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Abstract—For a class of multi-input multi-output (MIMO)
uncertain nonlinear systems, an event-triggered adaptive fuzzy
fault-tolerant tracking control method with prescribed perfor-
mance is proposed in the presence of unknown actuator faults
and external disturbances. To reduce the communication bur-
den, the event-triggered signal based on the relative threshold
is introduced; and a novel error conversion function is designed
to achieve the preset performance and track the system output.
The fuzzy logic system is used to approximate all unknown
nonlinearities of the closed loop system. By using backstepping
method, the adaptive controller of the system is designed, and
the stability of the system is analyzed. Finally, the simulation
results verify the effectiveness of the proposed control method.

Index Terms—Event-triggered control(ETC), prescribed per-
formance control(PPC), fault-tolerant control(FTC), fuzzy sys-
tems, MIMO unknown nonlinear systems

I. INTRODUCTION

IN the actual automation sector, actuators or sensors fre-
quently fail or malfunction [1], resulting in a deterioration

in system performance or even process disruption and ensu-
ing losses. In response to industry demands, fault-tolerant
control (FTC) has emerged as a popular topic that piques
the interest of many academics. In the past few decades,
several FTC-related findings have progressed [2]–[8]. Sepa-
rately, an fault-tolerant control was presented for single-input
single-output (SISO) nonlinear systems [9] in the presence
of prescribed performance [3], unknown direction [4], and
finite time restriction [5] was researched. Fulfil the demands
of increasingly complex industrial environments, the fault-
tolerant technique was extended to MIMO nonlinear systems
[6], [7] and Markov jump systems [8] in which we have
taken both lock-in-place and loss of effectiveness mistakes
into account.
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In addition, one of the most critical factors to consider
when operating is dealing with the system’s performance
limitations. It is primarily because transient and steady-state
tracking performances are typically needed in many real-
world systems and theories. Consequently, certain projects
[10]–[16] have utilized the recommended performance con-
trol measures to overcome performance constraints. To
meet the performance restriction for nonlinear systems, the
writers of [10] created a prescribed performance control
first (PPC). In addition, Bechlioulis C P et al. in [11]
suggested an improved performance-constrained control ap-
proach for affine MIMO nonlinear systems to eliminate the
affine problem.Using dynamic surface [12], FLS [13], and
Approximation-Free [14]; subsequently, they use the PPC
approach to construct adaptive controllers for several kinds
of unknown nonlinear systems. However, few results exist in
the literature for the PPC with unknown nonlinear systems
that account for actuator or sensor failure. [15] suggested one
robust finite-time control strategy with specified performance
for a class of high-order nonlinear systems. Then, to attain
asymptotic stability for a category of unknown MIMO non-
linear systems with actuator faults, [16] proposes a learning-
based fault-tolerant controller.

It is crucial to point out that the literature mentioned above
ignores the control system’s communication burden, which
might also result in unneeded work overload. The develop-
ment of event-triggered control technology was encouraged
to bypass these issues, which effectively conserves energy
resources while reducing the controllers’ computational costs
[17]–[24]. Based on three different tactics, Xing et al. estab-
lished some innovative event-triggered design methodologies
for a range of nonlinear systems and published their findings
[17]. After that, an event-triggered output feedback control
strategy was proposed to achieve effectiveness while assuring
the presetted disturbance attenuation level. This level was
specified by the L2 ∼ L∞ performance index in [18]. Also,
in [19], [20], two event-triggered adaptive fuzzy tracking
control techniques for stochastic nonlinear systems were
investigated. Further, in [21]–[24], Sahoo et al. applied
an event-triggered control technique to MIMO nonlinear
systems. Recently, in [25], [26], important developments
combining event-triggered and prescribed performance for
classes of SISO nonlinear systems have been accomplished.
By introducing the prescribed performance functions [25],
it is feasible to specify the constraint requirements on the
tracking error. Then these errors can converge to a small
residual set, all while the maximum overshoot is smaller
than a predetermined amount. Also, to overcome the full-
state limitations for unsettled nonstrict-feedback nonlinear
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systems, the authors in [26] presented an observer-based
adaptive fixed-time prescribed performance control.

Several event-triggering adaptive performance control
problems for various MIMO nonlinear systems with un-
predictable nonlinear properties are researched due to the
discussion above. The following are the primary benefits and
contributions of the suggested technique in comparison to
some of the previous findings:

1) Introducing a relative event-triggered mechanism mini-
mizes communication costs. Therefore a more precise input
signal than previous results [4], [5], [7] can be applied to the
controller.

2) A new error transform function inspired by the inverse
hyperbolic tangent function was first proposed to implement
PPC. In addition, the prescribed adaptive control strategy can
be adapted to nonlinear system uncertainties and actuator
defects. Consequently, the assumption of a nonlinear system
can be relaxed, allowing the use of the proposed control
strategy in various nonlinear systems.

II. SYSTEM DESCRIPTIONS AND PREPARATORY
KNOWLEDGE

A. System descriptions

The considered nonlinear system takes the form shown
below:

ẋi,1 =fi,1
(
xi,1
)

+ gi,1
(
xi,1
)
xi,2 + di,1(t)

...

ẋi,ni−1 =fi,ni−1

(
xi,ni−1

)
+ gi,ni−1

(
xi,ni−1

)
xi,ni

+ di,ni−1(t)

ẋi,ni
=fi,ni

(x) + gi,ni
(x)ui,f + di,ni

(t)

yi =xi,1

(1)

where xi,j = [xi,1, xi,2, · · · , xi,j ]T ∈ Rj , i =

1, 2, · · · ,m;x =
[
xT1,n1

, xT2,n2
, · · · , xTm,nm

]T ∈ R
∑m

i=1 ni

indicate the system states; yi,r ∈ R is the reference signals;
fi,j(·) :∈ Rj → R and gi,j(·) :∈ Rj → R stand for
the unknown but smooth nonlinear functions; the external
disturbances di,j(t) ∈ R are continuous in t. The signs of
the virtual control coefficient serve as the role of control
direction of the jth system of Equation (1), and ui,f ∈ R
represent actuator failure, which is described as follows

ui,f = %i(t)νi(t) + ζi(t) (2)

where νi(t) indicates the actual input signal, %i(t) and ζi(t)
respectively represent the partial loss of effectiveness and the
failure satisfying Assumption 1.

Following that, a few lemmas and assumptions will need
to be introduced. And, in the discussion that follows, for the
sake of simplifying writing, denote fi,j

(
xi,j
)

and gi,j
(
xi,j
)

as fi,j and gi,j , respectively. Additionally, the time variable
t is missing from most variables. For instance, denote ηi,j =

ηi,j(t), ρi,j = ρi,j(t), yi,r = yi,r(t), y
(ri)
i,r = y

(ri)
i,r (t) and so

on.
Assumption 1: Some undetermined positive constants

%
i
, ζ̄i and d̄i, respectively, in such a way that

0 < %
i
≤ %i ≤ 1, |ζi| ≤ ζ̄i, |di,j | < d̄i (3)

with i = 1, 2, · · · ,m, j = 1, 2, · · · , ni
Assumption 2: The signs of gi,j , (i = 1, 2, · · · ,m, j =

1, 2, · · · , ni) are determined, and undetermined constants bm
and bM satisfying

0 < bm ≤ |gi,j | ≤ bM <∞ (4)

Remark 1: Assumption 2 implies undefined function
gi,j , (i = 1, 2, · · · ,m, j = 1, 2, · · · , ni) are either strictly
positive or strictly negative. Generally, gi,j > 0.

Assumption 3: Target tracking trajectory yi,r, (i =
1, 2, · · · ,m) and its derivatives up to order ri are continuous
and bounded.

B. Prescribed performance control

The error variables of the jth subsystem are as follows:

zi,1 = xi,1 − αi,0, αi,0 = yi,r

zi,j = xi,j − αi,j−1, j = 2, 3, . . . , ni
(5)

where αi,j , (i = 1, 2, · · · ,m, j = 0, 1, · · · , ni) denotes
virtual control laws and yi,r are the expected trajectory.
Achieving PPC for each subsystem j, the prescribed per-
formance function is defined as

ρi,j =
(
ρ

(0)
i,j − ρ

(∞)
i,j

)
e−κi,j + ρ

(∞)
i,j (6)

with ρ(0)
i,j > ρ

(∞)
i,j > 0, κi,j > 0 such that

|zi,j(0)| < |ρi,j(0)| (7)

To ensure |zi,j | < |ρi,j | ,∀t ≥ 0, let’s define error transfor-
mation functions as follows:

ηi,j(t) =
ln
(
ρi,j+zi,j
ρi,j−zi,j

)
1− z2i,j

ρ2i,j

(8)

Remark 2: In the above equation, ηi,j stands for the error
transformation function, which is inspired by this hyperbolic
tangent function tanh−1(x) = 1

2 ln
(

1+x
1−x

)
. From the prop-

erties of hyperbolic tangent function tanh−1(x), it will not
be ±∞ for any given x satisfying |x| < 1. This implies
that ηi,j is bounded if inequality |zi,j | < |ρi,j | holds. Later
stability analysis will benefit from the boundedness of ηi,j .

C. Event-Triggered control

The following is a definition of control based on a relative
threshold:

ωi =− (1 + τi,0)

(
αi,ni

tanh(
ηi,niαi,ni

εiρi,ni

)

+ µi,1 tanh
(ηi,niµi,1
εiρi,ni

)) (9)

νi = ωi (td) , ∀t ∈ [td, td+1) (10)

td+1 = inf {t ∈ R‖ei(t)| ≥ τi,0|νi(t) | +µi,2} (11)

where the signal αi,ni
will be design later, ei = ωi − νi.

εi, µi,1, µi,2 are positive parameters, as well as µi,2 > 0,
0 < τi,0 < 1, µi,1 >

µi,2

1−τi,0 , d ∈ z
+, are controller updating

time, i.e., whenever condition (9) is satisfied, the control
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value νi(td+1) generated at that moment is updated. For the
interval [td, td+ 1), the control signal is a constant, namely
ωi (td). In addition, for any given ∀εi > 0 and Υ ∈ R,
the hyperbolic tangent function should satisfy the following
conditions:

0 ≤ |Υ | − Υ tanh

(
Υ

εi

)
≤ εiϕ (12)

in the above equation, ϕ represents a constant that satisfies
the equation ϕ = e−(ϕ+1) ( ϕ ≈ 0.2785 ) .

D. Fuzzy Logic Systems(FLSs)

Because the system considered in this paper contains
unknown function terms, there will be some difficulties in
the design process of the controller. Therefore, to solve this
difficulty, the fuzzy logic system is introduced, which can
produce an estimated value to replace the uncertain function
contained in the system. The fuzzy logic system consists of
four parts, where the knowledge base is an if-then set of
rules [13], as shown below:

Rl :IF x1 is Ψl
1 and . . . and xn is Ψl

n,

THEN y is ℵl, l = 1, . . . , N.
(13)

where N denotes the number of rules, xi(i = 1, . . . , n)
and y represent inputs and outputs, respectively. Ψl

i(i =
1, . . . , n, l = 1, . . . , N) and ℵl denote fuzzy sets,
µΨl (xi) and µNl(y) denote Gaussian membership function-
s. Based on [13], a known fuzzy logic system is shown below

y(x) =

∑N
l=1 ȳl

∏n
i=1 µΨl

i
(xi)∑N

l=1

(∏n
i=1 µΨl

i
(xi)

) (14)

where ȳl = maxu∈R µℵl(y), l = 1, . . . , N .
Describe fundamental functions as follows:

φl(x) =

∏n
i=1 µΨl

i
(xi)∑N

l=1

(∏n
i=1 µΨl

i
(xi)

) (15)

Let W = [ȳ1, . . . , ȳN ]
T

= [W1, . . . ,WN ]
T
, ψ(x) =

[ψ1(x), . . . , ψN (x)]
T
, x = [x1, . . . , xn]

T , then one has

y(x) = WTψ(x) (16)

Lemma 1: [7]: The following FLS expression represents
a continuous function f(x) defined on a compact set ℘

sup
x∈℘

∣∣f(x)−WTψ(x)
∣∣ ≤ δ (17)

where δ is a positive constant.
Lemma 2: [15]: For ∀(a, b) ∈ R2, we have:

ab ≤ βp

p
|a|p +

1

qβq
|b|q (18)

where β > 0, p > 1, and q > 1 are positive constants, p and
q fulfill (p− 1)(q − 1) = 1.

III. EVENT-TRIGGERED ADAPTIVE CONTROLLER DESIGN

In this section, an event-triggered adaptive prescribed per-
formance fuzzy fault-tolerant tracking controller is designed
with the backstepping method. The αi,jvirtual control for the
first nistep looks like this:

αi,j =− ηi,jρi,j

(
ki,j +

1

2
+

1

2C2
i,j

θ̂i,0ψ
T
i,jψi,j

)

αi,ni =− ηi,niρi,ni

%
i

(
ki,ni +

1

2

+
1

2C2
i,ni

θ̂i,0ψ
T
i,ni

ψi,ni

) (19)

where ki,j , Ci,j(i = 1, 2, · · · ,m; j = 1, 2, · · · , ni) indicates
positive design constants, Zi,j = [xi,j , θ̂i,0, ȳ

(j)
i,r , ρ̄

(j)
i,j ]T and

θ̂i,0 denotes the estimate value of the adaptive law θi,0, which
is defined as

θi,0 = max

{∥∥W ∗i,j∥∥2

bm

}
(20)

where bm is defined in (4) and W ∗i,j is defined subsequently.
The parameter adaptive law designed in the controller is as
follows

˙̂
θi,0 =

n∑
j=1

λi,0
2C2

i,j

η2
i,jψ

T
i,j (Zi,j)ψi,j (Zi,j)− γi,0θ̂i,0 (21)

where λi,0 and γi,0 are positive design parameters.
For emphasis, the variable Zi,j will be omitted from the

corresponding function ψi,j (Zi,j) in the following writing,
and let ψi,j (Zi,j) = ψi,j and δi,j (Zi,j) = δi,j .

Step 1 : Choose a positive definite Lyapunov function as
follows:

Vi,1(t) =
1

4
ln2

(
ρi,1 + zi,1
ρi,1 − zi,1

)
+

bm
2λi,0

θ̃2
i,0 (22)

where θ̃i,0 = θi,0 − θ̂i,0 denote parameter errors. By com-
bining (1), (5) with (8), we can obtain Vi,1(t)’s derivative
as

V̇i,1 =
ηi,1
ρi,1

(
żi,1 − zi,1

ρ̇i,1
ρi,1

)
− bm
λi,0

θ̃i,0
˙̂
θi,0

=
ηi,1
ρi,1

(
fi,1 + gi,1zi,2 + di,1 − ẏi,r − zi,1

ρ̇i,1
ρi,1

)
− bm
λi,0

θ̃i,0
˙̂
θi,0

(23)

Based on Lemma 2 and Assumption 1, one has ηi,1di,1
ρi,1

≤
η2i,1
2ρ2i,1

+
d̄2i
2 . Apply this inequality to (23)

V̇i,1 ≤
ηi,1
ρi,1

(
fi,1 + gi,1xi,2 +

ηi,1
2ρi,1

− ẏi,r

− zi,1
ρ̇i,1
ρi,1

)
+
d̄2
i

2
− bm
λi,0

θ̃i,0
˙̂
θi,0

≤ηi,1
ρi,1

gi,1xi,2 + ηi,1Fi,1 +
d̄i
2
− bm
λi,0

θ̃i,0
˙̂
θi,0

(24)

where Fi,1 = 1
ρi,1

(
fi,1 +

ηi,1
2ρi,1

− ẏi,r − zi,1 ρ̇i,1ρi,1

)
. Since Fi,1

contains the unknown function fi,1(x̄i,1), Fi,1 cannot directly
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construct virtual control signal αi,1. By utilizing a FLS
WT
i,1ψi,1 to approximate Fi,1, Fi,1 can be expressed as

Fi,1 = W ∗Ti,1 ψi,1 + δi,1, |δi,1| ≤ ε̄i,1 (25)

where δi,1 are the approximation errors and ε̄i,1 are unknown
positive constants. In line with Lemma 2, one has

ηi,1Fi,1 ≤
bm

2C2
i,1

η2
i,1

∥∥W ∗Ti,1 ∥∥2

bm
ψTi,1ψi,1

+
C2
i,1

2
+
η2
i,1

2
+
ε̄2
i,1

2

≤ bm
2C2

i,1

η2
i,1θi,0ψ

T
i,1ψi,1

+
C2
i,1

2
+
η2
i,1

2
+
ε̄2
i,1

2

(26)

Based on (19), we have

ηi,1
ρi,1

gi,1αi,1 ≤− ki,1bmη2
i,1 −

bmη
2
i,1

2

− bm
2C2

i,1

θ̂i,0η
2
i,1ψ

T
i,1ψi,1

(27)

Combining(26), (27) with (24) procedure, then

V̇i,1 ≤− ki,1bmη2
i,1 +

ηi,1
ρi,1

bMzi,2

+
bm
λi,0

θ̃i,0

(
λ

2C2
i,1

η2
i,1ψ

T
i,1ψi,1 −

˙̂
θi,0

)
+ ∆i,1

(28)

where ∆i,1 =
C2

i,1

2 +
d̄2i
2 +

ε̄2i,1
2 .

Step 2 : Similar to Step 1, we have:

Vi,2 = Vi,1 +
1

4
ln2

(
ρi,2 + zi,2
ρi,2 − zi,2

)
(29)

Combining (1), (5), (8), and (29), we can calculate the
derivative of Vi,2(t) as

V̇i,2 =V̇i,1 +
ηi,2
ρi,2

(
żi,2 − zi,2

ρ̇i,2
ρi,2

)
=V̇i,1 +

ηi,2
ρi,2

(
fi,2 + gi,2xi,3 + di,2

− α̇i,1 − zi,2
ρ̇i,2
ρi,2

) (30)

where

α̇i,1 =− ∂αi,1
∂xi,1

(fi,1 + gi,1xi,2 + di,1)

−
1∑
k=0

∂αi,1

∂ρ
(k)
i,1

ρ
(k+1)
i,1

−
1∑
k=0

∂αi,1

∂y
(k)
i,r

y
(k+1)
i,r − ∂αi,1

∂ ˆθi,0

˙̂
θi,0

(31)

Using Lemma 2 and Assumption 1, it is not difficult to
achieve that ηi,2di,2

ρi,2
≤ η2i,2

2ρ2i,2
+

d̄2i
2 . Similar to (24), one has

V̇i,2 ≤− ki,1bmη2
i,1 + ∆i,1

+
bm
λi,0

θ̃i,0

(
λi,0

2C2
i,1

η2
i,1ψ

T
i,1ψi,1

− ˙̂
θi,0

)
+
ηi,2
ρi,2

gi,jxi,3 + ηi,2Fi,2 +
d̄2
i

2

(32)

where Fi,2 = 1
ρi,2

(
fi,2 +

ηi,2
2ρi,2

− α̇i,1 +
ηi,1ρi,2
ρi,1ηi,2

bMzi,2

)
− zi,1 ρ̇i,1ρ2i,1

. Similar to (25), one has

Fi,2 = W ∗Ti,2 ψi,2 + δi,2, |δi,2| ≤ ε̄i,2 (33)

Furthermore, based on Lemma 2, we have

ηi,2Fi,2 ≤
bm

2C2
i,2

η2
i,2

∥∥W ∗Ti,2 ∥∥2

bm
ψTi,2ψi,2 +

C2
i,2

2

+
η2
i,2

2
+
ε̄2
i,2

2

≤ bm
2C2

i,2

η2
i,2θi,0ψ

T
i,2ψi,2 +

C2
i,2

2

+
η2
i,2

2
+
ε̄2
i,2

2

(34)

According to (19) and Assumption 1, we have

ηi,2
ρi,2

gi,2αi,2 ≤− ki,2bmη2
i,2 −

bmη
2
i,2

2

− bm
2C2

i,2

θ̂i,0η
2
i,2ψ

T
i,2ψi,2

(35)

Combining(34), (35) with (32) procedure, then

V̇i,2 ≤−
2∑
a=1

ki,abmη
2
i,a +

2∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
2∑
a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)
+
ηi,2
ρi,2

bMzi,3

(36)

where ∆i,2 =
C2

i,2

2 +
d̄2i
2 +

ε̄2i,2
2 .

Step j (3 ≤ j ≤ ni − 1) : According to zi,j = xi,j −
αi,j−1, we define Lyapunov function as follows:

Vi,j = Vi,j−1 +
1

4
ln2

(
ρi,j + zi,j
ρi,j − zi,j

)
(37)

Combining (1), (5), (8) and (37), we can obtain Vi,2(t)’s
derivative as

V̇i,j =V̇i,j−1 +
ηi,j
ρi,j

(
żi,j − zi,j

ρ̇i,j
ρi,j

)
=V̇i,j−1 +

ηi,j
ρi,j

(
fi,j + gi,jxi,j+1 + di,j

− α̇i,j−1 − zi,j
ρ̇i,j
ρi,j

) (38)

where

α̇i,j−1 =− ∂αi,j−1

∂xi,j−1
(fi,j−1 + gi,j−1xi,j+1 + di,j)

−
1∑
k=0

∂αi,j−1

∂ρ
(k)
i,j−1

ρ
(k+1)
i,j−1

−
j−1∑
k=0

∂αi,j−1

∂y
(k)
i,r

y
(k+1)
i,r − ∂αi,j−1

∂ ˆθi,0

˙̂
θi,0

(39)

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_33

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



Using Lemma 2 and Assumption 1, we have ηi,jdi,j
ρi,j

≤
η2i,j
2ρ2i,j

+
d̄2i
2 . By substituting (36) with (38), one has

V̇i,j ≤−
j−1∑
a=1

ki,abmη
2
i,a +

j−1∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

( j−1∑
a=1

λi,0
2C2

i,a

η2
i,aψ

T
i,aψi,a

− ˙̂
θi,0

)
+
ηi,j
ρi,j

gi,jxi,j+1 + ηi,jFi,j +
d̄2
i

2

(40)

where Fi,j = 1
ρi,j

(
fi,j +

ηi,j
2ρi,j

− α̇i,j−1 +
ηi,j−1ρi,j
ρi,j−1ηi,j

bMzi,j

)
− zi,j ρ̇i,jρ2i,j

. Similar to (33), we get

Fi,j = W ∗Ti,j ψi,j + δi,j , |δi,j | ≤ ε̄i,j (41)

Furthermore, on the basis of Lemma 2, it follows from (34)
that

ηi,jFi,j ≤
bm

2C2
i,j

η2
i,j

∥∥W ∗Ti,j ∥∥2

bm
ψTi,jψi,j +

C2
i,j

2

+
η2
i,j

2
+
ε̄2
i,j

2

≤ bm
2C2

i,j

η2
i,jθi,0ψ

T
i,jψi,j +

C2
i,j

2

+
η2
i,j

2
+
ε̄2
i,j

2

(42)

According to (19) and Assumption 1, one has

ηi,j
ρi,j

gi,jαi,j ≤− ki,jbmη2
i,j −

bmη
2
i,j

2

− bm
2C2

i,j

θ̂i,0η
2
i,jψ

T
i,jψi,j

(43)

Combining(43), (42) with (40) procedure, then

V̇i,j ≤−
j∑

a=1

ki,abmη
2
i,a +

j∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
j∑

a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)
+
ηi,j
ρi,j

bMzi,j+1

(44)

where ∆i,j =
C2

i,j

2 +
d̄2i
2 +

ε̄2i,j
2 .

Step ni : In the final step, we will design the actual control
input signals νi. Now, the Lyapunov functions are chosen as

Vi,ni
= Vi,ni−1 +

1

4
ln2

(
ρi,ni

+ zi,ni

ρi,ni − zi,ni

)
(45)

Combining (1), (2), (5) and (8), one has

V̇i,ni =V̇i,ni−1 +
ηi,ni

ρi,ni

(
żi,ni − zi,ni

ρ̇i,ni

ρi,ni

)
≤V̇i,ni−1 +

ηi,ni

ρi,ni

(
fi,ni + gi,ni%iνi

+ gi,ni
ζi + di,ni

− α̇i,ni−1

− zi,ni

ρ̇i,ni

ρi,ni

)
(46)

Given Young’s inequality, we can derive

ηi,nidi,ni

ρi,ni

≤
η2
i,ni

2ρ2
i,ni

+
d̄2
i

2
(47)

Then

V̇i,ni
≤V̇i,ni−1 +

ηi,ni

ρi,ni

(
fi,ni

+ gi,ni
%iνi

+
ηi,ni

2ρi,ni

+ gi,niζi − α̇i,ni−1

− zi,ni

ρ̇i,ni

ρi,ni

)
+
d̄2
i

2

(48)

During the time intervals [tk, tk+1) , and from (10), we have
|ωi(t)−νi(t)| ≥ τi,0|νi(t)|+µi,2. Therefore, ∀t ∈ [tk, tk+1),
there are two continuous time-varying parameters `i,1(t) and
`i,2(t), with |`i,1(t)| ≤ 1 and |`i,2(t)| ≤ 1, such that νi(t) =
ωi(t)−µi,2`i,2(t)

1+τi,0`i,1(t) . we have

V̇i,ni ≤−
ni−1∑
a=1

ki,abmη
2
i,a +

ni−1∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
ni−1∑
a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)

+ ηi,ni
Fi,ni

+
d̄2
i

2

+
ηi,ni

gi,ni
%i

ρi,ni

ωi − µi,2`i,2
1 + τi,0`i,1

(49)

where Fi,ni
= 1

ρi,ni

(
fi,ni

+
ηi,ni

2ρi,ni
+

ηi,ni−1ρi,ni

ρi,ni−1ηi,ni
bMzi,ni

)
+

gi,ni
ζi

ρi,ni
− α̇i,ni−1

ρi,ni
− zi,ni

ρ̇i,ni

ρ2i,ni

. Since ηi,ni
ωi

1+`i,1τi,0
≤

ηi,ni
ωi

1+τi,0
and

∣∣∣ηi,ni
`i,2(t)µi,2

1+`i,1τi,0

∣∣∣ ≤ ηi,ni
µi,2

1−τi,0 , then

V̇i,ni ≤−
ni−1∑
a=1

ki,abmη
2
i,a +

ni−1∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
ni−1∑
a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)

+ ηi,ni
Fi,ni

+
d̄2
i

2
+
gi,ni

%
i

ρi,ni

|ηi,ni
µi,2

1− τi,0
|

+
gi,ni

%
i

ρi,ni

(
− ηi,ni

αi,ni
tanh(

ηi,ni
αi,ni

εiρi,ni

)

− ηi,ni
µi,1 tanh(

ηi,ni
µi,1

εiρi,ni

)

)

(50)

By putting (12) into the preceding inequality, we have

V̇i,ni
≤−

ni−1∑
a=1

ki,abmη
2
i,a +

ni−1∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
ni−1∑
a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)
+ ηi,niFi,ni +

gi,ni%i
ρi,ni

ηi,niαi,ni

+
gi,ni%i
ρi,ni

(
|ηi,ni

µi,2
1− τi,0

| − |ηi,niµi,1|
)

+
d̄2
i

2
+ 0.557bM εi

(51)
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According to (19) and Assumption 1, we have

ηi,ni%i
ρi,ni

gi,niαi,ni ≤− ki,nibmη
2
i,ni
−
bmη

2
i,ni

2

− bm
2C2

i,ni

θ̂i,0η
2
i,ni

ψTi,jψi,j

(52)

Similar to (41), we have

Fi,ni
= W ∗Ti,ni

ψi,ni
+ δi,ni

, |δi,ni
| ≤ ε̄i,ni

(53)

Furthermore, based on Lemma 2, we have

ηi,niFi,ni ≤
bm

2C2
i,ni

η2
i,ni

∥∥W ∗Ti,ni

∥∥2

bm
ψTi,ni

ψi,ni +
C2
i,ni

2

+
η2
i,ni

2
+
ε̄2
i,ni

2

≤ bm
2C2

i,ni

η2
i,ni

θi,0ψ
T
i,ni

ψi,ni
+
C2
i,ni

2

+
η2
i,ni

2
+
ε̄2
i,ni

2

(54)

Substituting (54), (52) into (51) and |ηi,ni
µi,2

1−τi,0 | < |ηi,niµi,1|,
we can gain

V̇i,ni
≤−

ni∑
a=1

ki,abmη
2
i,a +

ni∑
a=1

∆i,a

+
bm
λi,0

θ̃i,0

(
ni∑
a=1

λ

2C2
i,a

η2
i,aψ

T
i,aψi,a −

˙̂
θi,0

)
+ 0.557bM εi

(55)

Substituting the adaptive law (21) into (55), we have

V̇i,ni ≤
ni∑
a=1

−ki,abmη2
i,a +

ni∑
a=1

∆i,a + 0.557bM εi

+
bm
λi,0

γi,0θ̂i,0θ̃i,0

(56)

with the inequality as follows

θ̃i,0θ̂i,0 ≤
θ2
i,0

2
−
θ̃2
i,0

2
(57)

Then

V̇i,ni ≤
ni∑
a=1

−ki,abmη2
i,a −

bm
2λi,0

γi,0θ̃
2
i,0

+ Λi,0

(58)

We define Λi,0 =
∑ni

a=1 ∆i,a + 0.557bM εi + bm
λi,0

γi,0θ̂
2
i,0.

Define Γi,0 = min{ki,j , bm, γi,0, (i = 1, 2, · · · ,m, j =
1, 2, · · · , ni)}, so (59) can be rewritten as

V̇i,ni
≤ −Γi,0Vi,ni

+ Λi,0 (59)

IV. STABILITY ANALYSIS

Next, we will complete the stability analysis and proof of
the event-triggered adaptive preset controller proposed in this
paper.

Theorem 1: In the case of closed-loop systems with ex-
ternal disturbances and actuator failures, such as (1). Their
controllers (19) and adaptive laws (21), under Assumptions
1-3, a fuzzy logic system can achieve a desired degree of
accuracy by approaching the initial conditions and Fi,j (xi,j)

defined in a compact set Ω0. Then the following results are
true:

1) These signals generated in a closed-loop system, such
as system 1, are semi-globally bounded. In particular, the
error transformation function ρi,1, the error signal zi,1, (i =
2, 3, . . . ,m), and θ̂i,0 all converge to a compact set Ωz
defined as

Ωz =

{
ηi,j , zi,j , θ̂i,0 | E

(
η2
i,j

)
≤ 2Γi,0

Λi,0
,

E
(
z2
i,j

)
≤ 2Γi,0

Λi,0

E
(
θ̃2
i,0

)
≤ 2γi,0Ψ0

bmΥ0

} (60)

2) There is an instantaneous moment t∗ > 0 where the
intervals {td+1 − td} are constrained by t∗,∀d ∈ Z+.

Proof 1: 1) To facilitate the stability analysis, the Lya-
punov function is chosen as V = Vi,ni , then (59) can be
rewritten as

V̇ ≤ −Γi,0V + Λi,0 (61)

further, we can gain the following inequality

E(V (t)) ≤
(
V (0)− Λi,0

Γi,0

)
e−Γi,0t +

Λi,0
Γi,0

(62)

According to the definition of V (t) and (61), it denotes that
V (t) , ρi,j , zi,j , θ̂i,0 and xi,j are bounded. Moreover, as t→
∞, one has e−ρi,0t → 0 , then

E(V (t)) ≤ Λi,0
Γi,0

(63)

Consequently, the constraint function ηi,j , the error signal
zi,j , (i = 1, 2, . . . ,m, j = 1, 2, . . . , ni) and θ̂i,0 eventually
converge to a compact set Ωz provided by (60), which means
that all signals are evenly constrained.

2) To demonstrate that there exists a constant t∗ > 0 such
that td+1− td ≥ t∗,∀d ∈ Z+ , recall the definition of ei(t) :
ei(t) = ωi(t)− vi(t),∀t ∈ [td, td+1). Then, we get

d

dt
|ei| =

d

dt
(ei ∗ ei)

1
2 = sign (ei) ėi ≤ |ω̇i| (64)

From (9), ω̇i must be continuous and bounded. Consequently,
there must exist a constant ω̄i > 0 such that |ω̇i| < ω̄i. From
ei (td) = 0 and limt→td+1

ei = τi,0|νi | +µi,2, it yields that
the bound of t∗ must satisfy τi,0|νi | +µi,2/ω̄i , the Zeno-
behavior is therefore avoided.

V. SIMULATION

In this part, a numerical example demonstrating the ap-
plicability of the devised control mechanism is presented.
Specifically, the following describes a third-order uncertain
MIMO system with external disturbance and actuator failure:

ẋ1,1 =x1,1sin(x1,1) + (2 + x2
2,1)x1,2 + sin(t)

ẋ1,2 =x1,1cos(x1,2x2,1) + (1 + x2
1,2 + x2

1,1

+ x2
2,1)u1,f − 0.4cos(t)

y1 =x1,1

(65)
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ẋ2,1 =cos(x2,1) + (2 + x2
2,1)x2,2 + sin(t)

ẋ2,2 =sin(x2
1,1x2,2)x3,1 + (1 + x2

2,2 + x2
1,1)u2,f

− 0.2cos(t)

y2 =x2,1

(66)

ẋ3,1 =x3,1 + (1 + sin(x2
3,1))x3,2 + sin(t)

ẋ3,2 =x3,1x
2
3,2x

2
1,2 + (1 + x2

3,2 + x2
2,1)u3,f

− cos(t)
y3 =x3,1

(67)

The design parameters for system (65) are selected as
λ1,0 = 1, τ1,0 = 0.3, ε1 = 10; k1,1 = 100, k1,2 = 50, C1,1 =
50, C1,2 = 50, µ1,1 = 1, µ1,2 = 0.2. The reference trajectory
is y1,r = 0.2 sin(t). The design parameters for system (66)
are selected as λ2,0 = 1, τ2,0 = 0.2, ε2 = 10; k2,1 =
70, k2,2 = 50, C2,1 = 50, C2,2 = 50, µ2,1 = 1, µ2,2 = 0.1.
The reference trajectory is taken as y2,r = −0.3 cos(t).
The design parameters for system (67) are selected as
λ3,0 = 1, τ3,0 = 0.3, ε3 = 10; k3,1 = 100, k3,2 = 50, C3,1 =
30, C3,2 = 30, µ3,1 = 1, µ3,2 = 0.05. The reference
trajectory is y3,r = 0.1 cos(t).

As previously, by the performance bounds of the state
errors (6) and error transformation functions (8), the sim-
ulation parameters are selected as:

ρ1,1 = (2− 0.1)e−t + 0.1

ρ1,2 = (4− 0.3)e−0.3t + 0.3
(68)

ρ2,1 = (2− 0.1)e−t + 0.1

ρ2,2 = (4− 0.5)e−0.t + 0.5
(69)

ρ3,1 = (3− 0.3)e−t + 0.5

ρ3,2 = (5− 0.2)e−0.25t + 0.3
(70)

Meanwhile, the initial values are taken as x(0) =
[0.2;−0.8; 0;−0.3; 0.6; 0; 0.1;−0.7; 0]T , by the intermediate
control signals and the control law (20), the positive constant
vector is given as γi,0 = [1; 1; 1]T . We can obtain the sim-
ulation results in Figs. 1-6 by applying the static controller
designed in Section 2. The same as predicted in Theorem 1,
despite actuator failure and external disturbances. The state
errors z1,j , j = 1, 2 and corresponding performance bounds
±ρ1,j , j = 1, 2 are shown in Fig. 1 and 2, respectively. Fig.
3 shows the output signals yi,1 of subsystem 1, which can
track the target reference signal y1,r well. Fig.4 shows the
event-triggered control effect, wherein ν1 is the continuous
control input signal and w1 is the time-driven control signal.
Fig. 5 shows the time intervals td+1 − td, wherein the
number of event triggering is 285. The adaptive parameters
θ̂i,0, i = 1, 2, 3 are shown in Fig. 6.

VI. CONCLUSION

This paper proposes an event-triggered adaptive fuzzy
controller with preset performance for a class of MIMO
nonlinear systems with external disturbances and actuator
faults. Unlike other related studies, this paper presents a new
error transformation function, which can be used to imple-
ment performance constraints on output errors, and ensure
that the dynamic and steady-state performance indicators of

Fig. 1. Tracking error z1,1

Fig. 2. Tracking error z1,2

Fig. 3. Reference signal y1,r and system output yi,1

the nonlinear system meet the requirements. The controller
is able to maintain the probability limit of all closed-loop
system signals, and the tracking error converges to any
small neighbourhood near the origin in the sense of quadric
mean. Simulation results demonstrate the effectiveness and
practicability of the proposed control strategy. Furthermore,
it is noted that disturbances, such as unknown control di-
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Fig. 4. Actual inputs ν1 and event-trigger signals ω1

Fig. 5. Event trigger times

Fig. 6. Adaptive Law θ̂i,0

rections, are prevalent in nonlinear systems. Therefore, it
is an interesting future work to study the event-triggered
PPC problem for MIMO nonlinear systems with unknown
orientation constraints.

REFERENCES

[1] X. Tian, Z. Yang, and Z. Yang, “Adaptive stabilization of fractional-
order energy supply-demand system with dead-zone nonlinear inputs,”
IAENG International Journal of Applied Mathematics, vol. 49, no. 4,
pp. 500–504, 2019.

[2] F. Gao, X. Zhu, J. Huang, and X. Wen, “Finite-time state feedback
stabilization for a class of uncertain high-order nonholonomic feed-
forward systems,” Engineering Letters, vol. 27, no. 1, pp. 108–113,
2019.

[3] M. Chen, X. Liu, and H. Wang, “Adaptive robust fault-tolerant
control for nonlinear systems with prescribed performance,” Nonlinear
Dynamics, vol. 81, no. 4, pp. 1727–1739, 2015.

[4] S. Yin, H. Gao, J. Qiu, and O. Kaynak, “Adaptive fault-tolerant
control for nonlinear system with unknown control directions based
on fuzzy approximation,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 47, no. 8, pp. 1909–1918, 2017.

[5] S. Sui and C. P. Chen, “Finite-time fault-tolerant control for a nonlinear
siso system with actuator faults,” in 2018 International Conference on
Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, pp. 208–
212, 2018.

[6] S. Zhou and Y. Song, “Prescribed performance neuroadaptive fault-
tolerant compensation for mimo nonlinear systems under extreme ac-
tuator failures,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 9, pp. 5427–5436, 2019.

[7] Z. Ruan, Q. Yang, S. S. Ge, and Y. Sun, “Adaptive fuzzy fault tolerant
control of uncertain mimo nonlinear systems with output constraints
and unknown control directions,” IEEE Transactions on Fuzzy Systems,
vol. 30, no. 5, pp. 1224–1238, 2022.

[8] H. Yang, Y. Jiang, and S. Yin, “Adaptive fuzzy fault-tolerant control
for markov jump systems with additive and multiplicative actuator
faults,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 772–
785, 2021.

[9] F. Osorio-Arteaga, J. J. Marulanda-Durango, and E. Giraldo, “Robust
multivariable adaptive control of time-varying systems,” IAENG Inter-
national Journal of Computer Science, vol. 47, no. 4, pp. 605–612,
2020.

[10] Bechlioulis, Charalampos P and Rovithakis, George A, “Robust adap-
tive control of feedback linearizable mimo nonlinear systems with
prescribed performance,” IEEE Transactions on Automatic Control,
vol. 53, no. 9, pp. 2090–2099, 2008.

[11] Bechlioulis, Charalampos P and Rovithakis, George A, “Prescribed
performance adaptive control for multi-input multi-output affine in the
control nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 5, pp. 1220–1226, 2010.

[12] Y. Li, S. Tong, L. Liu, and G. Feng, “Adaptive output-feedback control
design with prescribed performance for switched nonlinear systems,”
Automatica, vol. 80, pp. 225–231, 2017.

[13] W. Shi and B. Li, “Adaptive fuzzy control for feedback linearizable
mimo nonlinear systems with prescribed performance,” Fuzzy Sets and
Systems, vol. 344, pp. 70–89, 2018.

[14] I. S. Dimanidis, C. P. Bechlioulis, and G. A. Rovithakis, “Output feed-
back approximation-free prescribed performance tracking control for
uncertain mimo nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 65, no. 12, pp. 5058–5069, 2020.

[15] W. Bai and H. Wang, “Robust adaptive fault-tolerant tracking control
for a class of high-order nonlinear system with finite-time prescribed
performance,” International Journal of Robust and Nonlinear Control,
vol. 30, no. 12, pp. 4708–4725, 2020.

[16] X. Wang, Q. Wang, and C. Sun, “Prescribed performance fault-tolerant
control for uncertain nonlinear mimo system using actorcritic learning
structure,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 9, pp. 4479–4490, 2022.

[17] L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, “Event-triggered adaptive
control for a class of uncertain nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 62, no. 4, pp. 2071–2076, 2016.

[18] Y. Sun, D. Ding, S. Zhang, G. Wei, and H. Liu, “Non-fragile–control
for discrete-time stochastic nonlinear systems under event-triggered
protocols,” International Journal of General Systems, vol. 47, no. 5,
pp. 446–459, 2018.

[19] B. Li, J. Xia, H. Zhang, H. Shen, and Z. Wang, “Event-triggered
adaptive fuzzy tracking control for stochastic nonlinear systems,”
Journal of the Franklin Institute, vol. 357, no. 14, pp. 9505–9522,
2020.

[20] T. Wang, M. Ma, J. Qiu, and H. Gao, “Event-triggered adaptive fuzzy
tracking control for pure-feedback stochastic nonlinear systems with
multiple constraints,” IEEE Transactions on Fuzzy Systems, vol. 29,
no. 6, pp. 1496–1506, 2020.

[21] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network approximation-
based event-triggered control of uncertain mimo nonlinear discrete

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_33

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 



time systems,” in 2014 American Control Conference. IEEE, pp.
2017–2022, 2014.

[22] L.-B. Wu, J. H. Park, X.-P. Xie, and Y.-J. Liu, “Neural network
adaptive tracking control of uncertain mimo nonlinear systems with
output constraints and event-triggered inputs,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 2, pp. 695–707,
2020.

[23] X. Huo, L. Ma, X. Zhao, and G. Zong, “Event-triggered adaptive
fuzzy output feedback control of mimo switched nonlinear systems
with average dwell time,” Applied Mathematics and Computation, vol.
357, p. 11518–11544, 2020.

[24] T. Lei, W. Meng, K. Zhao, and L. Chen, “Adaptive asymptotic tracking
control of constrained multi-input multi-output nonlinear systems
via event-triggered strategy,” International Journal of Robust and
Nonlinear Control, vol. 31, no. 5, pp. 1479–1496, 2021.

[25] L. Wang and C. P. Chen, “Event-triggered-based adaptive output feed-
back control with prescribed performance for strict-feedback nonlinear
systems,” in 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC). IEEE, pp. 2927–2932, 2019.

[26] W. Yang, Y. Pan, and H. Liang, “Event-triggered adaptive fixed-
time nn control for constrained nonstrict-feedback nonlinear systems
with prescribed performance,” Neurocomputing, vol. 422, pp. 332–344,
2021.

IAENG International Journal of Computer Science, 50:1, IJCS_50_1_33

Volume 50, Issue 1: March 2023

 
______________________________________________________________________________________ 




