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Abstract—In this paper, we have developed a new derivative-
free family of iterative methods of optimal order for finding the
roots of nonlinear equations. The proposed family of methods
has order eight and executes four function evaluations per
iteration. In addition, it has the efficiency index of 81/4 ≈ 1.682
and supports the Kung-Traub’s conjecture. The theoretical
convergence properties of new proposed family are studied
in detail using the main theorem. Numerical experiments on
some nonlinear functions are presented to demonstrate the
effectiveness of the family of methods. Also, applications on
some real world problems are included so as to validate its
real-life applicability. Finally, the family of methods is found
to be more efficient as compared to some standard iterative
methods of similar nature.

Index Terms—Kung-Traub’s conjecture, Efficiency index,
Simple roots, Weight function, Engineering applications.

I. INTRODUCTION

THE focus on finding the exact solution of nonlinear
equations in various problems appearing in diverse

fields of science and engineering has always been of much
interest due to its vast applications. Determining solutions of
such equations by analytical methods are scarce and almost
non-existent. Numerical methods are the most widely used
technique wherein approximate solutions are obtained using
an iterative process. One such method for extracting the root
of the nonlinear equation ψ(s) = 0, where ψ : D ⊆ R→ R
is a real function defined on D, is the widely known Newton
method (NM) [1] which is given by

sn+1 = sn −
ψ(sn)

ψ′(sn)
, n = 0, 1, 2, ... (1)

If the first derivative ψ′(sn) in (1) is approximated as

ψ′(sn) ≈
ψ(sn + ψ(sn))− ψ(sn)

ψ(sn)
,

then equation (1) becomes

sn+1 = sn −
ψ(sn)

2

ψ(sn + ψ(sn))− ψ(sn)
(2)

This well-known equation (2), known as Steffensen method
[2], is a tough competitor to (1). Both methods evalu-
ate the functions twice at each iteration. They are both
quadratically convergent and optimal as per Kung-Traub’s
conjecture [3] which states that any iterative method with k
function evaluations per iteration is optimal if the order of
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convergence is 2k−1. To determine the effectiveness of an
iterative method, Ostrowski in [4] introduced the efficiency
index (EI) = p1/k, where k is the number of evaluations of
function at each iteration and p is the order of convergence.
Both methods (1) and (2) have the same efficiency index
21/2 ≈ 1.414 for k = 2. But unlike Newton method,
Steffensen method does not require any evaluation of the
derivatives and is derivative-free. However, the application of
one-point iterative methods is limited due to their low order
of convergence. For improving the convergence order, many
new and improved multipoint iterative methods based on
Newton (1) and Steffensen (2) methods have been developed
over the years with higher efficiency as compared to one-
point iterative methods (see [5]- [12]). The weight function
technique is one of the many different approaches employed
in these multipoint methods to obtain the desired efficiency
with higher order of convergence.

The authors in [13], [14] and [15] have proposed three-
point optimal families of methods using the weight function
technique to attain the optimal convergence order. These
methods require three functions and one first derivative
evaluations per iteration. However, the evaluation of the
first derivative is sometimes complicated and also time
consuming for some problems. To solve this complication,
many new methods have been developed which are free from
derivatives. Taher Lotfi and Elahe Tavakoli in [16], Xiaofeng
Wang and Tie Zhang in [17] and Fazlollah Soleymani in [18]
proposed new classes of eight order optimal methods which
are completely derivative-free. These methods use the weight
function technique to attain the desired convergence order.

In this paper, we develop a new three-step optimal
derivative-free family of iterative methods having efficiency
index 81/4 ≈ 1.682 for determining simple roots of nonlin-
ear equations. We employ the weight function approach to
obtain the high efficiency and higher convergence order. The
remaining section of the manuscript is arranged as follows. In
section II development of the new optimal three-step optimal
derivative-free family of methods using the weight function
approach is discussed. The theoretical convergence analysis
of new family are fully investigated in this section using the
main theorem that proves the convergence order. Section III
deals with the numerical experiments of the presented family
on some smooth and non-smooth functions to illustrate its
effectiveness. In section IV we study the applicability of the
presented family of methods on some real world problems.
Finally, section V presents the concluding remarks.

II. DEVELOPMENT OF METHODS WITH ANALYSIS OF
CONVERGENCE

A three-step seventh order with derivative method is
developed in [6].
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yn = sn −
ψ(sn)

ψ′(sn)

zn = yn −
ψ(sn)ψ(yn)

[ψ(sn)− 2ψ(yn)]ψ′(sn)
(3)

sn+1 = zn −
ψ(sn)ψ(zn)

[ψ(sn)− 2ψ(yn)]ψ′(sn)

[
1 +

ψ(zn)

ψ(sn)
+
ψ(zn)

ψ(yn)
+

ψ(yn)
2

ψ(sn)2
+
ψ(zn)

2

ψ(yn)2

]
The method given by (3) uses four function evaluations

per iteration to achieve seventh order. Also, the calculation of
derivative is cumbersome for most of the nonlinear equations.
So, we will use weight function and approximation of
derivative in terms of previously known function values to
develop a new optimal derivative-free eight order method.
We first approximate ψ′(sn) in (3) as follows

ψ′(sn) ≈
ψ(wn)− ψ(sn)

wn − sn
,

where wn = sn + γψ(sn)
3, γ ∈ R− {0} ( [19], [20]) and

then use the weight function technique so as to attain the
desired optimal eight order. Now, we propose the following
new family of iterative methods:

yn = sn −
γψ(sn)4

ψ(wn)− ψ(sn)
, wn = sn + γψ(sn)

3

zn = yn − T (t1)
ψ(sn)ψ(yn)(wn − sn)

(ψ(sn)− 2ψ(yn))(ψ(wn)− ψ(sn))
(4)

sn+1 = zn − [U(t1) + V (t2)]
ψ(sn)ψ(zn)(wn − sn)

(ψ(sn)− 2ψ(yn))(ψ(wn)− ψ(sn))
(An)

where An = 1 +
ψ(zn)

ψ(sn)
+
ψ(zn)

ψ(yn)
+
ψ(yn)

2

ψ(sn)2
+
ψ(zn)

2

ψ(yn)2
,

t1 =
ψ(yn)

ψ(sn)
, t2 =

ψ(zn)

ψ(sn)
.

The necessary conditions on weight functions T (t1), U(t1)
and V (t2) under which the proposed family of methods (4)
has eighth-order convergence are shown in the following
theorem.

Theorem: Let s = α ∈ D be a root of a sufficiently
differentiable real function ψ : D ⊆ R → R in an open
interval D. If an initial guess s0 is close to the root α,
then the family of iterative methods defined by equation (4)
has eighth-order convergence for any γ ∈ R−{0} when it
satisfies

T (0) = 1; T ′(0) = 0; V (0) = 1− U(0); U ′(0) = 0;

U ′′(0) = T ′′(0);V ′(0) = 1;U (3)(0) = 12 + 6T ′′(0) + T (3)(0);

|T ′′(0)| <∞; |T (3)(0)| <∞; |T (4)(0)| <∞; |U (4)(0)| <∞.
(5)

and the family (4) has the error equation given by

εn+1 =
1

48d71
d22

(
2d1d3 + d22(−2 + T ′′(0)

)(
− 24γd51d2+

120d1d2d3 − 24d21d4 + d32
(
− 192 + 12T ′′(0)− 8T (3)(0)

− T 4(0) + U (4)(0)
)))

ε8n +O (εn)
9 (6)

where dj =
ψ(j)(α)
j! , j = 1, 2, 3, ..., and εn = sn − α is the

error at nth approximation.
Proof: Let εn = sn −α be the error in nth approxima-

tion. Then, using Taylor’s series expansion near s = α, we

write

ψ(sn) =d1εn + d2ε
2
n + d3ε

3
n + d4ε

4
n + d5ε

5
n + d6ε

6
n+

d7ε
7
n + d8ε

8
n +O(εn)

9 (7)

where dj =
ψ(j)(α)
j! , j = 1, 2, 3, ...

By using wn = sn + γψ(sn)
3, the Taylor’s series expan-

sion of ψ(wn) gives

ψ(wn) =d1εn + d2ε
2
n + (γd41 + d3)ε

3
n+

(5γd31d2 + d4)ε
4
n + ...+O(εn)

9 (8)

Then, using (7) and (8), we have

yn − α =
d2
d1
ε2n + 2

(−d22 + d1d3)

d21
ε3n +

(d2
d31

(γd51 + 4d22

− 7d1d3) +
3d4
d1

)
ε4n + ...+O(εn)

9 (9)

The expansion of ψ(yn) using (9) gives

ψ(yn) =d2ε
2
n +

(
−2d22
d1

+ 2d3

)
ε3n +

(d2
d21

(γd51 + 5d22 − 7d1d3)

+ 3d4
)
ε4n + ...+O(εn)

9 (10)

Using (7), (8), (9) and (10), we have

zn − α =
K1

d1
ε2n +

K2

d21
ε3n +

K3

2d31
ε4n + ...+O(εn)

9 (11)

where K1 =−
(
− 1 + T (0)

)
d2

K2 =− 2
(
− 1 + T (0)

)
d1d3 + d22

(
− 2 + 2T (0)− T ′(0)

)
K3 =−

(
2γ
(
− 1 + T (0)

)
d51d2 + 6

(
− 1 + T (0)

)
d21d4

+ 2d1d2d3
(
7− 6T (0) + 4T ′(0)

)
+ d32

(
− 8+

6T (0)− 10T ′(0) + T ′′(0)
))

Using the conditions T (0) = 1, T ′(0) = 0 and substituting
in the above equation (11), we get

ψ(zn) =
L1

2d21
ε4n +

L2

6d31
ε5n +

L3

24d41
ε6n + ...+O(εn)

9 (12)

where L1 =−
(
2d1d2d3 + d32(−2 + T ′′(0))

)
L2 =− 6γd51d

2
2 − 12d21

(
d23 + d2d4

)
+ 6d1d

2
2d3
(
8−

3T ′′(0)
)
+ d42

(
− 24 + 24T ′′(0)− T (3)(0)

)
L3 =−

(
144γd61d2d3 + 24d31

(
7d3d4 + 3d2d5

)
+

12γd51d
3
2

(
− 2 + 3T ′′(0)

)
+ 36d21d2

(
4d23(−3+

T ′′(0)) + d2d4(−8 + 3T ′′(0))
)
+ 8d1d

3
2d3(90−

87T ′′(0) + 4T (3)(0)) + d52
(
− 240 + 480T ′′(0)

− 44T (3)(0) + T (4)(0)
))

Now, substituting the values of equations (7), (8), (10), (11)
and (12) in the final step of equation (4), the error equation
is obtained as

εn+1 =
M1

2d31
ε4n +M2ε

5
n +M3ε

6
n + ...+O(εn)

9 (13)

where M1 =
(
− 1 + U(0) + V (0)

)
d2
(
2d1d3 + d22(−2 + T ′′(0))

)
M2 =γ

(
− 1 + U(0) + V (0)

)
d1d

2
2 +

2

d21

(
− 1 + U(0)+

V (0)
)(
d23 + d2d4

)
+
d22d3
d31

(
8− 8U(0)− 8V (0)+

U ′(0) + 3
(
− 1 + U(0) + V (0)

)
T ′′(0)

)
+
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d42
6d41

(
24
(
− 1 + U(0) + V (0)

)
− 6U ′(0) + 3

(
− 8(

− 1 + U(0) + V (0)
)
+ U ′(0)

)
T ′′(0) +

(
− 1+

U(0) + V (0)
)
T (3)(0)

)
M3 =6γ

(
− 1 + U(0) + V (0)

)
d1d2d3 +

1

d21

(
− 1 + U(0)+

V (0)
)(
7d3d4 + 3d2d5

)
+
γd32
2

(
− 2
(
− 1 + U(0) + V (0)

− U ′(0)
)
+ 3
(
− 1 + U(0) + V (0)

)
T ′′(0)

)
+

d2
2d31

(
4d23
(
9− 9U(0)− 9V (0) + 2U ′(0) + 3

(
− 1 + U(0)

+ V (0)
)
T ′′(0)

)
+ d2d4

(
4
(
− 6
(
− 1 + U(0) + V (0)

)
+

U ′(0)
)
+ 9
(
− 1 + U(0) + V (0)

)
T ′′(0)

))
+

d32d3
6d41

(
− 3
(
60− 60U(0)− 60V (0) + 26U ′(0)− 58T ′′(0)

+
(
59
(
U(0) + V (0)

)
− 8U ′(0)

)
T ′′(0)− U ′′(0)

)
+

8
(
− 1 + U(0) + V (0)

)
T (3))+ d52

24d51

(
6
(
− 40

(
− 1+

U(0) + V (0)
)
+ 28U ′(0) + 2

(
− 40 + 41U(0) + 41V (0)

− 11U ′(0)
)
T ′′(0)−

(
U(0) + V (0)

)
T ′′(0)2 +

(
− 2+

T ′′(0)
)
U ′′(0)

)
+ 4
(
− 11

(
− 1 + U(0) + V (0)

)
+

U ′(0)
)
T (3)(0) +

(
− 1 + U(0) + V (0)

)
T (4)(0)

)
Finally, putting the conditions V (0) = 1 − U(0), U ′(0) =
0, U ′′(0) = T ′′(0), V ′(0) = 1, U (3)(0) = 12 + 6T ′′(0) +
T (3)(0) in the above equation (13), the error equation be-
comes

εn+1 =
1

48d71
d22

(
2d1d3 + d22(−2 + T ′′(0)

)(
− 24γd51d2+

120d1d2d3 − 24d21d4 + d32
(
− 192 + 12T ′′(0)− 8T (3)(0)

− T 4(0) + U (4)(0)
)))

ε8n +O (εn)
9 (14)

which shows that the new family of iterative methods is of
order eight. This completes the proof.

It is possible that different values for the weight functions
T (t1), U(t1) and V (t2) may be chosen which satisfy the
conditions (5). Depending on these choices, a number of
derivative-free methods of eighth-order for determining
simple roots of nonlinear equations can be obtained.

Particular Case: For the three weight functions T (t1),
U(t1) and V (t2) satisfying the conditions (5), let us consider
the following case:

T (t1) = 1 + t41
U(t1) = 2t31
V (t2) = 1 + t2,where t1 = ψ(yn)

ψ(sn)
, t2 = ψ(zn)

ψ(sn)

(15)

Then, after substituting these values, the new family of
methods (4) becomes

yn = sn −
γψ(sn)4

ψ(wn)− ψ(sn)
, wn = sn + γψ(sn)

3

zn = yn −
[
1 + t41

] ψ(sn)ψ(yn)(wn − sn)
(ψ(sn)− 2ψ(yn))(ψ(wn)− ψ(sn))

(16)

sn+1 = zn −
[
2t31 + 1 + t2

] ψ(sn)ψ(zn)(wn − sn)
(ψ(sn)− 2ψ(yn))(ψ(wn)− ψ(sn))

(An)

where An = 1+ ψ(zn)
ψ(sn)

+ ψ(zn)
ψ(yn)

+ ψ(yn)
2

ψ(sn)2
+ ψ(zn)

2

ψ(yn)2
, and the

error equation has the following expression

εn+1 =
d22
d71

(
d22 − d1d3

) (
d2
(
γd51 + 9d22 − 5d1d3

)
+

d21d4
)
ε8n +O (εn)

9 (17)

III. NUMERICAL RESULTS

In this section, we analyze the effectiveness and the
computational efficiency of newly proposed family of
methods and compare with some well-known methods
available in literature. We have considered, in particular,
the following eighth-order methods for comparing with our
proposed family of methods (PFM) given in (16) with γ = 1:

The derivative-free Kung-Traub’s method [3] (KTM):

yn =sn −
γψ(sn)

2

ψ(sn + γψ(sn))− ψ(sn)
, n = 0, 1, 2, ...

zn =yn −
ψ(yn)ψ(sn + γψ(sn))

[ψ(sn + γψ(sn))− ψ(yn)]ψ[sn, yn]
(18)

sn+1 =zn −
ψ(yn)ψ(sn + γψ(sn))(yn − sn + ψ(sn)

ψ[sn,zn]
)

[ψ(yn)− ψ(zn)][ψ(sn + γψ(sn))− ψ(zn)]

+
ψ(yn)

ψ[yn, zn]

where γ = 1 and ψ[sn, yn] =
ψ(sn)−ψ(yn)

sn−yn .

The derivative-free methods proposed by R. Behl et al. in
[9] (RBM):

yn = sn −
ψ(sn)

ψ[wn, sn]
, wn = sn + γψ(sn)

zn = yn −
ψ(wn)ψ(yn)(yn − sn)

[ψ(wn)− ψ(yn)][ψ(yn)− ψ(sn)]
(19)

sn+1 = zn −
ψ(zn)(wn − sn)(wn − yn)(sn − yn)

ψ[yn, zn](wn − sn)(wn − zn)(sn − zn)−Dn(yn − zn)

where γ = 1, Dn = ψ[sn, zn](wn − yn)(wn − zn) −
ψ[wn, zn](sn − yn)(sn − zn).

The efficient Steffensen-like methods by Taher Lotfi and
Elahe Tavakoli in [16] with γ = 1 (TEM):

yn = sn −
ψ(sn)

ψ[sn, wn]
, wn = sn + γψ(sn)

zn = yn −
[
1 +

ψ(yn)

ψ(sn)

] ψ(yn)

ψ[yn, wn]
(20)

sn+1 = zn −
[
1 +

ψ(yn)

ψ(sn)
+
ψ(zn)

ψ(yn)
+ 2

ψ(yn)

ψ(sn)

ψ(zn)

ψ(yn)
+(

− 1− 1

1 + γψ[sn, wn]

)(ψ(yn)
ψ(sn)

)3][
1 +

(ψ(zn)
ψ(yn)

)2
+(ψ(zn)

ψ(sn)

)2] ψ(zn)

ψ[zn, wn]

And, the optimal eighth-order Steffensen type methods by
Wang in [17] (WM):

yn = sn −
ψ(sn)

ψ[sn, wn]
, wn = sn + γψ(sn)

zn = yn − (1 + Fn + F 2
n − 2Gn)

ψ(yn)

ψ[sn, wn]
(21)

sn+1 = zn −
(
(1 + Fn + F 2

n − 2Gn) +
ψ(zn)

ψ(yn)
(1 + 2Fn)

+Gn
) ψ(zn)

ψ[sn, wn]
,
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TABLE I
TEST FUNCTIONS WITH THE ROOTS AND INITIAL GUESSES.

Test functions ψ(s) Roots (α) Initial guesses (s0)

ψ1(s) =

{
s(s− 1), s ≤ 0

−2s(s+ 1), s ≥ 0
α = 0 0.5

ψ2(s) = |s2 − 2| α ≈ 1.4142135623730950 1.3
ψ3(s) = sin s+ cos s+ s α ≈ −0.45662470456763082 -0.6
ψ4(s) = loge s− s3 + 2 sin s α ≈ 1.2979977432803718 1.4
ψ5(s) = sin2 s+ s α = 0 0.5

ψ6(s) = sin(2 cos s)− 1− s2 + esin(s
3) α ≈ −0.78489598766121254 -1

where γ = 1, Fn = ψ(yn)
ψ(sn)

+ ψ(yn)
ψ(zn)

and Gn = ψ(yn)
ψ(sn)

ψ(yn)
ψ(zn)

.
The efficient derivative-free optimal methods of Soleymani

in [18] (SM):

yn = sn −
ψ(sn)

ψ[sn, wn]
, wn = sn + γψ(sn)

zn = yn −
ψ(yn)

ψ[sn, wn]
(Bn) (22)

sn+1 = zn −
ψ(zn)

ψ[sn, wn]
(Bn)(Cn)

where γ = 1, Bn = 1

1−ψ(yn)
ψ(sn)

− ψ(yn)
ψ(wn)

,

Cn = 1 + 1
1+ψ[sn,wn]

(
ψ(yn)
ψ(sn)

)2

+
(
1 + ψ[sn, wn]

)(
2 +

ψ[sn, wn]
)( ψ(yn)

ψ(wn)

)3

+ ψ(zn)
ψ(yn)

+ ψ(zn)
ψ(sn)

+ ψ(zn)
ψ(wn)

.

The derivative-free method by Solaiman et al. in [21]
(OSM):

yn = sn −
ψ(sn)

ψ[wn, sn]
, wn = sn + ψ(sn)

zn = yn −
ψ(yn)

H(sn)

ψ(sn) + βψ(yn)

ψ(sn) + (β − 2)ψ(yn)
(23)

sn+1 = zn −
ψ(sn)(E1 + E2 + E3)

E1ψ[wn, sn] + E2ψ[yn, sn] + E3ψ[zn, sn]
,

where β = 2, H(sn) = ψ[wn, sn]+2(wn−sn)ψ[wn, sn, yn]
−ψ[yn, wn] + ψ[sn, yn], E1 = ψ(yn)ψ(zn)(zn − yn),
E2 = ψ(wn)ψ(zn)(wn− zn), E3 = ψ(wn)ψ(yn)(yn−wn).

Also, like our proposed family of methods all the above
methods are derivative-free, so it is quite reasonable for the
choice of these methods for the comparison and they should
be easily comparable with our proposed family of methods.
Some numerical test functions along with their simple roots
(α) and initial guesses are given in Table I, where the first
two functions are non-smooth functions and the remaining
four functions are smooth functions.

For obtaining better accuracy and to minimize the loss
of significant digits, all numerical tests have been executed
using 4000 significant digits in the programming software
Mathematica 12.2. For analysis of the convergence of each
method to their simple roots, the following condition

|sn − sn−1|+ |ψ(sn)| < 10−65 (24)

has been used as the stopping criterion. In Table II to Table
X, we have displayed the number of iterations (n) required
(NIR) by the methods to satisfy the stopping criterion given
in (24), the corresponding absolute residual error for each test
function i.e., |ψ(sn)| and the errors in consecutive iterations,
|sn − sn−1|. We have also given the computational order of

convergence (COC) of each method satisfying the stopping
criterion (24) in Table II to Table X. The COC is represented
as (ρ) and is calculated by the following formula [22]:

COC =
log|ψ(sn)/ψ(sn−1)|

log|ψ(sn−1)/ψ(sn−2)|
(25)

Also, we provide the CPU time (in seconds) utilized by each
method at the last columns of the Tables. Here, we point out
that the CPU time is not unique as it largely depends on
the computer’s specifications. So, to ensure the robustness
of each compared method we take the average running time
utilized by the CPU when the methods are executed four
times on each test function. The CPU time is computed by
taking |ψ(sn)| ≤ 10−1500 as the stopping criterion using
Mathematica 12.2 software on a system running Windows 11
with Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11
GHz and 8GB of RAM.

From all the numerical results in Table II to Table X, it is
easy to conclude that the proposed family of methods (4) is
highly competitive and possesses fast convergence towards
the root in minimum number of iterations (n) consuming
lesser CPU time. The absolute residual error value and
error values in consecutive iterations for the new proposed
family of methods are also minimal as compared to the
other existing methods. And, we can also observe from
the numerical test results that the COC (ρ) supports the
theoretical convergence order of the new presented family
of methods in the test functions.

IV. APPLICATIONS TO REAL WORLD PROBLEMS

Here, we discuss the applicability of the presented family
of methods on two particular real world problems.

A. Problem on Planck’s Radiation Law

Let us consider the Planck’s radiation law problem (for
details see [23], [24]) which is used to compute the energy
density within an isothermal black body. It can be expressed
by the following nonlinear equation:

ψ7(s) = e−s +
s

5
− 1 = 0 (26)

The approximate root of (26) is found to be α ≈
4.9651142317442763. Using the initial guess s0 = 6, the
results satisfying the stopping criterion (24) are displayed in
Table VIII.
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TABLE II
COMPARISON ON TEST FUNCTION ψ1(s).

Methods NIR(n) |sn − sn−1| |ψ1(s)| COC(ρ) CPU Time

RBM 7 1.3170× 10−98 1.1563× 10−197 2.0000 0.02543
OSM 7 3.9450× 10−99 1.0375× 10−198 2.0000 0.03190
SM 7 8.6016× 10−88 5.4806× 10−176 2.0000 0.02615

TEM 7 1.3037× 10−101 8.6930× 10−204 2.0000 0.02559
KTM 7 1.1090× 10−218 5.8562× 10−214 2.0000 0.02166
WM 7 3.6832× 10−90 8.4787× 10−181 2.0000 0.03275
PFM 4 4.4595× 10−210 3.1282× 10−1675 8.0000 0.01486

TABLE III
COMPARISON ON TEST FUNCTION ψ2(s).

Methods NIR(n) |sn − sn−1| |ψ2(s)| COC(ρ) CPU Time

RBM 6 5.2366× 10−104 9.4900× 10−827 8.0000 0.02417
OSM - Divergent Divergent - -
SM 6 4.9562× 10−173 1.6939× 10−1378 8.0000 0.01985

TEM - Divergent Divergent - -
KTM 7 1.2726× 10−82 2.8865× 10−655 8.0000 0.02488
WM - Divergent Divergent - -
PFM 5 3.3720× 10−69 6.2033× 10−549 8.0000 0.01670

TABLE IV
COMPARISON ON TEST FUNCTION ψ3(s).

Methods NIR(n) |sn − sn−1| |ψ3(s)| COC(ρ) CPU Time

RBM 3 4.7850× 10−91 2.6469× 10−726 8.0000 0.08802
OSM 3 3.8689× 10−88 2.9788× 10−702 8.0000 0.04416
SM 3 6.9841× 10−75 2.6343× 10−595 8.0000 0.04998

TEM 3 2.6172× 10−82 5.8951× 10−655 8.0000 0.04953
KTM 3 3.3195× 10−84 2.0131× 10−670 8.0000 0.04788
WM 3 5.4874× 10−74 8.4137× 10−588 8.0000 0.08753
PFM 3 5.8931× 10−95 4.4069× 10−757 8.0000 0.03733

TABLE V
COMPARISON ON TEST FUNCTION ψ4(s).

Methods NIR(n) |sn − sn−1| |ψ4(s)| COC(ρ) CPU Time

RBM 4 1.0059× 10−192 7.2733× 10−1533 8.0000 0.07157
OSM 4 3.8201× 10−186 1.7408× 10−1480 8.0000 0.05424
SM 4 2.9615× 10−203 3.0456× 10−1617 8.0000 0.06238

TEM 4 3.5765× 10−239 4.1929× 10−1906 8.0000 0.07267
KTM 4 1.6950× 10−160 1.0978× 10−1274 8.0000 0.05521
WM 4 8.5014× 10−154 7.9220× 10−1221 8.0000 0.05605
PFM 3 3.0702× 10−66 4.6521× 10−522 8.0000 0.03550

TABLE VI
COMPARISON ON TEST FUNCTION ψ5(s).

Methods NIR(n) |sn − sn−1| |ψ5(s)| COC(ρ) CPU Time

RBM 4 6.4695× 10−200 1.6367× 10−1592 8.0000 0.03185
OSM 4 6.8189× 10−190 3.4903× 10−1512 8.0000 0.03304
SM 4 2.7981× 10−147 5.5121× 10−1171 8.0000 0.04165

TEM 4 3.0383× 10−155 2.1689× 10−1234 8.0000 0.03099
KTM 4 7.1643× 10−168 1.0365× 10−1335 8.0000 0.03867
WM 4 2.4886× 10−130 1.9005× 10−1034 8.0000 0.03757
PFM 4 4.0261× 10−215 6.6739× 10−1715 8.0000 0.02396
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TABLE VII
COMPARISON ON TEST FUNCTION ψ6(s).

Methods NIR(n) |sn − sn−1| |ψ6(s)| COC(ρ) CPU Time

RBM 4 1.4022× 10−77 4.8779× 10−613 8.0000 0.11714
OSM 5 3.5559× 10−76 3.0626× 10−601 8.0000 0.13993
SM 6 4.9016× 10−375 6.9908× 10−2992 8.0000 0.13222

TEM - Divergent Divergent - -
KTM 4 5.3033× 10−105 9.8504× 10−832 8.0000 0.12037
WM - Divergent Divergent - -
PFM 4 1.4231× 10−389 5.3757× 10−3110 8.0000 0.06394

TABLE VIII
COMPARISON RESULTS OF PLANCK’S RADIATION LAW PROBLEM, ψ7(s).

Methods NIR(n) |sn − sn−1| |ψ7(s)| COC(ρ) CPU Time

RBM 3 7.4189× 10−82 1.2733× 10−658 8.0000 0.03659
OSM 3 1.9066× 10−81 3.0027× 10−655 8.0000 0.03183
SM 3 3.3690× 10−78 5.8295× 10−629 8.0000 0.03673

TEM 3 4.1321× 10−81 1.6084× 10−652 8.0000 0.03852
KTM 3 2.7843× 10−81 6.4078× 10−654 8.0000 0.04053
WM 3 1.5405× 10−77 1.5695× 10−623 8.0000 0.04283
PFM 3 3.2923× 10−83 1.2348× 10−669 8.0000 0.02484

TABLE IX
COMPARISON RESULTS OF VAN DER WAALS EQUATION PROBLEM, ψ8(s).

Methods NIR(n) |sn − sn−1| |ψ8(s)| COC(ρ) CPU Time

RBM 5 3.2148× 10−203 1.2428× 10−1615 8.0000 0.02279
OSM 5 8.6739× 10−240 2.2938× 10−1908 8.0000 0.02610
SM 5 1.4332× 10−171 3.2612× 10−1362 8.0000 0.02349

TEM 5 5.0912× 10−132 1.2049× 10−1045 8.0000 0.02185
KTM 5 3.5440× 10−167 5.5510× 10−1327 8.0000 0.02381
WM 5 1.3079× 10−84 1.9165× 10−665 8.0000 0.03215
PFM 5 2.2341× 10−260 8.7632× 10−2073 8.0000 0.01757

TABLE X
COMPARISON RESULTS OF THE MULTIPACTOR EFFECT PROBLEM, ψ9(s).

Methods NIR(n) |sn − sn−1| |ψ9(s)| COC(ρ) CPU Time

RBM 4 2.5333× 10−492 2.1170× 10−3936 8.0000 0.03192
OSM 4 1.7195× 10−453 1.0336× 10−2659 5.5651 0.03241
SM 4 3.4696× 10−433 1.0355× 10−3462 8.0000 0.03533

TEM 4 5.4780× 10−410 6.0418× 10−3277 8.0000 0.03267
KTM 4 5.7853× 10−437 5.6819× 10−3493 8.0000 0.03542
WM 4 2.2686× 10−362 4.9114× 10−2895 8.0000 0.03314
PFM 3 1.8501× 10−66 1.3729× 10−529 8.0000 0.02648

B. Van Der Waals Equation

Let us consider the well-known Van der Waals equation
from chemical engineering problem (for details see [25],
[26]). The equation has been used to examine the behaviour
of real and ideal gases . It is represented by the following
expression:

ψ8(s) = 0.986s3 − 5.181s2 + 9.067s− 5.289 (27)

where the variable s represents the volume of the gas to
be determined. It has only one feasible positive real root
α ≈ 1.9298462428478622. We use s0 = 2.4 as the initial
guess and the results satisfying the stopping criterion (24)
are displayed in Table IX.

C. Study of The Multipactor Effect

Let us consider the analysis of the multipactor effect (for
details see [27], [28]). The trajectory of an electron in the
air gap between two parallel plates is given by the following
nonlinear function:

ψ9(s) = s− 1

2
cos(s) +

π

4
(28)

The nonlinear equation ψ9(s) = 0 has a simple root at
α ≈ −0.30909327154179495. We take s0 = 0 as the initial
guess and the results satisfying the stopping criterion (24)
are displayed in Table X.

From Table VIII to Table X, we can observe that the
numerical applications of the proposed family of methods on
some real world problems have illustrated the efficiency and
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applicability of the presented family of methods. Moreover,
our presented family of methods is found to have better
performance as compared to the existing methods in com-
parison.

V. CONCLUDING REMARKS

We have presented in this paper a new optimal order
derivative-free family of iterative methods for determining
the solutions of nonlinear equations. The procedure uses the
Steffensen-like approach and the weight function technique
to achieve derivative-free optimal order convergence method.
Analysis of the numerical test results have shown the robust
performance of our family of methods. It is found to be more
efficient as compared to the other well-known methods in
terms of minimal residual errors, errors in consecutive itera-
tions and smaller number of iterations required with minimal
CPU time consumed for convergence to the roots. Also, the
study on some real world problems has demonstrated the
applicability and validity of the presented family of methods.
Moreover, we can conclude that the overall performance of
the presented family of methods is really good with fast
convergence speed and will be a good alternative for solving
nonlinear equations.
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