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Abstract—Chanmanee et al. examined the idea of the external
direct product of the infinite family of UP (BCC)-algebras, and
the conclusion is reached for UP (BCC)-algebras. We apply
the idea of the internal direct product of a groupoid to a
UP (BCC)-algebra by introducing two new ideas for internal
direct products of UP (BCC)-algebras: the internal and anti-
internal direct products. This idea comes from the idea of the
external direct products of UP (BCC)-algebras. We examine the
attributes of both ideas and identify the crucial attributes for
drawing the investigation to a conclusion. Finally, we establish
the crucial statement that the internal and anti-internal direct
products of a UP (BCC)-algebra may exist in only one form
each.

Index Terms—UP-algebra, external direct product, internal
direct product, anti-internal direct product.

I. INTRODUCTION AND PRELIMINARIES

BCK-algebras and BCI-algebras are two classes of ab-
stract algebra that were developed by Imai and Iséki

and have received a great deal of attention from academics.
According to [11], [12], the class of BCK-algebras is a
proper subclass of the class of BCI-algebras. A new algebraic
structure was created in 2002 by Neggers and Kim [25].
They used a few characteristics from BCI and BCK-algebras
to create the term “B-algebra”. In addition, Kim and Kim
presented a new concept known as a BG-algebra, which
is an extension of B-algebra, on [18]. They discovered a
number of BG-algebra isomorphism theorems and associated
characteristics.

In 2017, Iampan [8] proposed the idea of UP-algebras,
and it is well known that the class of KU-algebras [27] is a
proper subclass of the class of UP-algebras. Many academics
have looked at it, including Ansari et al. in 2018 [1], who
explored graphs related to commutative UP-algebras and a
graph of equivalence classes of commutative UP-algebras.
The cubic set structure was applied to UP-algebras the
same year by Senapati et al. [31], who also supported their
findings with evidence. Satirad et al. demonstrated in 2019
that every nonempty set and every nonempty totally ordered
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set may be a UP-algebra by citing [29]. Romano and Jun
[28] presented the idea of weak implicative UP-filters in UP-
algebras in 2020. Jun and Iampan defined falling UP-filters
and I-fuzzy filters in 2021 and established the relationship
between falling UP-filters and falling UP-ideals in their paper
cited as [15]. Bipolar fuzzy comparative UP-filters of UP-
algebras were first developed in 2022 by Gaketem et al.
[7]. The notion of UP-algebras (see [8]) and the concept of
BCC-algebras (see [20]) are the same concept, as shown by
Jun et al. [14] in 2022. In this publication and following
investigations, our research team will refer to it as BCC
rather than UP because of respect for Komori, who first
characterized it in 1984.

A group is isomorphic to the direct product of two of its
subgroups if it has an internal direct product, which is a
form of direct product, according to [34]. It is often used
with other algebraic structures. The internal direct product
of two fuzzy subgroups is isomorphic to their external
direct product, as shown by Makamba [23] in 1992. Pledger
expanded the internal direct product from groups to all
groupoids in 1999 [26]. After that, it creates what seems
to be a logical fundamental description of the internal direct
product and utilizes it as a baseline for contrasting more
widely used limited variants. Jakubík and Csontóová [13]
proposed two-factor internal direct product decompositions
of a linked partially ordered set in 2000. Kamuti [16]
proposed the semidirect product cycle index, or Frobenius
groups, in 2012 and addressed internal direct products, a
highly unique subset of semidirect products. A series of
integral ∨-distributive binary aggregation functions’ external
direct product and internal direct product were presented in
Karaçal and Khadjiev [17] 2015. The internal direct product
of normal subalgebras was first developed by Lingcong
[21] in 2017. The idea of a fuzzy internal direct product
of fuzzy subgroups of group was first suggested by Nama
[24] in the same year. Neutrosophic extended triplet internal
direct product (NETIDP) and neutrosophic extended triplet
external direct product (NETEDP) of the NET group were
first presented by Shalla and Olgun [33] in 2019. Then, using
Smarandache’s idea of NET set theory, they defined NET
group’s internal and external semidirect products.

In this work, we offer and explore two unique ideas of
internal direct products of BCC-algebras: the internal and
anti-internal direct products. Finally, we arrived at the crucial
conclusion that given a BCC-algebra, there can only be one
occurrence of each of the internal and anti-internal direct
products.

First, we begin with the definitions and examples of BCC-
algebras (see [20]) as well as other definitions that are
pertinent to the research in this work as follows:

Definition I.1. [26] An algebra ß = (ß; ?, 0) of type (2, 0)
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is said to be a BCC-algebra if it adheres to the following
axioms:

(∀ω, κ, ε ∈ ß)((κ ? ε) ? ((ω ? κ) ? (ω ? ε)) = 0), (UP-1)
(∀ω ∈ ß)(0 ? ω = ω), (UP-2)
(∀ω ∈ ß)(ω ? 0 = 0), (UP-3)
(∀ω, κ ∈ ß)(ω ? κ = 0, κ ? ω = 0 ⇒ ω = κ). (UP-4)

Example I.2. Let ß = {0, 1, 2, 3, 4, 5, 6} be a set with the
Cayley table as follows:

? 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 0 0 3 3 4 1 1
2 0 0 0 0 0 0 0
3 0 0 3 0 0 0 0
4 0 0 3 3 0 0 0
5 0 0 3 3 4 0 1
6 0 0 3 3 4 0 0

Then ß = (ß; ?, 0) is a BCC-algebra.

See [1], [2], [5], [6], [9], [10], [19], [29], [30], [31], [32]
for further BCC-algebra studies and examples.

Consider the BCC-algebras A = (A; ?A, 0A) and B =
(B; ?B , 0B). A map ϕ : A → B is called a BCC-
homomorphism if

(∀ω, κ ∈ A)(ϕ(ω ?A κ) = ϕ(ω) ?B ϕ(κ))

and an anti-BCC-homomorphism if

(∀ω, κ ∈ A)(ϕ(ω ?A κ) = ϕ(κ) ?B ϕ(ω)).

The {ω ∈ A | ϕ(ω) = 0B} is defined as the kernel of ϕ,
represented by kerϕ. The kerϕ is a BCC-ideal of A, and
kerϕ = {0A} if and only if ϕ is injective. A (anti-)BCC-
homomorphism ϕ is called a (anti-)BCC-monomorphism,
(anti-)BCC-epimorphism, or (anti-)BCC-isomorphism if ϕ is
injective, surjective, or bijective, respectively.

In a BCC-algebra ß = (ß; ?, 0), the following assertions
are valid (see [8], [9]).

(∀ω ∈ ß)(ω ? ω = 0), (1)
(∀ω, κ, ε ∈ ß)(ω ? κ = 0, κ ? ε = 0 ⇒ ω ? ε = 0), (2)
(∀ω, κ, ε ∈ ß)(ω ? κ = 0 ⇒ (ε ? ω) ? (ε ? κ) = 0), (3)
(∀ω, κ, ε ∈ ß)(ω ? κ = 0 ⇒ (κ ? ε) ? (ω ? ε) = 0), (4)
(∀ω, κ ∈ ß)(ω ? (κ ? ω) = 0), (5)
(∀ω, κ ∈ ß)((κ ? ω) ? ω = 0 ⇔ ω = κ ? ω), (6)
(∀ω, κ ∈ ß)(ω ? (κ ? κ) = 0), (7)
(∀ν, ω, κ, ε ∈ ß)((ω ? (κ ? ε)) ? (ω ? ((ν ? κ) ? (ν ? ε))) = 0),

(8)
(∀ν, ω, κ, ε ∈ ß)((((ν ? ω) ? (ν ? κ)) ? ε) ? ((ω ? κ) ? ε) = 0),

(9)
(∀ω, κ, ε ∈ ß)(((ω ? κ) ? ε) ? (κ ? ε) = 0), (10)
(∀ω, κ, ε ∈ ß)(ω ? κ = 0 ⇒ ω ? (ε ? κ) = 0), (11)
(∀ω, κ, ε ∈ ß)(((ω ? κ) ? ε) ? (ω ? (κ ? ε)) = 0), (12)
(∀ν, ω, κ, ε ∈ ß)(((ω ? κ) ? ε) ? (κ ? (ν ? ε)) = 0). (13)

II. EXTERNAL DIRECT PRODUCT OF BCC-ALGEBRAS

The concepts of the direct product of B-algebras, 0-
commutative B-algebras, and B-homomorphisms were stud-
ied by Lingcong and Endam [22], who also discovered other
related features, one of which is the direct product of two B-
algebras, which is itself a B-algebra. The idea of the direct
product of B-algebra was then expanded to include finite
family B-algebra, and some of the associated characteristics
were examined as follows:

Definition II.1. [22] For each i ∈ {1, 2, ..., k}, let (ßi; ?i)
be an algebra. Define the structure (

∏k
i=1 ßi;⊗) as the direct

product of the algebras ß1, ß2, ..., ßk, where
k∏

i=1

ßi = ß1 × ß2 × ...× ßk

= {(ω1, ω2, ..., ωk) | ωi ∈ ßi ∀i = 1, 2, ..., k}
and whose operation ⊗ is given by

(ω1, ω2, ..., ωk)⊗ (κ1, κ2, ..., κk) =
(ω1 ?1 κ1, ω2 ?2 κ2, ..., ωk ?k κk)

for all (ω1, ω2, ..., ωk), (κ1, κ2, ..., κk) ∈ ∏k
i=1 ßi.

We now give some of the direct product’s features and
extend the idea to the infinite family of BCC-algebras.

Definition II.2. [4] For each i ∈ Λ, let ßi be a nonempty
set. Define the set

∏
i∈Λ ßi as the external direct product of

sets ßi for all i ∈ Λ, where
∏

i∈Λ

ßi = {f : Λ →
⋃

i∈Λ

ßi | f(i) ∈ ßi ∀i ∈ Λ}.

For ease of use, we define an element of
∏

i∈Λ ßi with the
function (ωi)i∈Λ : Λ → ⋃

i∈Λ ßi, where i 7→ ωi ∈ ßi for all
i ∈ Λ.

Remark II.3. [4] Let ßi be a nonempty set and Çi a subset
of ßi for all i ∈ Λ. Then

∏
i∈Λ Çi is a nonempty subset of

the external direct product
∏

i∈Λ ßi if and only if Çi is a
nonempty subset of ßi for all i ∈ Λ.

Definition II.4. [4] For any i ∈ Λ, let ßi = (ßi; ?i) be an
algebra. Give the following definition for the binary operation
⊗ on the external direct product

∏
i∈Λ ßi = (

∏
i∈Λ ßi;⊗):

∀(ωi)i∈Λ, (κi)i∈Λ ∈
∏

i∈Λ ßi,

(ωi)i∈Λ ⊗ (κi)i∈Λ = (ωi ?i κi)i∈Λ. (14)

Theorem II.5. [3] ßi = (ßi; ?i, 0i) is a BCC-algebra for
each i ∈ Λ if and only if

∏
i∈Λ ßi = (

∏
i∈Λ ßi;⊗, (0i)i∈Λ)

is a BCC-algebra, where Definition II.4 defines the binary
operation ⊗.

III. INTERNAL DIRECT PRODUCT OF ALGEBRAS

In this part, we’ll go over Pledger’s (1999) definition of
internal direct products of groupoids and the related theorems
[26].

Definition III.1. An algebra (ß; ?) is called the internal
direct product of its subalgebras ß1 and ß2 if the mapping

θ : (ω1, ω2) 7→ ω1 ? ω2 (15)

is an isomorphism from the algebra (ß1 × ß2;⊗) surjective
ß.
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Then θ−1 : ß → ß1 × ß2 is a BCC-isomorphism. Let
α1 : ß → ß1 and α2 : ß → ß2 be such that

(∀ω ∈ ß)(θ−1(x) = (α1(x), α2(x))). (16)

Lemma III.2. Let an algebra (ß; ?) is the internal direct
product of its subalgebras ß1 and ß2. Then

(i) α1(ß) = ß1.
(ii) α2(ß) = ß2.

Theorem III.3. Let an algebra (ß; ?) is the internal direct
product of its subalgebras ß1 and ß2. Then ∀ω1, κ1 ∈
ß1,∀ω2, κ2 ∈ ß2, (ω1 ?ω2)? (κ1 ?κ2) = (ω1 ?κ1)? (ω2 ?κ2).

Theorem III.4. Let (ß; ?, α1, α2) be an algebra of type
(2, 1, 1). Then the algebra (ß; ?) is the internal direct product
of α1(ß) and α2(ß) if and only if the algebra (ß; ?, α1, α2)
has the following properties:

(i) ∀ω ∈ ß, α1(ω) ? α2(ω) = ω,
(ii) ∀ω1, ω2 ∈ ß, α1(ω1) = α1(α1(ω1) ? α2(ω2)) and

α2(ω2) = α2(α1(ω1) ? α2(ω2)), in particular, α1(ω1 ?
ω2) = ω1 and α2(ω1 ? ω2) = ω2 for all ω1 ∈ ß1, ω2 ∈
ß2,

(iii) α1 and α2 are homomorphisms. Moreover,
α1(ß1), α1(ß2), α2(ß1) and α2(ß2) are subalgebras of
ß.

Definition III.5. Let (ß; ?) be an algebra. For any a ∈ ß,

(∀ω ∈ ß)(ρa(ω) = a ? ω), (17)

and

(∀ω ∈ ß)(λa(ω) = ω ? a). (18)

Theorem III.6. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), α1 |ß1 and α2 |ß2 are
injections.

Corollary III.7. For any a ∈ ß2, ρα1(a) |α1(ß1) is a left
inverse of α1 |ß1 . For any a ∈ ß1, λα2(a) |α2(ß2) is left inverse
of α2 |ß2 .

Theorem III.8. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), the following conditions
are equivalent.

(i) α1(ß1) = ß1,
(ii) there exists d1 ∈ ß1 such that α1(ß2) = {d1} with

α1(d1) = d1,
(iii) α1(ß1) ∩ α1(ß2) = {d1},
(iv) α1(ß1) ∩ α1(ß2) 6= ∅.

Corollary III.9. Under the conditions of Theorem III.8 (i)-
(iv), ρd1 |ß1 is the inverse automorphism of α1 |ß1 . Under the
corresponding conditions with transposed subscripts, λd2 |ß2

is the inverse automorphism of α2 |ß2 .

Theorem III.10. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), the following conditions
are equivalent.

(i) α1(ß1) = ß1 and α2(ß2) = ß2,
(ii) there exists d ∈ ß such that α1(ß2) = α2(ß1) = {d}

with α1(d) = α2(d) = d and d ? d = d,
(iii) ß1 ∩ ß2 = {d},
(iv) ß1 ∩ ß2 6= ∅.

Corollary III.11. Under the conditions of Theorem III.10
(i)-(iv), ρd |ß1 is the inverse automorphisms of α1 |ß1 and
λd |ß2 is the inverse automorphisms α2 |ß2 with d ? d = d.

Corollary III.12. In any internal direct product
(ß; ?, α1, α2) with ß1 = α1(ß) and ß2 = α2(ß), | ß1 ∩ ß2 |
can only be 1 or 0.

Theorem III.13. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), if ß1 ∩ ß2 = {d}, and d
commutes with every element of ß, then every element of ß1

commutes with every element of ß2.

Theorem III.14. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß), ß2 = α2(ß) and ß1∩ß2 = {d}, α1 |ß1= 1ß1

and α2 |ß2= 1ß2 (i.e., α2
1 = α1 and α2

2 = α2) if and only if
d is both a right identity element for ß1 and a left identity
element for ß2.

Theorem III.15. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), if every element of ß1

commutes with every element of ß2, and α2
1 = α1 and α2

2 =
α2, then ß has an identity element.

Theorem III.16. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), if ß is finite, then | ß1 ∩
ß2 |= 1.

Theorem III.17. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß) and ß2 = α2(ß), if ß satisfies either the right
or left cancellation law, then | ß1 ∩ ß2 |= 1.

Theorem III.18. In any internal direct product (ß; ?, α1, α2)
with ß1 = α1(ß), ß2 = α2(ß) and ß1∩ß2 = {d}, α1 |ß1= 1ß1

and α2 |ß2= 1ß2 (i.e., α2
1 = α1 and α2

2 = α2) if and only if
∀ω1 ∈ ß1, ∀κ ∈ ß,∀ε2 ∈ ß2,

(ω1 ? κ) ? ε2 = ω1 ? (κ ? ε2).

Corollary III.19. In any anti-internal direct product
(ß; ?, α1, α2) with ß1 = α1(ß), ß2 = α2(ß), and ß1 ∩ ß2 =
{d}, if ß is a semigroup, then α1 |ß1= 1ß1 and α2 |ß2= 1ß2

(i.e., α2
1 = α1 and α2

2 = α2) with d is the right identity
element for ß1 and the left identity element for ß2.

IV. INTERNAL DIRECT PRODUCTS OF BCC-ALGEBRAS

We apply the results from section III to the internal direct
product of BCC-algebras and get the following results.

Using Theorem III.3, (UP-2), (UP-3), and (1), we get the
following theorem.

Theorem IV.1. Let a BCC-algebra (ß; ?, 0) is the internal
direct product of its BCC-subalgebras ß1 and ß2. Then

(i) ∀ω1 ∈ ß1,∀ω2, κ2 ∈ ß2, (ω1 ? ω2) ? κ2 = ω2 ? κ2,
(ii) ∀κ1 ∈ ß1,∀ω2, κ2 ∈ ß2, ω2 ? (κ1 ?κ2) = κ1 ? (ω2 ?κ2),

(iii) ∀ω1, κ1 ∈ ß1, ∀κ2 ∈ ß2, κ1 ? κ2 = (ω1 ? κ1) ? κ2,
(iv) ∀ω1 ∈ ß1,∀ω2 ∈ ß2,∀κ ∈ ß1∩ß2, 0 = (ω1?κ)?(ω2?κ),
(v) ∀κ1 ∈ ß1,∀κ2 ∈ ß2, ∀ω ∈ ß1 ∩ ß2, κ1 ? κ2 = (ω ? κ1) ?

(ω ? κ2).

Theorem IV.2. Let (ß; ?, α1, α2, 0) be a BCC-algebra and
unary operations α1 and α2. The groupoid (ß; ?) is the
internal direct product of α1(ß) and α2(ß) if and only if

(i) α1 = 0ß is the zero function,
(ii) α2 = 1ß is the identity function.
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Proof: Assume that (ß; ?, α1, α2, 0) is a BCC-algebra
and unary operations α1 and α2. The groupoid (ß; ?) is the
internal direct product of α1(ß) and α2(ß). Then

α2(0) = α2(0 ? 0) (by (1))
= α2(0) ? α2(0) (by Theorem III.4 (iii))
= 0 (by (1))

and

α1(0) = α1(0 ? 0) (by (1))
= α1(0) ? α1(0) (by Theorem III.4 (iii))
= 0. (by (1))

(i) Let x ∈ ß. Then

α1(ω) = α1(α1(ω) ? α2(0)) (by Theorem III.4 (ii))
= α1(α1(ω) ? 0)
= α1(0) (by (UP-3))
= 0.

Hence, α1 = 0ß.
(ii) Let ω ∈ ß. Then

ω = α1(ω) ? α2(ω) (by Theorem III.4 (i))
= 0 ? α2(ω) (by (i))
= α2(ω). (by (UP-2))

Hence, α2 = 1ß.
Conversely, assume that α1 = 0ß and α2 = 1ß. Then (i)-

(iii) in Theorem III.4 hold. Hence, (ß; ?) is the internal direct
product of α1(ß) = {0} and α2(ß) = ß.

By Theorem IV.2, we have the following theorem.

Theorem IV.3. Every BCC-algebra (ß; ?, 0) is only the
internal direct product of {0} and ß.

V. ANTI-INTERNAL DIRECT PRODUCTS OF ALGEBRAS

In this section, we introduce the concept of the anti-
internal direct product of groupoids and find important
theorems.

Definition V.1. An algebra (ß; ?) is called the anti-internal
direct product of its subalgebras ß1 and ß2 if the mapping

φ : (ω1, ω2) 7→ ω2 ? ω1 (19)

is an isomorphism from the algebra (ß1 × ß2;⊗) surjective
ß.

Then φ−1 : ß → ß1 × ß2 is a BCC-isomorphism. Let
β1 : ß → ß1 and β2 : ß → ß2 be such that

(∀ω ∈ ß)(φ−1(x) = (β1(x), β2(x))). (20)

Lemma V.2. Let an algebra (ß; ?) is the anti-internal direct
product of its subalgebras ß1 and ß2. Then

(i) β1(ß) = ß1.
(ii) β2(ß) = ß2.

We conclude that β1 and β2 are surjective.

Proof: (i) Clearly, β1(ß) ⊆ ß1. Let ω1 ∈ ß1 and choose
ω2 ∈ ß2. Since φ−1 is surjective, there exists ω ∈ ß such
that

(ω1, ω2) = φ−1(ω)
= (β1(ω), β2(ω)). (by (20))

Thus ω1 = β1(ω) ∈ β1(ß), that is, ß1 ⊆ β1(ß). Hence,
β1(ß) = ß1.

(ii) Clearly, β2(ß) ⊆ ß2. Let ω2 ∈ ß2 and choose ω1 ∈ ß1.
Since φ−1 is surjective, there exists ω ∈ ß such that

(ω1, ω2) = φ−1(ω)
= (β1(ω), β2(ω)). (by (20))

Thus ω2 = β2(ω) ∈ β2(ß), that is, ß2 ⊆ β2(ß). Hence,
β2(ß) = ß2.

Theorem V.3. Let an algebra (ß; ?) is the anti-internal
direct product of its subalgebras ß1 and ß2. Then ∀ω1, κ1 ∈
ß1, ∀ω2, κ2 ∈ ß2, (ω2 ?ω1)? (κ2 ?κ1) = (ω2 ?κ2)? (ω1 ?κ1).

Proof: Let ω1, κ1 ∈ ß1 and ω2, κ2 ∈ ß2. Then

(ω2 ? ω1) ? (κ2 ? κ1)
= φ(ω1, ω2) ? φ(κ1, κ2) (by (19))
= φ((ω1, ω2)⊗ (κ1, κ2)) (by homomorphism)
= φ(ω1 ? κ1, ω2 ? κ2) (by Definition II.1)
= (ω2 ? κ2) ? (ω1 ? κ1). (by (19))

Theorem V.4. Let (ß; ?, β1, β2) be an algebra of type
(2, 1, 1). Then the algebra (ß; ?) is the anti-internal direct
product of β1(ß) and β2(ß) if and only if the algebra
(ß; ?, β1, β2) has the following properties:

(i) ∀ω ∈ ß, β2(ω) ? β1(ω) = ω,
(ii) ∀ω1, ω2 ∈ ß, β1(ω1) = β1(β2(ω2) ? β1(ω1)) and

β2(ω2) = β2(β2(ω2) ? β1(ω1)), in particular, β1(ω2 ?
ω1) = ω1 and β2(ω2 ? ω1) = ω2 for all ω1 ∈ ß1, ω2 ∈
ß2,

(iii) β1 and β2 are homomorphisms. Moreover,
β1(ß1), β1(ß2), β2(ß1) and β2(ß2) are subalgebras of
ß.

Proof: Write β1(ß) = ß1 and β2(ß) = ß2 . First, assume
(ß; ?) is the anti-internal direct product of ß1 and ß2.

(i) ∀ω ∈ ß,

ω = φ(φ−1(ω))
= φ(β1(x), β2(x)) (by (20))
= β2(x) ? β1(x). (by (19))

(ii) Let ω1, ω2 ∈ ß. Then there exist κ1 ∈ ß1, κ2 ∈ ß2

such that β1(ω1) = κ1 and β2(ω2) = κ2. Thus

(β1(ω1), β2(ω2))
= (κ1, κ2)

= φ−1(φ(κ1, κ2)) (by (20))

= φ−1(κ2 ? κ1) (by (19))
= (β1(κ2 ? κ1), β2(κ2 ? κ1)) (by (20))
= (β1(β2(ω2) ? β1(ω1)), β2(β2(ω2) ? β1(ω1))).

Hence, β1(ω1) = β1(β2(ω2) ? β1(ω1)) and β2(ω2) =
β2(β2(ω2) ? β1(ω1)).
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(iii) Let ω, κ ∈ ß. Then

(β1(ω ? κ), β2(ω ? κ))

= φ−1(ω ? κ) (by (20))

= φ−1(ω)⊗ φ−1(κ) (by homomorphism)
= (β1(ω), β2(ω))⊗ (β1(κ), β2(κ)) (by (20))
= (β1(ω) ? β1(κ), β2(ω) ? β2(κ)). (by Definition II.1)

Hence, β1(ω ? κ) = β1(ω) ? β1(κ) and β2(ω ? κ) = β2(ω) ?
β2(κ). Therefore β1 and β2 are homomorphisms.

Conversely, assume (i)-(iii) are satisfied. By (iii), we have
β1(ß) = ß1 and β2(ß) = ß2 are subalgebras of ß. Define the
function η : ß → ß1 × ß2 by

η(ω) = (β1(x), β2(ω)) (21)

for all ω ∈ ß. Let ω, κ ∈ ß be such that η(ω) = η(κ). Then

η(ω) = η(κ) ⇒ β1(ω) = β1(κ) and β2(ω) = β2(κ)
⇒ β2(ω) ? β1(ω) = β2(κ) ? β1(κ)
⇒ ω = κ. (by (i))

So, η is injective.
Also, let (ω1, ω2) ∈ ß1×ß2. Then there exists ω2 ?ω1 ∈ ß

such that

η(ω2 ? ω1) = (β1(ω2 ? ω1), β2(ω2 ? ω1)) (by (21))
= (ω1, ω2). (by (ii))

So, η is surjective.
Also, let ω, κ ∈ ß. Then

η(ω)⊗ η(κ)
= (β1(ω), β2(ω))⊗ (β1(κ), β2(κ)) (by (21))
= (β1(ω) ? β1(κ), β2(ω) ? β2(κ)) (by Definition II.1)
= (β1(ω ? κ), β2(ω ? κ)) (by (iii))
= η(ω ? κ). (by (21))

So, η is a homomorphism. Hence, η is an isomorphism and
so η−1 is an isomorphism.

Finally let φ = η−1. Then ß is an anti-internal direct
product of ß1 and ß2.

Theorem V.5. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), β1 |ß1

and β2 |ß2 are injective.

Proof: Choose any a ∈ ß2. Let ω ∈ ß1. Then

(ρβ1(a) ◦ β1 |ß1)(ω) = ρβ1(a)(β1 |ß1 (ω))
= ρβ1(a)(β1(ω))
= β1(a) ? β1(ω) (by (17))
= β1(a ? ω) (by Theorem V.4 (iii))
= ω (by Theorem V.4 (ii))
= 1ß1(ω).

Thus β1 |ß1 is injective.

And, choose any a ∈ ß1. Let ω ∈ ß2. Then

(λβ2(a) ◦ β2 |ß2)(ω) = λβ2(a)(β2 |ß2 (ω))
= λβ2(a)(β2(ω))
= β2(ω) ? β2(a) (by (18))
= β2(ω ? a) (by Theorem V.4 (iii))
= ω (by Theorem V.4 (ii))
= 1ß2(ω).

Thus β2 |ß2 is injective.

Corollary V.6. For any a ∈ ß2, ρβ1(a) |β1(ß1) is a left inverse
of β1 |ß1 . For any a ∈ ß1, λβ2(a) |β2(ß2) is a left inverse of
β2 |ß2 .

Theorem V.7. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), the
following conditions are equivalent.

(i) β1(ß1) = ß1,
(ii) there exists d1 ∈ ß1 such that β1(ß2) = {d1} with

β1(d1) = d1,
(iii) β1(ß1) ∩ β1(ß2) = {d1},
(iv) β1(ß1) ∩ β1(ß2) 6= ∅.

Proof: (i)⇒(ii) Choose any c1 ∈ ß1. Then β1(β2(c1)) ∈
β1(ß) = ß1 = β1(ß1) from (i), so there exists d1 ∈ ß1 such
that β1(β2(c1)) = β1(d1). So, let ω2 ∈ ß2. Then

β1(ω2) = β1(β2(ω2 ? c1)) (by Theorem V.4 (ii))
= β1(β2(ω2) ? β2(c1)) (by Theorem V.4 (iii))
= β1(β2(ω2)) ? β1(β2(c1)) (by Theorem V.4 (iii))
= β1(β2(ω2)) ? β1(d1) (by β1(β2(c1)) = β1(d1))
= β1(β2(ω2) ? d1) (by Theorem V.4 (iii))
= d1. (by Theorem V.4 (ii))

So, β1(ß2) ⊆ {d1}. Since β1(ß2) is nonempty, we have
β1(ß2) = {d1}. Also β1(d1) = β1(β2(c1)) ∈ β1(ß2) =
{d1}, so β1(d1) = d1. Hence, β1(ß2) is a singleton {d1}
with β1(d1) = d1.

(ii)⇒(iii) From (ii), we have β1(ß2) = {d1} =
{β1(d1)} ⊆ β1(ß1). Hence, β1(ß1)∩ β1(ß2) is the singleton
{d1}.

(iii)⇒(iv) Obviously.
(iv)⇒(i) From (iv), there exist a1 ∈ ß1 and a2 ∈ ß2 such

that β1(a1) = β1(a2). Clearly, β1(ß1) ⊆ ß1. So, let ω ∈ ß1.
Then

ω = β1(a2 ? ω) (by Theorem V.4 (ii))
= β1(a2) ? β1(ω) (by Theorem V.4 (iii))
= β1(a1) ? β1(ω) (by β1(a1) = β1(a2))
= β1(a1 ? ω) (by Theorem V.4 (iii))
∈ β1(ß1).

So, ß1 ⊆ β1(ß1). Hence, β1(ß1) = ß1.

Theorem V.8. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), the
following conditions are equivalent.

(i) β2(ß2) = ß2,
(ii) there exists d2 ∈ ß2 such that β2(ß1) = {d2} with

β2(d2) = d2,
(iii) β2(ß1) ∩ β2(ß2) = {d2},
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(iv) β2(ß1) ∩ β2(ß2) 6= ∅.

Proof: Prove it using the same principle as Theorem
V.7, replacing the subscript 1 to 2 and 2 to 1.

Corollary V.9. Under the conditions of Theorem V.7 (i)-(iv),
ρd1 |ß1 is the inverse automorphism of β1 |ß1 . Moreover,
ρd1 |ß1= ρa |ß1 for all a ∈ ß2.

Proof: We shall prove that ρd1 |ß1 is the left inverse
automorphism of β1 |ß1 . Choose any a ∈ ß2. Let ω ∈ ß1.
Then

(ρd1 |ß1 ◦β1 |ß1)(x)
= ρd1 |ß1 (β1 |ß1 (ω))
= ρd1(β1(ω))
= ρβ1(a)(β1(ω)) (by Theorem V.7 (ii))
= β1(a) ? β1(ω) (by (17))
= β1(a ? ω) (by Theorem V.4 (iii))
= ω. (by Theorem V.4 (ii))

Thus β1 |ß1 is injective.
Next, we shall prove that ρa |ß1 is the right inverse

automorphism of β1 |ß1 . Choose any a ∈ ß2. Let ω ∈ ß1.
Then

(β1 |ß1 ◦ρa |ß1)(x) = β1 |ß1 (ρa(ω))
= β1(ρa(ω))
= β1(a ? ω) (by (17))
= ω. (by Theorem V.4 (ii))

Thus β1 |ß1 is surjective, so β1 |ß1 is bijective. Hence,
ρd1 |ß1= ρa |ß1 is the inverse of β1 |ß1 . By Theorem
V.4 (iii), we have β1 |ß1 is an automorphism. Therefore,
ρd1 |ß1= ρa |ß1 is the inverse automorphism of β1 |ß1 .

Corollary V.10. Under the conditions of Theorem V.8 (i)-
(iv), λd2 |ß2 is the inverse automorphism of β2 |ß2 . Moreover,
λd2 |ß2= λa |ß2 for all a ∈ ß1.

Proof: The proof is in the same way as Corollary V.9.

Theorem V.11. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), the following
conditions are equivalent.

(i) β1(ß1) = ß1 and β2(ß2) = ß2,
(ii) there exists d ∈ ß such that β1(ß2) = β2(ß1) = {d}

with β1(d) = β2(d) = d and d ? d = d,
(iii) ß1 ∩ ß2 = {d},
(iv) ß1 ∩ ß2 6= ∅.

Proof: (i)⇒(ii) From (i), Theorem V.7 gives β1(ß2) =
{d1} with β1(d1) = d1 for some d1 ∈ ß1 and Theorem V.8
gives β2(ß1) = {d2} with β2(d2) = d2 for some d2 ∈ ß2.
Also, β1(d2) ∈ β1(ß2) = {d1} and β2(d1) ∈ β2(ß1) = {d2},
so β1(d2) = d1 and β2(d1) = d2. Thus

d1 = β2(d1) ? β1(d1) (by Theorem V.4 (i))
= d2 ? d1 (by β2(d1) = d2, β1(d1) = d1)
= β2(d2) ? β1(d2) (by β2(d2) = d2, β1(d2) = d1)
= d2. (by Theorem V.4 (i))

Choose d = d1. Hence, β1(ß2) = β2(ß1) = {d} with
β1(d) = β2(d) = d.

(ii)⇒(iii) From (ii), d ∈ β1(ß2) ∩ β2(ß1) ⊆ ß1 ∩ ß2. Thus
{d} ⊆ ß1∩ß2. Let ω ∈ ß1∩ß2. Then β1(ω) ∈ β1(ß1∩ß2) ⊆
β1(ß2) = {d} and β2(ω) ∈ β2(ß1 ∩ ß2) ⊆ β2(ß1) = {d}.
Thus

ω = β2(ω) ? β1(ω) (by Theorem V.4 (i))
= d ? d

= d. (by assumption)

Thus, ß1 ∩ ß2 ⊆ {d}. Hence, ß1 ∩ ß2 = {d}.
(iii)⇒(iv) Obviously.
(iv)⇒(i) We see that β1(ß1∩ß2) ⊆ β1(ß1)∩β1(ß2). Thus

ß1 ∩ ß2 6= ∅
⇒ β1(ß1) ∩ β2(ß2) 6= ∅
⇒ β1(ß1) = ß1 and β2(ß2) = ß2.

(by Theorems V.7 (i) and V.8 (i))

Hence, β1(ß1) = ß1 and β2(ß2) = ß2.

Corollary V.12. Under the conditions of Theorem V.11 i-iv,
ρd |ß1 is the inverse automorphism of β1 |ß1 and λd |ß2 is
the inverse automorphism of β2 |ß2 . Moreover, ρd |ß1= ρa |ß1

and λd |ß2= λb |ß2 for all a ∈ ß2 and b ∈ ß1.

Proof: It is a direct result of Corollaries V.9 and V.10.

Corollary V.13. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), |ß1 ∩ ß2|
can only be 1 or 0.

Proof: It follows from Theorem V.11 (iii) and (iv).

Theorem V.14. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), if ß1 ∩ ß2 =
{d}, and d commutes with every element of ß, then every
element of ß1 commutes with every element of ß2.

Proof: Let ω1 ∈ ß1 and ω2 ∈ ß2. Then

ω1 ? ω2

= (β2(ω1) ? β1(ω1)) ? (β2(ω2) ? β1(ω2))
(by Theorem V.4 (i))

= (d ? β1(ω1)) ? (β2(ω2) ? d) (by Theorem V.11 (ii))
= (d ? β2(ω2)) ? (β1(ω1) ? d) (by Theorem V.3)
= (β2(ω2) ? d) ? (d ? β1(ω1))
= (β2(ω2) ? β1(ω2)) ? (β2(ω1) ? β1(ω1))

(by Theorem V.11 (ii))
= ω2 ? ω1. (by Theorem V.4 (i))

The proof is completed.

Theorem V.15. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß), ß2 = β2(ß) and ß1∩ß2 = {d},
β1 |ß1= 1ß1 and β2 |ß2= 1ß2 (i.e., β2

1 = β1 and β2
2 = β2) if

and only if d is both the left identity element for ß1 and the
right identity element for ß2.

Proof: Assume both β1 |ß1= 1ß1 and β2 |ß2= 1ß2 . Then
Corollary V.12 gives ρd |ß1= 1ß1 and λd |ß2= 1ß2 . Let ω1 ∈
ß1. Then d ? ω1 = ρd(ω1) = ρd |ß1 (ω1) = 1ß1(ω1) = ω1,
that is, d is the left identity element for ß1. Let ω2 ∈ ß2.
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Then ω2 ? d = λd(ω2) = λd |ß2 (ω2) = 1ß2(ω2) = ω2, that
is, d is the right identity element for ß2. Hence, d is both the
left identity element for ß1 and the right identity element for
ß2.

Conversely, assume that d is both the left identity element
for ß1 and the right identity element for ß2. By the assump-
tion, Theorem V.11 (iii) holds. Thus by Theorem V.11, we
have the conditions (i)-(iv). It follows from Corollary V.12
that ρd |ß1 ◦β1 |ß1= 1ß1 and β2 |ß2 ◦λd |ß2= 1ß2 . Let
ω1 ∈ ß1. Since d is the left identity element for ß1, we have
1ß1(ω1) = (ρd |ß1 ◦β1 |ß1)(ω1) = ρd |ß1 (β1 |ß1 (ω1)) =
ρd(β1 |ß1 (ω1)) = d ? β1 |ß1 (ω1) = β1 |ß1 (ω1). Thus
β1 |ß1= 1ß1 . And let ω2 ∈ ß2. Since d is the right identity
element for ß2, we have 1ß2(ω2) = (β2 |ß2 ◦λd |ß2)(ω2) =
β2 |ß2 (λd |ß2 (ω2)) = β2 |ß2 (λd(ω2)) = β2 |ß2 (ω2 ? d) =
β2 |ß2 (ω2). Thus β2 |ß2= 1ß2 .

Theorem V.16. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß), ß2 = β2(ß) and ß1∩ß2 = {d},
if every element of ß1 commutes with every element of ß2,
and β2

1 = β1 and β2
2 = β2, then ß has the identity element.

Proof: Assume that every element of ß1 commutes with
every element of ß2, and β2

1 = β1 and β2
2 = β2. By Theorem

V.15, we have d is the left identity element for ß1 and d is
the right identity element for ß2. Let ω ∈ ß. Then

ω ? d

= (β2(ω) ? β1(ω)) ? (d ? d) (by Theorem V.4 (i))
= (β2(ω) ? d) ? (β1(ω) ? d) (by Theorem V.3)
= β2(ω) ? (β1(ω) ? d) (by d is the right identity for ß2)
= β2(ω) ? (d ? β1(ω)) (by assumption)
= β2(ω) ? β1(ω) (by d is the left identity for ß1)
= ω (by Theorem V.4 (i))

and

d ? ω

= (d ? d) ? (β2(ω) ? β1(ω)) (by Theorem V.4 (i))
= (d ? β2(ω)) ? (d ? β1(ω)) (by Theorem V.3)
= (d ? β2(ω)) ? β1(ω) (by d is the left identity for ß1)
= (β2(ω) ? d) ? β1(ω) (by assumption)
= β2(ω) ? β1(ω) (by d is the right identity for ß2)
= ω. (by Theorem V.4 (i))

Hence, d is the identity element of ß.

Theorem V.17. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), if ß1 and
ß2 are finite, then | ß1 ∩ ß2 |= 1.

Proof: Assume that ß1 and ß2 are finite. By Theorem
V.5, we have β1 |ß1 and β2 |ß2 are injective. By the
assumption, we have β1(ß1) = β1 |ß1 (ß1) = ß1 and
β2(ß2) = β2 |ß2 (ß2) = ß2. It follows from Theorem V.11
that | ß1 ∩ ß2 |= 1.

Theorem V.18. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß) and ß2 = β2(ß), if ß satisfies
either the right or left cancellation law, then | ß1 ∩ ß2 |= 1.

Proof: Assume that ß satisfies the right cancellation law.

Choose any a1 ∈ ß1 and a2 ∈ ß2. Then

β2(a1) ? β1(a1)
= a1 (by Theorem V.4 (i))
= β1(a2 ? a1) (by Theorem V.4 (ii))
= β1(a2) ? β1(a1). (by Theorem V.4 (iii))

Cancel β1(a1) from the right so β2(a1) = β1(a2), therefore
ß1∩ß2 6= ∅. It follows from Theorem V.11 that | ß1∩ß2 |= 1.

Next, assume that ß satisfies the left cancellation law.
Choose any a1 ∈ ß1 and a2 ∈ ß2. Then

β2(a2) ? β1(a2)
= a2 (by Theorem V.4 (i))
= β2(a2 ? a1) (by Theorem V.4 (ii))
= β2(a2) ? β2(a1). (by Theorem V.4 (iii))

Cancel β2(a2) from the left so β1(a2) = β2(a1), therefore
ß1∩ß2 6= ∅. It follows from Theorem V.11 that | ß1∩ß2 |= 1.

Theorem V.19. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß), ß2 = β2(ß) and ß1∩ß2 = {d},
β1 |ß1= 1ß1 and β2 |ß2= 1ß2 (i.e., β2

1 = β1 and β2
2 = β2) if

and only if ∀ω1 ∈ ß1, ∀ω2 ∈ ß2, ∀κ ∈ ß,

(ω2 ? κ) ? ω1 = ω2 ? (κ ? ω1).

Proof: Assume that (ω2 ?κ) ?ω1 = ω2 ? (κ?ω1) for all
ω1 ∈ ß1, ω2 ∈ ß2, and κ ∈ ß. Choose ω2 ∈ ß2. Let ω1 ∈ ß1.
Then

β1(ω1)
= β1((ω2 ? ω2) ? β1(ω1)) (by Theorem V.4 (ii))
= β1(ω2 ? (ω2 ? β1(ω1))) (by assumption)
= β1(ω2) ? β1(ω2 ? β1(ω1)) (by Theorem V.4 (iii))
= β1(ω2) ? β1(ω1) (by Theorem V.4 (ii))
= β1(ω2 ? ω1) (by Theorem V.4 (iii))
= ω1. (by Theorem V.4 (ii))

Hence, β1 |ß1= 1ß1 . Next, choose ω1 ∈ ß1. Let ω2 ∈ ß2.
Then

β2(ω2)
= β2(β2(ω2) ? (ω1 ? ω1)) (by Theorem V.4 (ii))
= β2((β2(ω2) ? ω1) ? ω1) (by assumption)
= β2(β2(ω2) ? ω1) ? β2(ω1) (by Theorem V.4 (iii))
= β2(ω2) ? β2(ω1) (by Theorem V.4 (ii))
= β2(ω2 ? ω1) (by Theorem V.4 (iii))
= ω2. (by Theorem V.4 (ii))

Hence, β2 |ß2= 1ß2 .
Conversely, assume that β1 |ß1= 1ß1 and β2 |ß2= 1ß2 . By

Theorem V.15, we have d is both the left identity element
for ß1 and the right identity element for ß2. Let ω1 ∈ ß1,
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ω2 ∈ ß2, and κ ∈ ß. Then

β1((ω2 ? κ) ? ω1)
= β1(ω2 ? κ) ? β1(ω1) (by Theorem V.4 (iii))
= (β1(ω2) ? β1(κ)) ? β1(ω1) (by Theorem V.4 (iii))
= β1(κ) ? β1(ω1) (by Theorems V.15 and V.11 (ii))
= β1(κ ? ω1) (by Theorem V.4 (iii))
= β1(ω2) ? β1(κ ? ω1) (by Theorems V.15 and V.11 (ii))
= β1(ω2 ? (κ ? ω1)) (by Theorem V.4 (iii))

and

β2((ω2 ? κ) ? ω1)
= β2(ω2 ? κ) ? β2(ω1) (by Theorem V.4 (iii))
= (β2(ω2) ? β2(κ)) ? β2(ω1) (by Theorem V.4 (iii))
= β2(ω2) ? β2(κ) (by Theorems V.15 and V.11 (ii))
= β2(ω2) ? (β2(κ) ? β2(ω1))

(by Theorems V.15 and V.11 (ii))
= β2(ω2) ? β2(κ ? ω1) (by Theorem V.4 (iii))
= β2(x2 ? (κ ? ω1)). (by Theorem V.4 (iii))

Therefore,

(ω2 ? κ) ? ω1 = β2((ω2 ? κ) ? ω1) ? β1((ω2 ? κ) ? ω1)
(by Theorem V.4 (i))

= β2(ω2 ? (κ ? ω1)) ? β1(ω2 ? (κ ? ω1))
= ω2 ? (κ ? ω1). (by Theorem V.4 (i))

Corollary V.20. In any anti-internal direct product
(ß; ?, β1, β2) with ß1 = β1(ß), ß2 = β2(ß), and ß1 ∩ ß2 =
{d}, if ß is a semigroup, then β1 |ß1= 1ß1 and β2 |ß2= 1ß2

(i.e., β2
1 = β1 and β2

2 = β2) with d is the left identity element
for ß1 and the right identity element for ß2.

Proof: Assume that ß is a semigroup. By Theorems V.19
and V.15, we have β1 |ß1= 1ß1 and β2 |ß2= 1ß2 with d is
the left identity element for ß1 and the right identity element
for ß2.

VI. ANTI-INTERNAL DIRECT PRODUCTS OF
BCC-ALGEBRAS

Using Theorem V.3, (UP-2), (UP-3), and (1), we get the
following theorem.

Theorem VI.1. Let a BCC-algebra (ß; ?, 0) is the anti-
internal direct product of its BCC-subalgebras ß1 and ß2.
Then

(i) ∀κ1 ∈ ß1, ∀ω2, κ2 ∈ ß2, κ2 ? κ1 = (ω2 ? κ2) ? κ1,
(ii) ∀ω1, κ1 ∈ ß1,∀κ2 ∈ ß2, ω1 ? (κ2 ?κ1) = κ2 ? (ω1 ?κ1),

(iii) ∀ω1, κ1 ∈ ß1,∀ω2 ∈ ß2, (ω2 ? ω1) ? κ1 = ω1 ? κ1,
(iv) ∀ω1 ∈ ß1, ∀ω2 ∈ ß2, ∀κ ∈ ß1∩ß2, 0 = (ω2?κ)?(ω1?κ),
(v) ∀κ1 ∈ ß1, ∀κ2 ∈ ß2, ∀ω ∈ ß1 ∩ ß2, κ2 ? κ1 = (ω ? κ2) ?

(ω ? κ1).

Theorem VI.2. Let (ß; ?, β1, β2, 0) be a BCC-algebra and
unary operations β1 and β2. The groupoid (ß; ?) is the anti-
internal direct product of β1(ß) and β2(ß) if and only if the
algebra (ß; ?, β1, β2, 0) has the following properties:

(i) β1 = 1ß is the identity function,

(ii) β2 = 0ß is the zero function.

Proof: Assume that (ß; ?, β1, β2, 0) is a BCC-algebra
and unary operations β1 and β2. The groupoid (ß; ?) is the
anti-internal direct product of β1(ß) and β2(ß). Then

β2(0) = β2(0 ? 0) (by (1))
= β2(0) ? β2(0) (by Theorem V.4 (iii))
= 0 (by (1))

and

β1(0) = β1(0 ? 0) (by (1))
= β1(0) ? β1(0) (by Theorem V.4 (iii))
= 0. (by (1))

(ii) Let x ∈ ß. Then

β2(ω) = β2(β2(ω) ? β1(0)) (by Theorem V.4 (ii))
= β2(β2(ω) ? 0)
= β2(0) (by (UP-3))
= 0.

Hence, β2 = 0ß.
(i) Let ω ∈ ß. Then

ω = β2(ω) ? β1(ω) (by Theorem V.4 (i))
= 0 ? β1(ω) (by (i))
= β1(ω). (by (UP-2))

Hence, β1 = 1ß.
Conversely, assume that β1 = 1ß and β2 = 0ß. Then (i)-

(iii) in Theorem V.4 hold. Hence, (ß; ?) is the anti-internal
direct product of β1(ß) = ß and β2(ß) = {0}.

By Theorem VI.2, we have the following theorem.

Theorem VI.3. Every BCC-algebra (ß; ?, 0) is only the anti-
internal direct product of ß and {0}.

VII. CONCLUSION AND FUTURE WORK

The internal and anti-internal direct products of BCC-
algebras are two novel notions for internal direct products
of BCC-algebras that we present in this study. We have in-
vestigated the characteristics of the internal and anti-internal
direct products of BCC-algebras.

Finally, we can conclude that for a BCC-algebra (ß; ?, 0)
there is only one form of the internal direct product is {0}×ß
refer to Theorem IV.3, and there is only one form of the anti-
internal direct product is ß× {0} refer to Theorem VI.3.

It is possible to analyze the internal and anti-internal
direct products in various algebraic systems using the idea
of the internal and anti-internal direct products of BCC-
algebras presented in this article. The two new concepts of
internal direct products of BCC-algebras in this article will be
developed into new concepts for future studies: the internal
and anti-internal direct products of type 2.
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