAL EXAMPLES

All the numerical experiments were performed with MAT-
LAB 2014a under the Windows 7 operating system. In all of
our runs we used a zero initial guess. The stopping criterion
is ||r(k)||2/||r(0)||2 ≤ 10−6, where r(k) is the residual vector
after k-th iteration. The right-hand side vectors b and q are
taken such that the exact solutions x and y are both vectors
with all components being 1. The initial guess is chosen to
be zero vector.

Consider the following Stokes type problem:
−ν∆u + (u.∇)u +∇p = f, in Ω,

−divu = 0, in Ω,

u = g, on Γ.

(6)

Here u denotes the velocity vector field, p is the pressure,
Ω is a bounded domain. A stable finite element or finite
difference method applied to discretize the problem leads to
the solution of the generalized saddle point linear system.

The generated test problems are leaky two-dimensional
lid-driven cavity problems in square domain (−1, 1)×(−1, 1)
with the lid flowing from the left to right. A Dirichlet no-
flow condition is applied on the side and bottom boundaries.
The nonzero horizontal velocity on the lid is chosen to
be {y = 1;−1 ≤ x ≤ 1 |ux = 1}. Using the IFISS software
written by Silvester, Elman and Ramage [11] to discretize
(1), we take a finite element subdivision based on uniform
grids of square elements. The mixed finite element used is
the bilinear-constant velocity u pressure: Q1 − P0 pair.

TABLE I
GMRES(30) NUMERICAL RESULTS FOR OSEEN PROBLEM WITH ν = 1.

Grid 16× 16 32× 32 64× 64
MGRS IT 4 4 4

CPU 0.0866 0.4835 4.5181
MDS IT 31 36 45

CPU 0.2598 1.2995 8.3888
HSS IT 43 61 105

CPU 0.8962 11.0854 39.8236

The eigenvalue distributions of the original and the pre-
conditioned matrices P−1

MGRSA are given in Figures 1 and 2,
we can observe that, the eigenvalues of preconditioned matrix
P−1
MGRSA are much more clustered than the eigenvalues of

the original matrix. From Table 1, we can see that the mod-
ified generalized relaxed splitting preconditioner PMGRS

for generalized saddle point problems can accelerate the
convergence rate of the GMRES method efficiently, including
the CPU time and iteration steps.
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Fig. 1. Eigenvalues distribution of the original matrix with grid 16 × 16
with ν = 1.
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Fig. 2. Eigenvalues distribution of the preconditioned matrix with grid
16× 16 with ν = 1.

V. CONCLUSION

In this paper, a modified generalized relaxed splitting
(MGRS) preconditioner has been established. The
preconditioner PMGRS can be also employed to accelerate
the Krylov subspace method with inexact inner solves.
Numerical experiments have shown the effectiveness of
the new preconditioner. Admittedly, the optimal parameters
α∗ are crucial for guaranteeing fast convergence speeds
of these parameter-dependent iteration methods, but they
are generally very difficult to be determined, refer, e.g., to
the recently related work [15], [16], this topic will be the
subject of our future research.
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