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Abstract—For a color c in a proper coloring of a graph G, let
nc(v) denote the times of the color c be used in the neighbors
N(v) of the vertex v. A t-frugal k-coloring of G is a proper
coloring φ : V (G) → {1, 2, . . . , k} such that every vertex v ∈
V (G) has nc(v) ≤ t for each color c. The minimum number of
colors required to ensure that a graph G has a t-frugal coloring
is called t-frugal chromatic number of G, denoted by Φt(G).
This paper proved that if G is a planar graph with ∆(G) ≤ 6,
then Φ2(G) ≤ 17. We also gave a linear time algorithm for
producing a 2-frugal 17-coloring of a planar graph G without
adjacent triangles.

Index Terms—2-frugal coloring, maximum degree, discharg-
ing, algorithm.

I. INTRODUCTION

IN this paper, the notations we adopt are standard and all
graphs we use are simple, undirected and finite. A graph

is planar if it can be drawn or embedded in the plane such
that every two edges only intersect at their endpoints. A plane
graph is a planar graph with a fixed planar embedding in the
plane[12]. Considering a plane graph G, let V (G) be the set
of vertices of G, E(G) be the set of edges of G and F (G) be
the set of faces of G. In addition, let d(f) be the degree of
face f , which is the number of edges on the boundary of f .
We denote the minimum and maximum degree of vertices in
G by δ(G) and ∆(G). For a color c in a proper coloring of
a graph G, let nc(v) denote the times of the color c be used
in the neighbors N(v) of the vertex v. A t-frugal k-coloring
of G is a proper coloring φ : V (G) → {1, 2, . . . , k} such
that every vertex v ∈ V (G) has nc(v) ≤ t for each color
c. The minimum number of colors required to ensure that a
graph G has a t-frugal coloring is called t-frugal chromatic
number of G, denoted by Φt(G).

Hind, Molly and Reed [7] firstly introduced the concept
of frugal coloring in 1997 to deeply study total chromatic
number of graphs. They proved that every graph G with
quite large maximum degree has a ⌈log8 ∆⌉-frugal (∆+1)-
coloring. In fact, t-frugal coloring has an application back-
ground. In the channel allocation problem, when an over-the-
air-station covers a very large area, it is necessary to use the
base station to enhance the signal. The prerequisite for the
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proper operation of each base station is that the adjacent base
stations use different channels. Each channel base station
is regarded as a vertex. If the two channel base stations
interfere with each other, we give an edge between them.
For each base station, it is not allowed to be interfered more
than t times by a same channel. Then, what is the minimum
number of channels to guarantee the normal operation of
all base stations? Obviously, it can be converted into the t-
frugal coloring problem. Amini, Esperet, and van den Heuvel
[10] gave some results about t-frugal coloring of planar and
outplanar graphs. They showed that Φt(G) ≤ ⌊ 2∆+19

t ⌋+ 6,
if G is a planar graph with ∆(G) ≥ 12. For a outerplanar
graph with ∆(G) ≥ 3, they proved that Φt(G) ≤ ⌊∆−1

t ⌋+3.
When t = 1, 1-frugal coloring is equivalent to 2-distance

coloring. About 2-distance coloring, in 1977, Wegner [13]
proposed a conjecture: if G is a planar graph, then χ2(G) ≤ 7
if ∆ ≤ 3 , χ2(G) ≤ ∆ + 5 if 4 ≤ ∆ ≤ 7 and χ2(G) ≤
⌊ 3∆

2 ⌋+ 1 if ∆ ≥ 8, where χ2(G) is the minimum k so that
G has a 2-distance k-coloring. Except the case when ∆ ≤ 3,
the conjecture is still open now. After this famous conjecture
was proposed, many scholars conducted a lot of research on
2-distance coloring. With some special limitations on planar
graph, Ming Chen, Lianying Miao, Shan Zhou[9] proved that
if G is a planar graph with ∆ ≤ 5, then χ2(G) ≤ 19. There
are many other research results, which readers can refer to[3],
[4], [5], [6], [11], [14].

In this paper, we proved that if G is a planar graph with
∆(G) ≤ 6, then Φ2(G) ≤ 17. Besides, inspired by a linear
time algorithm given by Baogang Xu and Haihui Zhang[1],
we also gave a linear time algorithm for producing a 2-frugal
17-coloring of a planar graph G without adjacent triangles
in the final section.

Theorem 1.1 If G is a planar graph with ∆(G) ≤ 6, then
Φ2(G) ≤ 17.

We will prove Theorem 1.1 by the method of contradic-
tion. Firstly, suppose the theorem is not true. We pick a coun-
terexample G with minimum |V (G)| + |E(G)|, which has
no 2-frugal 17-coloring. Then, we will find a contradiction
about G. Obviously, G is a connected planar graph by the
minimality.

II. THEOREM PROVING

A. Forbidden configurations

Before giving the configurations, we introduce some no-
tations. Let ϕ

′
be a legal partial coloring of G. For a vertex

v in G, f(v) is the number of the selectable colors. Let
c(G) = {1, 2, . . . , 17} be the color set of G and c(v) be the
color of vertex v. For a 2-frugal coloring, the forbidden colors
of v are the colors of N(v) and the colors of N2(v) which
occur 2 times, where N2(v) is the set of vertices at a distance
of 2 from v in G. Hence, f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|

2 ⌋).
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An i-vertex (i−-vertex) is a vertex with degree i (at most
i). An i-face (i+-face) is a face with degree i (at least i).
A 3-face is (i, j, k)-face if it is incident with a i-vertex, a
j-vertex and a k-vertex. If v1, v2, . . . , vn are all the vertices
on the boundary of a face f in the order of given orientation,
we denote the face f by v1v2 . . . vn.

Let G be the counterexample with minimum |V (G)| +
|E(G)| of Theorem 1.1.

Lemma 2.1 G has no cut edges.
Proof: Assume that uv is a cut edge of G. The worst

case is that the vertex u and the vertex v are both 6-
vertex. Let N(u) = {v, u1, u2, u3, u4, u5} and N(v) =
{u, v1, v2, v3, v4, v5}. Now, delete the edge uv and get two
components G1 and G2 which have a 2-frugal 17-coloring by
the minimality, denoted by the ϕ1 and ϕ2 respecticely. Then,
extend ϕ1 and ϕ2 to G. Firstly, we use the total permutation
of color on ϕ1 such that {u, u1, u2, u3, u4, u5} is colored by
the color set{1, 2, 3, 4, 5, 6}. Secondly, use the total permu-
tation of color on ϕ2 such that {v, v1, v2, v3, v4, v5} in ϕ2

is colored by the color set {17, 16, 15, 14, 13, 12}. Hence, G
has a 2-frugal 17-coloring, a contradiction. □

Lemma 2.2 δ(G) ≥ 5.
Proof: Assume that u is a 4-vertex, N(u) =

{u1, u2, u3, u4} and all of the vertices u1, u2, u3, u4 are 6-
vertex, which is the worst case. Now, delete the vertex u and
get a graph G

′
, which has a 2-frugal 17-coloring ϕ

′
by the

minimality. Then, extend ϕ
′

to G. Except the vertex u, let the
other vertices be colored the same as ϕ

′
. By the definition

of 2-frugal coloring and the structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (4 + ⌊ 4+4+4+4+4
2 ⌋) = 3 ≥ 1,

a contradiction. □
Lemma 2.3 In the graph G, no 5-vertex is incident with

more than three (5, 5, 5)-faces. (see Fig 1)
Proof: Suppose there is a 5-vertex v with N(v) =

{v1, v2, v3, v4, v5}, incident with four 3-faces, respectively,
vv1v2, vv2v3, vv3v4 and vv4v5. Now, delete the vertex v and
get a graph G

′
, which has a 2-frugal 17-coloring ϕ

′
by the

minimality. Then, extend ϕ
′

to G. Except the vertex v, let the
other vertices be colored the same as ϕ

′
. By the definition

of 2-frugal coloring and the structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (5 + ⌊ 3+2+2+2+3
2 ⌋) = 6 ≥ 1,

a contradiction. □

Fig 1 illustration of lemma 2.3

Lemma 2.4 In the graph G, when a 6-vertex is incident
with three 3-faces, there is no more than one (6, 5, 5)-face.
(see Fig 2)

Proof: Suppose there is a 6-vertex v with N(v) =
{v1, v2, v3, v4, v5, v6}, incident with three 3-faces, including
two (6, 5, 5)-faces. We have two cases. Case 1: the two
(6, 5, 5)-faces are vv1v2 and vv2v3. Case 2: the two (6, 5, 5)-
faces are vv1v2 and vv3v4. In the worst case, we let the rest
3-face be (6, 6, 6)-face.

Case 1: Now, delete the vertex v2 and get a graph G
′
,

which has a 2-frugal 17-coloring ϕ
′

by the minimality. Then,
extend ϕ

′
to G. Except the vertex v2, let the other vertices be

colored the same as ϕ
′
. By the definition of 2-frugal coloring

and the structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (5 + ⌊ 5+5+3+3+3
2 ⌋) = 3 ≥ 1,

a contradiction.
Case 2: Now, delete the vertex v and get a graph G

′
, which

has a 2-frugal 17-coloring ϕ
′

by the minimality. Then, extend
ϕ

′
to G. Except the vertex v, let other the vertices be colored

the same as ϕ
′
. By the definition of 2-frugal coloring and the

structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (6 + ⌊ 3×4+4×2
2 ⌋) = 1 ≥ 1,

a contradiction. □

case1 case2
Fig 2 illustration of lemma 2.4

Fig 3 illustration of lemma 2.5

Lemma 2.5 In the graph G, when a 6-vertex is incident
with four 3-faces, there is no (6, 5, 5)-face. (see Fig 3)

Proof: Assume there is a 6-vertex v with N(v) =
{v1, v2, v3, v4, v5, v6}, incident with four 3-faces, including
one (6, 5, 5)-face. In the worst case, we let the rest three 3-
faces be (6, 6, 6)-faces. Now, delete the vertex v and get
a graph G

′
, which has a 2-frugal 17-coloring ϕ

′
by the

minimality. Then, extend ϕ
′

to G. Except the vertex v, let the
other vertices be colored the same as ϕ

′
. By the definition

of 2-frugal coloring and the structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)
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= 17− (6 + ⌊ 3×2+4+3×3
2 ⌋) = 2 ≥ 1,

a contradiction. □
Lemma 2.6 In the graph G, when a 6-vertex is incident

with five 3-faces, there are at least three (6, 6, 6)-faces. (see
Fig 4)

Proof: Assume there is a 6-vertex v with N(v) =
{v1, v2, v3, v4, v5, v6}, incident with five 3-faces, including
only two (6, 6, 6)-faces. We have three cases. Case 1: the
two (6, 6, 6)-faces are vv1v2 and vv2v3. Case 2: the two
(6, 6, 6)-faces are vv1v2 and vv5v6. Case 3: the two (6, 6, 6)-
faces are vv1v2 and vv4v5. In the worst case, we let the rest
three 3-faces be (6, 6, 5)-faces.

Case 1: Now, delete the vertex v and get a graph G
′
, which

has a 2-frugal 17-coloring ϕ
′

by the minimality. Then, extend
ϕ

′
to G. Except the vertex v, let the other vertices be colored

the same as ϕ
′
. By the definition of 2-frugal coloring and the

structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (6 + ⌊ 4+3+3+2+3+3
2 ⌋) = 2 ≥ 1,

a contradiction.
Case 2: Now, delete the vertex v and get a graph G

′
, which

has a 2-frugal 17-coloring ϕ
′

by the minimality. Then, extend
ϕ

′
to G. Except the vertex v, let the other vertices be colored

the same as ϕ
′
. By the definition of 2-frugal coloring and the

structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (6 + ⌊ 4+3+2+2+3+4
2 ⌋) = 2 ≥ 1,

a contradiction.
Case 3: Now, delete the vertex v and get a graph G

′
, which

has a 2-frugal 17-coloring ϕ
′

by the minimality. Then, extend
ϕ

′
to G. Except the vertex v, let the other vertices be colored

the same as ϕ
′
. By the definition of 2-frugal coloring and the

structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (6 + ⌊ 4+3+2+3+3+3
2 ⌋) = 2 ≥ 1,

a contradiction. □

case1 case2
Fig 4 illustration of lemma 2.6

Lemma 2.7 In the graph G, when a 6-vertex is incident
with six 3-faces, all 3-faces are (6, 6, 6)-faces. (see Fig 5)

Proof: Assume there is a 6-vertex v with N(v) =
{v1, v2, v3, v4, v5, v6}, incident with six 3-faces, including
two (6, 6, 5)-faces. Let the rest four 3-faces be (6, 6, 6)-
faces. This is the worst case. Now, delete the vertex v and
get a graph G

′
, which has a 2-frugal 17-coloring ϕ

′
by the

minimality. Then, extend ϕ
′

to G. Except the vertex v, let the
other vertices be colored the same as ϕ

′
. By the definition

of 2-frugal coloring and the structure of G
′
, we have

f(v) ≥ 17− (|N(v)|+ ⌊ |N2(v)|
2 ⌋)

= 17− (6 + ⌊ 2+3+2+3+3+3
2 ⌋) = 3 ≥ 1,

a contradiction. □

case3
Fig 4 illustration of lemma 2.6

Fig 5 illustration of lemma 2.7

B. Discharging

In the following part, we get a contradiction by the
discharging method and complete the proof. By the Euler’s
formula |V | + |F | − |E| = 2 and the Handshake lemma∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) = 2|E|, we get:∑
v∈V (G)(2d(v)− 6) +

∑
f∈F (G)(d(f)− 6) = −12.

Let the initial charge of each vertex v be 2d(v) − 6 and
each face f be d(f)− 6. Then, we design some appropriate
discharging rules and redistribute charges among vertices and
faces, such that the final sum of charges of all vertices and
faces is nonnegative, a contradiction.

The discharging rules as follows:
R1. Every 5-vertex gives 1 to each of its incident (5, 5, 5)-

face.
R2. Every 5-vertex gives 1/2 to each of its incident face,

except (5, 5, 5)-face.
R3. Every 6-vertex gives 1 to each of its incident (6, 6, 6)-

face.
R4. Every 6-vertex gives 5/4 to each of its incident

(6, 6, 5)-face.
R5. Every 6-vertex gives 2 to each of its incident (6, 5, 5)-

face.
R6. Every 6-vertex gives 1/2 to each of its incident face,

except (6, 6, 5)-face, (6, 6, 5)-face and (6, 6, 6)-face.
Now, we check the final charge of vertices and faces.
Firstly, according to the previous proof, we show that the

final charge of each face is nonnegative.
3-face: By lemma 2.2, there only exists 5-vertex and 6-

vertex. Hence, there are four cases of 3-face. They are
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(5, 5, 5)-face, (6, 5, 5)-face, (6, 6, 5)-face and (6, 6, 6)-face.
If the 3-face is a (5, 5, 5)-face, by R1, the final charge is
3 × 1 − 3 = 0. If the 3-face is a (6, 5, 5)-face, by R2 and
R5, the final charge is 2 × 1/2 + 2 − 3 = 0. If the 3-
face is a (6, 6, 5)-face, by R2 and R4, the final charge is
1/2 + 2 × 5/4 − 3 = 0. If the 3-face is a (6, 6, 6)-face, by
R3, the final charge is 3× 1− 3 = 0.

4-face: By R2 and R6, the final charge is 4×1/2−2 = 0.
5-face: By R2 and R6, the final charge is 5× 1/2− 1 =

3/2.
6+-face: There is no change in its initial charge d(f)− 6,

obviously, the final charge is nonnegative.
Secondly, we show that the final charge of every vertex

is nonnegative. According to the lemma 2.2, we check the
final charge of 5-vertex and 6-vertex:

5-vertex: By Lemma 2.3, there is no 5-vertex incident with
more than three (5, 5, 5)-faces in the graph G. By R1 and
R2, the final charge of 5-vertex is 4− 3× 1− 2× 1/2 = 0.

6-vertex: By Lemma 2.4, in the graph G, when a 6-vertex
is incident with three 3-faces, there is no more than one
(6, 5, 5)-face. By Lemma 2.5, in the graph G, when a 6-
vertex is incident with four 3-faces, there is no (6, 5, 5)-
face. By Lemma 2.6, in the graph G, when a 6-vertex is
incident with five 3-faces, there are at least three (6, 6, 6)-
faces. By Lemma 2.7, in the graph G, when a 6-vertex is
incident with six 3-faces, all 3-faces are (6, 6, 6)-faces. For
convenience, we make a table of all the situations about
a 6-vertex, according to the above lemmas. We denote the
number of 3-faces incident with a 6-vertex by Num(3) and
the final charge of the 6-vertex by FC(6). In this table we
write (i, j, k)-face as ijk-face for short. (see Table I)

Table I all the situations about a 6-vertex

Num(3) Other face 666-face 665-face 655-face FC(6)
0 6 0 0 0 3
1 5 1 0 0 2.5

5 0 1 0 2.25
5 0 0 1 1.5

2 4 1 1 0 1.75
4 1 0 1 1
4 0 1 1 0.75
4 2 0 0 2
4 0 2 0 1.5
4 0 0 2 0

3 3 3 0 0 1.5
3 2 1 0 1.25
3 2 0 1 0.5
3 1 2 0 1
3 1 1 1 0.25
3 0 3 0 0.75
3 0 2 1 0

4 2 4 0 0 1
2 3 1 0 0.75
2 3 0 1 0
2 2 2 0 0.5
2 1 3 0 0.25
2 0 4 0 0

5 1 5 0 0 0.5
1 4 1 0 0.25
1 3 2 0 0

6 0 6 0 0 0

From the table above, the final charge of each 6-vertex
is nonnegative. By the Euler’s formula, the contradiction is
obvious:

0 ≤
∑

v∈V (G)(2d(v)− 6) +
∑

f∈F (G)(d(f)− 6) = −12.

That means that such a counterexample G to Theorem 1.1
does not exist. We complete the proof. □

III. ALGORITHM

About the algorithm for frugal coloring, McCormick and
Thomas [8] determined the complexity of deciding whether
a given graph has a 1-frugal k-coloring. By generalizing the
result from [8], Stefan, Gary MacGillivray and Shayla Redlin
[2] proved that if k = 3 and t ≥ 2, or k ≥ 4 and t ≥ 1,
then the problem of deciding whether a given graph has a
t-frugal k-coloring is NP-complete.

Before giving the algorithm, we will give a corollary as
follow.

Corollary 1.2 If G is a planar graph without adjacent
triangles, ∆(G) ≤ 6, then, one of the following holds:

(1) G contains a cut edge.
(2) δ(G) < 5.
Proof: By Theorem 1.1, it is easy to prove Corollary 1.2

and we omit it here. □
From the proof of Theorem 1.1 and Corollary 1.2, we give

a linear time algorithm, inspired by the algorithm given by
Baogang Xu and Haihui Zhang[1]. For arbitrary planar graph
G without adjacent triangles, ∆(G) ≤ 6, there exists a 2-
frugal 17-coloring of G. We denote the number of connected
components of graph G by ω(G) and the color set of G by
c(G).

Algorithm:
Input: A planar graph G without adjacent triangles,

∆(G) ≤ 6, and c(G) = {1, 2, . . . , 17}.
Output: A 2-frugal coloring ϕ of G with Φ2(G) = 17.
Step 0: Set i = 0, G0 = G, V0 = {v | d(v) ≤ 4} and

E0 = {uv | u, v /∈ V0 and ω(G− uv) > ω(G)}.
Step 1: If ∆(Gi) ≤ 2, color Gi with a proper coloring

greedily, and go to step 3.
Step 2: If V0 ̸= ∅, choose v ∈ V0, set Si := {v} and reset

V0 := V0 \ {v};
Else, choose an uv ∈ E0, set Si := {u, v} and

reset E0 := E0 \ {uv}.
Reset Gi := Gi − Si, i = i + 1, and add the new 4−-

vertices and cut edges of Gi into V0 and E0. Go to step
1.

Step 3: If i = 0, output ϕ.
Step 4: If Si−1 = {v}, color v by one of f(v) in the proof

of Lemma 2.2.
Else, Si−1 = {u, v}, color u, v by the method in

the proof of Lemma 2.1.
Reset i = i− 1 and go to step 3.
From the algorithm complexity’s proof by Baogang Xu

and Haihui Zhang[1], it is obvious to know that the algorithm
given above is a linear time algorithm.
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