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A Discrete Naked Mole Algorithm to Solve
Traveling Salesman Problem Based on Multiple
Local Dynamic Searching Strategies

Zhen-Long Zhao, Jie-Sheng Wang, Sha-Sha Guo, Zhong-Feng Li *, Ji-Sheng Yu, Ji Sun

Abstract—Naked mole rat (NMR) algorithm is a swarm
intelligence optimization algorithm by imitating the pair
breeding behavior of naked mole rats. A discrete NMR
algorithm was proposed based on multiple local dynamic
searching strategies to solve traveling salesman problem (TSP)
and multiple traveling salesman problem (MTSP). The discrete
NMR algorithm to solve TSP adopts sequential coding and
individual update strategies (worker stage and reproduction
stage). In the worker update mechanism of NMR algorithm,
three local dynamic search operators (2-opt operator, 3-opt
operator and double bridge operator) were added to make the
algorithm far from the local optimum when obtaining optimal
path. The data sets in the TSPLIB library were used to carry
out simulation experiments. Basic discrete NMR (DNMR),
DNMR-2opt, DNMR-3opt and DNMR-double Bridges were
used to obtain the optimum of single TSP and MTSP with three
different situations. The experimental results show that the
improved discrete NMR algorithm can approach the theoretical
optimal value in a reasonable time and has strong robustness in
solving single TSP and three MTSP.

Index Terms—idiscrete naked mole rat algorithm, local
dynamic search, traveling salesman problem, multiple traveling
salesman problem, optimization performance

I. INTRODUCTION

HE traveling salesman problem (TSP) is a classic
combination optimization problem with NP-complete
characteristic [1], whose purpose of TSP 1s intend to
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minimize traveling distance of the salesmen. Many practical
engineering problems can be can be modeled as TSP, such as
vehicle routing problem, robot path planning, logistics
distribution [2-4]. On the other hand, multiple travelers
traverse multiple cities, and find the shortest path to traverse
all cities on the premise that each city is passed by a traveler
once [5]. This kind of problems is defined as multiple
traveling salesman problems (MTSP) [6-7]. According to the
theory of computational complexity, TSP is a typical
NP-complete (NP-C or NPC) problem. NP-complete
problems should be the set of decisive problems that are most
unlikely to be reduced to P (polynomial time determinable).
So far, no polynomial time algorithm has been found to solve
this class of problems. Therefore, many swarm intelligent
optimization algorithms have been adopted to tackle with
TSP and MTSP with better optimization performance in
computational and time complexity. A hybrid algorithm
combining ant colony algorithm (HACO) particle swarm
optimization (PSO) algorithm was proposed based on
deletion strategy to solve TSP with fast convergence velocity
of local search [8]. On the other hand, a 3-opt heuristic
operator was added to improve the local solution [9]. An
mproved cyclic crossover operator was proposed to
minimize the total distance so as to seek the solution of TSP
that the genetic algorithm (GA) could not provide an accurate
optimal solution when solving TSP [10]. The impenal
competition algorithm and local strategy operator was
combined to solve TSP [11]. An adaptive pheromone
initialization mechanism and a searching mechanism based
on the guidance optimization on ACO algorithm was
proposed to find the optimum of TSP [12]. A biometric
heuristic method was proposed based on sequential crossing
and pollen discarding behavior to solve the circular TSP [13].

NMR algorithm was inspired by the naked mole rats'
reproductive behavior [14]. It has the following four
characteristics. (1) Naked mole rats live in groups of 295
members. (2) A female naked mole rat king led the herd and
divided them into breeders and workers. The optimal naked
mole rats are selected as breeders used only for mating, while
worker naked moles carry out other works. (3) Workers carry
out the necessary workings, the best of which will be replaced
by keepers. In short, better workers change to breeders and
worse workers are replaced into to work pool. (4) The best
breeder in breeding pool will have the change to mate with
queen. But the aforementioned four regulations are idea and
NMR algorithm is proposed. NMR algorithm includes three
stages. Firstly, the NMR algorithm is initialized the worker
stage is proceeded. Then the breeder stage 1s carried out. The
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breeding stage is realized according to the probability of
breeding stage. Thus, a discrete NMR algorithm by adopting
multiple local dynamic searching strategies was proposed to
deal with the single TSP. Simulation experiments are carried
out in order to show the capability of the proposed discrete
NMR method to solve TSP and three MTSP.

II. MATHEMATICAL MODEL OF TSP

TSP is a representative combination problem and NP
complete problem [15]. The classic TSP can be represented
as follows. # cities are represented with number i , and the
distance &, = 0 between city i and J is represented by real
values, where 4 7€ {l, 7} . In addition to a given city, it is
needed to traverse the remaining #n-1 cities, each city is
visited once so as to reach the given city to minimize the total
distance traveled. Assuming that x.%,,---,x,, is a feasible
path, Eq.(1) is the total length of the path.

L=3""dlx %)+ dix,.x) (1)

where, d(x,.x,,,) is the distance between X, and x,.,, and L
is the shortest distance of the path.

MTSP is an extension of TSP in which more than one
salesmen are on hand to visit the city, but each city can only
be visited once by one salesman. Given a set of # cities thata
salesman will visit, TSP looks for the shortest possible trip
for that salesman, which 1s to visit each city only once. MTSP
can be briefly described as follows. Give an undirected graph
G=(V,A), which is an ordered pair G=(¥, 4) consisting of
a set of vertices 7 and a set of arcs A, where # represents
the total number of salesmen. The goal isto divide ¥ into #
non-empty subsets {5 " and find the minimum cost path of
each vertex through each subset S; . The objective function of
MTSP can be described 1s as follows [5].

Lo i -1 i
Mmzmzzezzl(xnl N JH) 2

where, the first part represents the paths through # salesmen,
and the second part represents the cycle of all cities visited by
the 7 -th salesman (the index of the first city visited by the
i -th salesman is 1, and the index of the last city is #'); xf,, .
represents the distance between the J -th city visited by the
i -th salesman and J+1; x, represents the distance
between the last city #' visited by the 7 -th salesman and the
first city, The value of # should not be less than the
minimum number of cities specified by each salesman; ¥/,
isequal to Xy ;.

Multiple TSP can be divided into different conditions
based on the difference of the departure and destination of the
traveling salesmen. For the MTSP with different conditions,
its objective function can be expressed by Eq. (6), that is to
obtain the minimum value of the sum of all travelling
salesman' paths. The effectiveness of the proposed improved
algorithm in solving the following three MTSP is verified in
the simulation experiments.

(1) MTSP with the starting point and the destination point

(MTSP). Each travelling salesman has its own starting point

and destination, in which each travelling salesman
destination is its own starting point.

(2y MTSP with the same starting point and back to the
same starting point (MTSP1). Each travelling salesman starts
from the same starting point and returns to the starting point
(starting point = end point).

(3) MTSP with the same starting point and the same
destination point (MTSP2). Each travelling salesman has the
same starting point and ending point (starting point # ending

point).

III. NMR ALGORITHM
A, Initialization

NMR, = NMR,, +U(O)x(NMR,, ~NMR.. ) (3)

min, j

where, i€[L2,--n]  je[lL2---D] and NMR,; are the
positions of the 7 -th individual on the J -th dimension;
Mmin, 5 and Mmax_ ; represent the upper and lower
boundary of the discussed problem; U(0,1) is a uniformly
distributed random number. Then, the fitness value of each
individual 1s calculated based on the designed objective
function. According to the fitness values, determine B
breeders and W workers, then the global optimum o was
obtained. Thus, the discrete NMR algorithm 1s repeatedly
cycled or iterated through the searching process for workers
and the multiplication stage.

B. Workers Stage

At this stage, the naked mole rat workers try to increase
their physical fitness n order to make them have the
opportunity to change into breeders and eventually have the
chance to mate with the naked mole rat king. Thus, NMR
workers' new solutions are generated according to their own
experience and local information. Then evaluate the fitness
values of the generated NMR individuals. If the new
mdividual has better fitness, discard the old individual and
remember the new mdividual. If not, the old individual will
be retained. When all the workers completed the search, their
final fitness was remembered. To obtain new solutions from
old ones, NMR uses the following strategy.

w =W AW, - W) (4

where, W' is the i -th worker in the ¢ iteration; w'"" is the
new individual or worker; A is the mating factor; Wf, and W,

are two solutions randomly selected from the pool of workers;
The value of A is uniformly distributed in [0,1].

C. Reproductive Stage

The propagator NMR will also self renew so that choose to
mate as a propagator. The NMR breeder updating strategy 1s
based on the propagation probability ( p ) relative te the
holistic best . The #p random number is in the range of
[0,1]. Some breeders may not be able to update their health
status and therefore may be returned to the worker category.
Use the following rules to update the position of the breeder.

B = (1= )b + A(d-b)) (5)
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where, b is the 7 -th breeder in the  -th iteration; A is the
breeding frequency factor to control the breeder, which is
used to determine the new breeder 5" in the next iteration,
and the initial value of bp is setto 0.5.

As a matter of convenience, assume that there is only one
naked mole king, and the best naked mole rat among breeders
mates with the naked mole king, that is to say that only the
male and female with the best reproductive ability are found
to mate. The working principle of this algorithm is to
distinguish or identify multipliers and workers in the NMR
cell. After preliminary evaluation, the best breeders and
workers are selected. The health status of worker naked mole
rats has been updated, thereby improving their health and
giving them an opportunity to become breeders. The other
side of the shield, breeders also update their fitness based on
the reproduction probability, so they are still breeders, and
infertile breeders will be classified as workers.

IV. DISCRETE NAKED MOLE RAT ALGORITHM TO SOLVE
TRAVELING SALESMAN PROBLEM

A. Coding Method and Fitness Function

TSP is often represented by natural numbers. So in this
article, the sequential encoding method is adopted. If the
number of cities is 77, then a full array of cities ranging from
1 to M is used as a traveling salesman's path. For example,
the number of cities is 5, the randomly generated array is [1, 3,
5,2, 4], the traveling salesman’s path is 1-3-5-2-4, and Eq. (1)
was adopted to calculate its fitness function value. That is to
say the smaller L , the better the fitness value.

B. Discrete NMR Algorithm to Solve Traveling Salesman
Problem

The original naked mole rat algorithm was designed to
optimize the continuous problems. Therefore, so as to seek
the optimum of TSP, a discrete naked mole rat algorithm was
introduced. In the discrete naked mole rat algorithm, the
update strategy of its worker phase and reproduction phase
are mainly changed. For the workers stage, the executions on
path pieces (flip, switch, and move operations) are carried out
to update individuals. Suppose s =4 and e=6, where
and ¢ represent the fragments of the initial position and
ending position, then S, is selected, and flip, switch and
move on S, to carry out specific update process, which is
shown in Fig. 1. Secondly, for the propagation stage and
U(0,1) > bp , two points are randomly selected in the path for
exchange. Otherwise, a full array randomly generated by a
city ranging from 1 to 7 will be generated again as a route
for travelling agents so as to avoid getting stuck at the local
optimal. So as to further improve its performance in advance,
three local search operators (2-opt operator, 3-opt operator
and double bridge) are respectively added to the worker
NMR updating mechanism.

C. Local Dynamic Searching Strategies (2-opt Operator,
3-opt Operator and Double-bridge Operator)

The 2-opt operator was a typical local searching strategy to
find the optimum of TSP [16]. The 2-opt operator randomly

deletes two edges in generated path, then reconnects them
with newly produced paths. Only when the reconnected edge
is shorter than the old edge, the reconnected edge is effective.
This situation will continue until further improvements are
possible. 3-opt operator works in a similar way, but it
removes three edges instead of two [17]. By randomly
selecting three edges in the path S, three path fragments S, ,
S, and S, are obtained. So there are two kinds of
re-connection, which is shown in Fig. 2. Assuming that the
edges <c, d>, <e, > and <a, b> are removed, then the edges
<a, d>, <e, b> and <c, f> are reconnected or the edges <a,
¢> ,<b, e> and <d, £> reconnect. For the former, S, and S,
are opposite; for the latter, in fact, S, and S, are reversible.
The reconnected path must be better than the original path
before the original path can be replaced.

Double bridge is a special 4-opt local search algorithm
[18], and the example of double bridge movement is shown in
Fig. 3 [19]. It can change the four sides of the loop to the
other four sides, and can disturb the original loop, so as to
avoid the search process falling into local optimal. By
randomly selecting five edges in the path S, it can obtain
five path fragments S,, S,, S,, S, and S;, where S,
represents the reverse order of S, .

D. Algorithm Procedure

The flowchart of discrete naked mole rat algorithm to
solve TSP can be described as follows.

Step 1: Set up the initialization parameters. Initialize the
population size 7, the reproduction NMR number B=n/5,
the worker NMR number W =n—B | and the reproduction
probability bp .

Step 2: Initialize the population with positive integers. A
random array of cities ranging from 1 to 7 is used as an
NMR individual, where 7 is the number of cities. Other
NMR individuals also reproduce with the same way.

Step 3: Obtain fitness function value for each solution.

Step 4: Use the following rules to update the reproduction
NMR. Take any two points on the path, perform flip, switch
and move operations in the segment to obtain a new path.

Step 5: Use the following rules to update the worker NMR.
If U(0,1)>bp , randomly select two points in the path to
exchange, otherwise follow Step 2 to reproduce.

The pseudo-code of the discrete NMR algorithm for
solving TSP is described as follows.

Ll2fs (afsle]v]sfo] [1]o]s[ef6]af]s]o]

Sl SI

(a) Original individual (b) Flip the individual

[T [ eIy T [5] [T [= [ [Rlsle] - 5]

Sl Sl

(¢) Switch the individual (d) Move the individual

Fig. 1 Flip, switch, and move operations.
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Fig. 2 Schematic diagram of 3-opt operator.

Fig. 3 Principle of double-bridge operator.

Begin:
Inputs: Number of naked mole rats: 7
Number of cities to visit: N
Breeders B: n/5
Workers W : n—B
Define breeding probability: bp
Maximum number of iterations: MaxTter
Use a randomly generated array ranging from 1 to N as
NMR;
X(i,:) = randperm(N) ;
Calculate the distance of the path formed by each
individual, which is the fitness value /(X (7)) , and sort
them from the largest to the smallest;

The first n/5 of'the fitness value is defined as the breeders,

followed by the n— B as the workers;
Output: The overall best MinDist;
Do Until iter < MaxTter
For i=1.B
Take any two points of the path to perform the
operation of flipping, switching and shifting inside
the fragment to get a new path;
Save the new path;
End
For i=B+1:n
It U (O, 1)>bp

Two points in the path are randomly selected for
exchange or 2-opt, 3-opt, and double Bridges;
End for
X (i,:) = randperm(N)
Save the new path
End
Calculate the new fitness value
Turnover MinDist
Turnover iter
End until
Output the optimum (MinDist)
End

V. EXPERIMENTS RESULTS AND ANALYSIS

The cases in simulation experiments are all from the
TSPLIB library, and the optimal values provided in the
TSPLIB library are rounded to an integer. The basic discrete
NMR algorithm (NMR), 2opt-based NMR algorithm
(NMR-2opt), 3-opt-based NMR algorithm (NMR-3opt), and
double bridge-based NMR algorithm (NMR-double bridges)
are adopted in the simulation experiments to solve traveling
salesman problems. Each test case in the simulation
experiment is independently run 10 times. In order to
compare with other algorithms, the optimization result
retains two decimal numbers.
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A. Discrete NMR Algorithm to Solve Single TSP

The 14 test sets in the TSPLIB library are selected for the
simulation experiments on the discrete naked mole rat
algorithm to solve typical TSP. The obtained experimental
data and convergence curves are shown in Table 1 and Fig. 4.
In addition, so as to further show the effectiveness of the
algorithm, the compared results with other swarm intelligent
optimization algorithms are listed in Table 2, such as a
neuron-immune network [20], a self-organizing neural
network based on immune system [21], an improved ant
colony optimization [22], an ant colony optimization
algorithm with 2-opt strategy [3], a hybrid ACO and

delete-cross method [8], a discrete spider monkey
optimization [23] and a swap sequence based artificial bee
colony algorithm [24]. According to the simulation results
listed in Table 1, the proposed discrete NMR method by
adding the local searching operators has different degrees of
improvement compared with the original NMR algorithm.
For example, the deviation of attd8 and berhind2 is 0,
indicating that NMR-30pt and NMR-double bridges can
obtain the best results and have good robustness. At the same
time, it can be seen that in most cases, the optimal values are
ranked from good to bad as NMR-double Bndges,
NMR-3opt, NMR-2opt, NMR, that is to say, the local search
ability can be enhanced to achieve better optimization effect.

TABLE 1. OPTIMIZATION RESULTS OF SINGLE TRAVELING SALESMAN PROBLEMS

Algorithm Best Worst Ave Std

NMR 33564.00 33831.00 33655.00 91.2%
NMR-2opt 33522.00 33606.00 3356840 3285
s NMR-3opt 33522.00 33522.00 33522.00 0.00
NMR-double bridges 33522.00 33522.00 33522.00 0.00

NMR 7594.00 7881.00 7739.60 118.55

berlins? NMR-2opt 7618.00 7724.00 7648.80 4024
NMR-3opt 7542.00 7542.00 7542.00 0.00
NMR-double bridges 7542.00 7542.00 7542.00 0.00
NMR 6315.00 6469.00 6360.00 59.13
NMR-2opt 6264.00 6326.00 6287.20 22.25

€30 NMR-3opt 6193.00 6242.00 6218.20 16.76
NMR-double bridges 6141.00 6224.00 6191.60 28.10
NMR 6776.00 6988.00 6882.80 67.35

NMR-2opt 6685.00 6786.00 6746.00 3522

30 NMR-3opt 6623.00 6680.00 6648.20 1840
NMR-double bridges 6585.00 6663.00 6633.00 31.81

NMR 16124.00 16261.00 16176.40 46.02

NMR-2opt 15991.00 16152.00 16075.00 57.74

a8 NMR-3opt 15959.00 16044.00 16013.00 29.56
NMR-double bridges 15995.00 16030.00 16011.40 13.76
NMR 433.00 438.00 434.00 2.00
) NMR-2opt 429.00 433.00 43140 1.62
cil31 NMR-3opt 427.00 429.00 428.00 0.89
NMR-double bridges 426.00 428.00 427.00 0.63
NMR 551.00 566.00 559.20 6.14
] NMR-2opt 540.00 555.00 549.00 5.18
cil7e NMR-3opt 545.00 549.00 54720 1.47
NMR-double bridges 543.00 548.00 546.00 1.90
NMR 657.00 669.00 663.20 4.07
) NMR-2opt 645.00 658.00 653.60 4.63
eifot NMR-3opt 638.00 655.00 648.40 5.64
NMR-double bridges 645.00 649.00 647.00 1.41

NMR 21550.00 22056.00 21810.80 167.92

KroAL00 NMR-2opt 21379.00 21696.00 21563.00 113.15
NMR-3opt 21346.00 21388.00 21371.20 17.08

NMR-double bridges 21282.00 21408.00 21330.80 48.63

kroA200 NMR 21677.00 30951.00 2713640 443435
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NMR-2opt 21533.00 30710.00 27018.20 4399.03
NMR-3o0pt 21292.00 30576.00 26750.80 434927
NMR-double bridges 21346.00 30072.00 26531.60 4227.65
NMR 31113.00 31496.00 31362.60 135.59
NMR-2opt 30777.00 30962.00 30856.80 75.60
kroB200
NMR-3opt 30332.00 30766.00 30481.60 158.56
NMR-double bridges 30200.00 30503.00 30336.80 104.59
NMR 108761.00 110784.00 109921.20 683.19
76 NMR-2opt 108351.00 109480.00 108778.40 479.67
r
P NMR-3opt 108308.00 108593.00 108468.60 107.92
NMR-double bridges 108202.00 108308.00 108286.00 42.03
NMR 44949.00 45670.00 45254.40 198.01
107 NMR-2opt 44653.00 45295.00 45046.70 196.31
T
P NMR-3opt 44515.00 44852.00 44723.30 95.16
NMR-double bridges 44402.00 44708.00 44527.50 97.06
NMR 80968.00 81982.00 81558.20 298.55
226 NMR-2opt 80604.00 81406.00 81010.30 205.32
I
P NMR-3opt 80491.00 81123.00 80766.40 162.66
NMR-double bridges 80405.00 80575.00 80509.70 56.68
6450 . The Ioptimal‘value 5|° far . 700 The shortest path of NMR-double bridges
NMR e —
—A— NMR-20pt Y/ \/\ /
—*—NMR-3opt 600 - 0‘ |
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10% The optimal value so far
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Fig. 4 Paths and convergence curves of single traveling salesman problems.
TABLE 2. COMPARISON WITH OTHER OPTIMIZATION ALGORITHMS ON SINGLE TRAVELING SALESMAN PROBLEMS
Algorithm berlin52 ch150 eil51 eil76 eill01
Ave 7739.60 6882.80 434.00 559.20 663.20
NMR
Std 118.55 67.35 2.00 6.14 4.07
Ave 7648.80 6746.00 431.40 549.00 653.60
NMR-2o0pt
Std 40.24 3522 1.62 5.18 4.63
Ave 7542.00 6648.20 428.00 547.20 648.40
NMR-3opt
Std 0.00 18.40 0.89 1.47 5.64
Ave 7542.00 6633.00 427.00 546.00 647.00
NMR-double bridges
Std 0.00 31.81 0.63 1.90 141
Ave 8073.97 6753.20 438.70 556.10 654.83
RABNET-TSP [20]
Std 270.14 83.01 3.52 8.03 6.57
Ave 7932.50 673837 437.47 556.33 648.63
Modified RABNET-TSP [21]
Std 277.25 76.14 4.20 5.30 3.85
Ave 754723 — 431.10 — 648.67
TVRS + 2opt [22]
Std — — — — —
Ave 7556.58 439.25 — 672.37
ACO + 20pt [3]
Std — — — —
Ave 7560.54 — 431.20 — —
HACO [8]
Std 67.48 — 2.00 — —
Ave 7633.6 — 436.96 — 662.63
DSMO [23]
Std 85.4 — 4.73 — 7.13
Ave 7543.00 — 427.01 538.15 630.59
ABC+ Swap Sequence [24]
Std 0.00 — 0.46 0.60 2.37

Fig. 4 reflects the path diagram, convergence speed and according to std, NMR-double bridges algorithm has the
accuracy of the algorithm when solving different problems. highest stability and better robustness.
I can. b seen from Fig. 4 that afier adding the local B. Discrete NMR Algorithm to Solve Multiple TSP
searching operators, the convergence rate has decreased, but
it is within an acceptable range. It can be seen form Table 2,
NMR-double bridges get better results than other algorithms
in most cases. For EIL51, Berlin52 and CH150 test sets, the
optimization performance of NMR-double bridges
algorithm is better than other algorithms. In addition,

The simulation experiments are carried out on the MTSP
with three different situations, including multiple starting
points and multiple terminal points (MTSP), MTSP with the
same starting point and returning to the starting point
(MTSPI1), and MTSP with the same starting point and
returning to the same destination (MTSP2). In the simulation
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experiment, because part of the data requires the traveling
salesmen to go to a large number of cities or is affected by
the distribution of cities, the paths between traveling
salesmen inevitably overlap and cannot reflect the specific
paths of traveling salesmen well. Therefore, for some data
sets, only the shortest distance convergence curves of the
path taken by the traveling salesman are displayed.

(1) Multiple TSP with Multiple Starting Points and Multiple
Destinations (MTSP)

Tentest sets in the TSPLIB library are selected to perform
the simulation experiments by adopting the discrete naked
mole rat algorithm to solve MTSP. The results are shown in
Table 3. Due to the influence of the number or distribution of
cities, the test results of the gil262 and kroA200 datasets, we
only provide the convergence curves. It can be seen from
Table 3 that NMR-2opt, NMR-3opt and NMR-double
bridges all have different degrees of improvement in the
optimization accuracy, especially NMR-double bridges
show the best effect in most cases. In particular, for att48§,
@11262, bier127 and pr226, ave data shows that NMR-double
bridges have better optimization effects than other
algorithms. At the same time, it can be known from std data
that its std value is smaller than other algorithms, proving
that it has better stability. For att48, eil101, gil262, kroA200,
prl07, pr226 and rat99, the NMR-double bridges algorithm
can be further optimized in the later iterations, so it has
strong global optimization capabilities and is not easy to fall
into local optimal. Although it has affected its convergence
speed, it is within an acceptable range.

{2) MTSP with Same Starting Point and Back to Starting
Point (MTSP1)

Tentest sets in the TSPLIB library are selected to perform
the simulation experiments by using the discrete NMR
algorithm to solve MTSP1. The results are shown in Table 4.

Due to the influence of the number or distribution of cities,
the test results of the gil262, pcb442, and pr136 data sets, we
only provide the convergence curves. From the ave data in
Table 4, it can be seen that for different test data,
NMR-double bridges have different degrees of
improvement compared with other algorithms. In particular,
the test results of d198 and gil262 show that NMR-double
bridges are better than the onginal NMR, about an
improvement of 4.3% and 3.8%. It can be seen from the std
data in Table 3 that in most cases, the variance of
NMR-double bridges i1s smaller than other algorithms,
indicating that the improved algorithm has good global
convergence capabilities. This is because the algorithm
enhances the local searching ability and can better prevent
the algorithm from falling into the local optimal and
premature.

(3) MTSP with Same Starting Point and Back to Same
Destination (MTSP2)

The 14 test sets in the TSPLIB library are selected to
perform the simulation experiments on the discrete NMR
algorithm to solve MTSP2. The results are listed in Table 5.
In Table 5, the ave column data shows the average value of
four algorithms solved by running 10 tests, and the bold data
represents the optimization result with the best effect in the
experiments. It can be seen from the data in this column that
NMR-double bridges, WMR-3opt, and NMR-2opt have
better optimization effects than the original NMR algorithm.
In particular, NMR-double bridges showed the best effect,
as can be seen in the test results of att48, bier127, chl50,
d198, eil51 and pr76, the improvement effect is the most
obvious. The algorithm always searches near the optimal
solution, which ensures that the convergence speed and the
retention of high-quality populations are accelerated in the
later stage.

TABIE 3. OPTIMIZATION

RESULTS OF MTSP

Algorithm Best Worst Ave Std
NMR 37921.00 41649.00 39874.00 149921
Alt48 NMR-2opt 35673.00 37687.00 36744.00 1871.1%
NMR-3opt 33897.00 38968.00 36141.00 1670.01
NMR-double bridges 35254.00 38260.00 35994.60 1143.87
NMR 161480.00 161480.00 170929.80 6064.13
) NMR-2opt 143452.00 143452.00 159005.60 9428.50
bier127 NMR-3opt 147888.00 147888.00 158534.80 706551
NMR-double bridges 150046.00 150046.00 157223.00 5090.00
NMR 497.00 536.00 510.80 15.26
] NMR-2opt 486.00 536.00 49820 19.05
cils NMR-3opt 470.00 488.00 479.40 5.71
NMR-double bridges 465.00 495.00 480.40 9.71
NMR 832.00 883.00 853.00 17.81
) NMR-2opt 774.00 835.00 811.60 20.66
eif1o1 NMR-3opt 775.00 824.00 801.00 1946
NMR-double bridges 723.00 841.00 792.00 39.96
gil262 NMR 5298.00 5446.00 5353.20 152.64
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NMR-2opt 4848.00 5265.00 5096.00 148.13
NMR-3opt 5008.00 5398.00 5184.00 134.47
NMR-double bridges 4867.00 5206.00 5045.60 12532
NMR 57821.00 63826.00 61565.80 2282.53
NMR-2opt 53359.00 60592.00 56522.60 244738
kroA200 NMR-3opt 54407.00 56729.00 5593440 837.74
NMR-double bridges 51195.00 59691.00 55679.60 3333.03
NMR 132180.00 142760.00 136225.40 3865.62
NMR-2opt 125001.00 133655.00 129701.00 283033
prs NMR-3opt 123213.00 134077.00 129424.80 422349
NMR-double bridges 126710.00 132933.00 129611.80 2371.82
NMR 37247.00 49341.00 39843.60 475273
pr107 NMR-2opt 36890.00 3871%.00 37577.60 634.33
NMR-3opt 35440.00 36448.00 35969.60 421.55
NMR-double bridges 36267.00 3871%.00 3707440 865.69
NMR 101317.00 109644.00 104526.60 282994
NMR-2opt 90722.00 103773.00 96333.80 467749
praze NMR-3opt 89014.00 100310.00 95084.80 387397
NMR-double bridges 90722.00 96297.00 93279.60 220221
NMR 1407.00 1466.00 1443.25 2430
NMR-2opt 1333.00 1400.00 1364.50 2737
rat? NMR-3opt 1385.00 1421.00 1400.25 14.75
NMR-double bridges 1264.00 1435.00 1349.75 69.81
TABLE 4., OPTIMIZATION RESULTS OF MTSP1
Algorithm Best Worst Ave Std
NMR 46087.00 53027.00 48951.00 2381.68
NMR-2opt 44531.00 47810.00 45870.20 1283.91
s NMR-3opt 43442.00 49971.00 45634.00 2274.68
NMR-double bridges 43795.00 47643.00 45523.20 1276.86
NMR 31249.00 32476.00 31688.67 537.79
NMR-2opt 29379.00 32217.00 30689.83 998.34
ass NMR-3opt 29274.00 31193.00 30502.50 631.64
NMR.-double bridges 29380.00 31240.00 30381.67 682.13
NMR 535.00 571.00 55320 11.46
) NMR-2opt 524.00 569.00 53740 16.50
cil31 NMR-3opt 528.00 546.00 53640 6.02
NMR-double bridges 516.00 548.00 531.20 10.65
NMR 855.00 871.00 86340 25.61
ilL01 NMR-2opt 785.00 876.00 820.80 32.76
NMR-3opt 796.00 853.00 819.00 2291
NMR.-double bridges 790.00 852.00 818.80 22.60
NMR 5219.00 5623.00 5377.50 145.06
] NMR-2opt 5012.00 5356.00 5186.67 136.56
gilzez NMR-3opt 4848.00 5569.00 5198.17 235.14
NMR.-double bridges 5004.00 5373.00 5179.83 120.23
NMR 109868.00 124680.00 117858.60 5280.39
NMR-2opt 106985.00 116717.00 112921.40 3922.34
pebi42 NMR-3opt 105581.00 114462.00 110390.00 2843.67
NMR-double bridges 107627.00 113958.00 110356.60 2133.27
pri6 NMR 164063.00 176168.00 170114.80 4676.60
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NMR-2opt 152317.00 166704.00 159292 .40 4648.85
NMR-3opt 151709.00 171566.00 159275.40 7340.21
NMR-double bridges 149273.00 168732.00 159024.80 4618.74
NMR 59232.00 62065.00 60286.80 1482.46
NMR-2opt 56238.00 60880.00 58802.80 1743.64
prio7 NMR-3opt 51670.00 60116.00 5720240 311647
NMR-double bridges 54778.00 58815.00 56812.20 1327.66
NMR 145852.00 152362.00 148580.20 2154.34
NMR-2opt 136974.00 148996.00 142188.40 4817.82
pri3e NMR-3opt 138582.00 146689.00 143289.60 2978.97
NMR.-double bridges 137562.00 145432.00 141964.00 2844.29
NMR 1680.00 1867.00 1783.80 75.22
a9 NMR-2opt 1615.00 1801.00 1685.00 61.29
NMR-3opt 1609.00 1859.00 1694.40 88.91
NMR-double bridges 1635.00 1745.00 1682.60 38.62
TABLE 5. OPTIMIZATION RESULTS OF MTSP2
Algorithm Best Worst Ave Std
NMR 49885.00 54803.00 52009.00 2048.20
NMR-2opt 45812.00 51465.00 48922.20 2116.96
s NMR-3opt 46238.00 50587.00 48498.80 1441.18
NMR-double bridges 44427.00 49365.00 47685.80 1278.78
NMR 177707.00 190656.00 182874.67 3670.89
) NMR-2opt 168250.00 182316.00 176842.78 5558.82
bier 27 NMR-3opt 161275.00 180202.00 170087.89 8053.89
NMR-double bridges 162853.00 177527.00 168929.67 4823.28
NMR 9769.00 10352.00 9979.78 195.03
NMR-2opt 8702.00 10061.00 9424 .44 418.09
chi30 NMR-3opt 8747.00 9725.00 9269.78 341.52
NMR-double bridges 8835.00 9748.00 9267.44 305.92
NMR 11446.00 12248.00 11951.50 274.41
NMR-2opt 10812.00 11716.00 11177.60 315.17
chi30 NMR-3opt 10418.00 12094.00 11225.20 408.18
NMR-double bridges 10623.00 11910.00 11144.50 195.11
NMR 31500.00 31850.00 31721.20 99.07
NMR-2opt 30862.00 31384.00 3111140 205.35
a1 NMR-3opt 30841.00 31662.00 3124640 217.93
NMR-double bridges 30648.00 31193.00 30969.20 187.75
NMR 747.00 827.00 77340 29.92
) NMR-2opt 706.00 742.00 72640 13.53
cil76 NMR-3opt 706.00 755.00 724.80 1741
NMR-double bridges 693.00 752.00 713.40 21.33
NMR 576.00 616.00 588.80 14.99
) NMR-2opt 519.00 574.00 544.60 19.06
cils NMR-3opt 535.00 584.00 55540 17.00
NMR-double bridges 517.00 541.00 528.20 10.63
NMR 884.00 922.00 902.80 14.08
) NMR-2opt 840.00 879.00 858.60 14.35
eil101 NMR-3opt 827.00 889.00 855.60 26.74
NMR-double bridges 805.00 892.00 844.60 29.60
gil262 NMR 5367.00 5551.00 5458.20 64.02
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NMR-2opt 5094.00
NMR-3opt 5116.00
NMR-double bridges 4891.00
NMR 61361.00
NMR-2opt 57854.00
kroA200
NMR-3o0pt 58059.00
NMR-double bridges 58307.00
NMR 168074.00
NMR-2opt 160196.00
prie
NMR-3o0pt 158196.00
NMR-double bridges 161418.00
NMR. 78067.00
NMR-2opt 78271.00
pr1o7
NMR-3opt 77806.00
NMR-double bridges 77321.00
NMR 142143.00
NMR-2opt 137708.00
pr22e
NMR-3o0pt 136018.00
NMR-double bridges 135109.00
NMR 2016.00
NMR-2opt 2013.00
rat99
NMR-3opt 1971.00
NMR-double bridges 1965.00

5442.00 5266.00 128.10
5437.00 5279.40 120.21
5340.00 5209.00 176.09
64515.00 62824 .80 1008.17
64432.00 60510.60 2308.73
61629.00 59719.80 1212.80
61220.00 59700.00 994.60
190497.00 178658.80 8513.72
184772.00 169425.00 §515.08
178085.00 169309.60 6803.24
170943.00 166157.00 3507.98
§2048.00 79828.00 1324.13
79643.00 78756.20 515.64
79643.00 7849840 654.91
79856.00 78412.20 §75.52
146907.00 144733.20 1835.72
145686.00 140478.00 272298
142476.00 139583.00 2466.59
144932.00 139040.00 3861.87
2089.00 2064.00 2537
2041.00 2028.40 11186
2062.00 2022.20 3247
2059.00 2015.40 30.10

VI. CONCLUSION

A discrete MMR algorithm was proposed based on

multiple local dynamic searching strategies to solve the

single traveling salesman problems and multiple traveling

salesman problems. In order to overcome the shortcoming
that the algorithm is easy to fall into the local optimum, the
2-opt, 3-opt and double-bridge local search operators are
added to the original discrete NMR algorithm. The proposed
algorithm is tested by using benchmark test problems from
TSPLIB database. Through the simulation experiments
results of TSP and MTSP with three different situations, it
can be seen that the improved NMR algorithm can obtain
high-quality optimization results in a short time, and it has
strong robustness. And NMR-double bridges have stronger
local searching ability than other algorithms, so it shows
better optimization accuracy.
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