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Abstract—Accurate identification of the primary site of
metastatic lung cancer (LC) is critical to the design of effective
treatments that can assist physicians in diagnosis and improve
prognosis. We collected genetic information from The Cancer
Genome Atlas (TCGA) database of 3808 samples with clear
tumor types; differential expression analysis was used for
feature gene selection and a machine learning model was built
to locate the primary tumor site. Finally, the 59 differentially
expressed genes screened were well-characterized for metastatic
LC primary tissue localization (lung adenocarcinoma, lung
squamous carcinoma, thyroid carcinoma, breast invasive car-
cinoma, renal clear cell carcinoma, and renal papillary cell
carcinoma).Comparing logistic regression analyses, the K-
nearest neighbor and support vector machine revealed that
the random forest (RF) model increased the average accuracy,
precision, sensitivity, specificity, F1 score, macro-F1, micro-F1,
and weighted-F1 from 99.06% to 99.78%, 96.42% to 99.37%,
96.77% to 98.90%, 99.44% to 99.86%, 96.63% to 99.12%,
96.63% to 99.12%, 97.18% to 99.32%, and 97.28% to 99.41%,
respectively. The highest classification accuracy of 100% was
achieved for thyroid cancer origin for all indicators under
different algorithms.In conclusion, the RF algorithm was used
to construct a model to trace the origin of metastatic LC tissues,
which could potentially assist physicians in diagnosis, treatment,
follow-up, and effective improvement of prognosis.

Index Terms—Metastatic lung cancer, organization origin
tracing, machine learning, differential expression, random for-
est.

I. INTRODUCTION

METASTATIC lung cancer (LC) with unknown primary
site is metastatic disease without any evidence of a

primary tumor in the lymph nodes of the lung after detailed
examination [1], [2]. About 60% or more of malignant
tumors are accompanied by metastases at the time of initial
diagnosis, of which 30-50% metastasizes to the patient’s
lungs [1], [2]. Metastatic LC accounts for 1.5-5% of all tumor
cases [1], [3], and ranks 8th [4] among common malignant
tumors and 4th in mortality [5]. A meta-study reported that
patients with metastatic LC had a median survival time of
4.5 months, with 1- year and 5-year survival rates of 20%
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and 4.7%, respectively, after receiving chemotherapy; the
prognosis was influenced by biological characteristics of the
primary tumor [6]. Therefore, accurate identification of the
primary site of metastatic LC is essential to design effective
treatment and to aid physicians in diagnosis and improve
prognosis.

Metastatic tumors are often heterogeneous, which can
make clinicopathologic diagnosis and treatment particu-
larly challenging. Immunohistochemistry is currently a key
method for determining the site of origin of tumors and can
be used to identify the tissue of origin of metastatic LC [7].
However, immunohistochemistry is labor-intensive, suitable
for small sample size data, difficult to overcome classification
accuracy bottlenecks, and needs urgent improvement [8].
Positron emission tomography (PET) and computed tomogra-
phy (CT) are effective medical imaging tools for identifying
the primary site of a tumor [9]. However, the accuracy of
PET and CT in identifying the origin of tissues was 24-40%
and 20-27%, respectively, with poor diagnostic performance
[10]. Therefore, a new and effective method to identify the
primary site of metastatic LC is urgently required.

It is known that metastatic tumors retain the gene ex-
pression profile of the tissue at the primary site. Wang et
al. constructed a molecular marker containing 96 tissue-
specific genes by gene expression profiling to determine
22 common tumor types and tissue origins [11]. Lu et al.
developed three machine learning models: random forest
(RF), support vector machine (SVM), and neural network;
80 differentially expressed genes (DEGs) were screened to
distinguish four types of squamous cell carcinoma to locate
the tissue of origin of metastatic cervical cancer [12]. Zhao
et al. trained primary tumor expression data using a one-
dimensional convolutional neural network model to infer the
tissue origin of unknown primary cancer (CUP) [2]. The
use of machine learning to construct medical models and
analyze gene expression profiles to infer tumor tissue origins
has gained popularity, but targeted studies for the tissue
origins of metastatic LC are still lacking. The incidence
of metastasis to the lung varies among different sites, of
which thyroid, breast, and kidney cancers and osteosarcoma
exhibit the highest incidence, reaching 60-90%, and are the
primary sites of metastatic LC [1]. Therefore, this study
will bioinformatically analyze the gene expression data of
primary LC and major primary sites of metastatic LC, and
construct four machine learning models to explore effective
tools for localizing the tissue of LC origin.

II. MATERIALS AND METHODS

A. Data collection and preparation

Samples with clear tumor type were selected from The
Cancer Genome Atlas (TCGA) database. The screening
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TABLE I
GENE EXPRESSION PROFILING DATABASE

Cohort Ab-
breviation

Tumor type Total Case
code=01

Control
Code=11

LUAD lung adenocarci-
noma

572 513 59

LUSC lung squamous cell
carcinoma

550 501 49

THCA thyroid carcinoma 560 502 58
BRCA breast invasive car-

cinoma
1204 1091 113

KIRC kidney renal clear
cell carcinoma

602 530 72

KIRP kidney renal papil-
lary cell carcinoma

320 288 32

Total 6 3808 3425 383

criteria: Disease Type=squamous cell neoplasms, Program
Name=TCGA or TARGET, Data Category=transcriptome
profiling, and Experimental Strategy=RNA-Seq. The
screened expression matrix included data from both
primary tumor samples (tumor type code = ”01”)
and conventional samples (tumor type code = ”11”).
Osteosarcoma contained only primary tumor samples
and was therefore excluded. Subsequently, the mapping
information of Gene Symbol and ENSG-ID was extracted
from GENCODE (https://www.gencodegenes.org/human/)
and ENSG-ID was uniformly mapped to Gene Symbol [11].

The RNA-Seq information of the samples was standard-
ized and normalized to include as many tissue subtypes
as possible for tumor types with significant heterogeneity.
After preprocessing, the gene expression profile database
was constructed (Table I). The database included six tumor
types (lung adenocarcinoma, lung squamous cell carcinoma,
thyroid carcinoma, breast invasive carcinoma, kidney renal
clear cell carcinoma, and kidney renal papillary cell carci-
noma) with 3808 tumor samples (including routine samples
of primary tumor margin); the sample size of each tumor
ranged from 320 to 1204 cases. The six tumor samples
were grouped separately; the screened primary patients were
recorded as the case group (tumor type code=”01”) and
the routine samples around the tumor were recorded as the
control group (tumor type code=”11”).

B. Modeling method

1) Logistic regression (LR): LR predicts the probability of
future outcomes occurring from the performance of historical
data. LR can establish a functional relationship between n
(n ≥2) independent variables and one dependent variable,
and the output function model is as follows [13]:

P (Y ) =
1

1 + e−(β0+β1x1+β2x2+···+βnxn)
=

1

1 + e−(bT×X)

(1)
where β0, β1, β2 are the regression coefficients, and x1,
x2,......, xn is the independent variable, and is the probability
that the primary tissue of metastatic LC is localized to a
specific retrospective source [14]. Vector b was determined
by logistic regression, and vector b associated each patient
with metastatic LC with a specific retrospective probability.

2) K-nearest neighbors (KNN): When the KNN algorithm
predicts a new input instance, the majority class of the k

Fig. 1. SVM schematic

nearest points to this instance is used as the class of the new
input instance. This idea is also a result of empirical risk
minimization [15]. The training samples are (xi, yi), when
the input instance is x, labeled as c, Nk(x) is the set of KNN
training samples of the input instance. Therefore, the training
error rate is the proportion of KNN training sample tokens
that do not agree with the input tokens. The training error
rate is expressed as the following equation [16]:

1

k

∑
xi∈Nk(x)

I(yi 6= cj) = 1− 1

k

∑
xi∈Nk(x)

I(yi = cj) (2)

Therefore, to minimize the empirical risk, i.e., the error
rate, it is necessary to make the maximum in equation (2)
1
k

∑
xi∈Nk(x)

I(yi 6= cj), i.e., the marker values of KNN match;

the input marker values as far as possible; hence, the majority
voting rule is equivalent to the empirical risk minimization
[17].

3) SVM: The SVM algorithm maximizes the geometric
edges while minimizing the empirical error. As illustrated
in Fig. 1, the vector (point) that limits the edge width is
the support vector, and the sum of the distances from two
different classes of support vectors to the hyperplane is called
the interval (2*margin). The basic idea of SVM is to treat the
input data as two sets of vectors in an n-dimensional space;
the boundary between the two sets of data is maximized by
creating a separating hyperplane within that space to classify
the input data [18].

4) RF: The RF is based on the bagging algorithm, with
two modifications: (1) m subsamples are randomly selected
from the original dataset, and then when training each base
learner, instead of selecting the best features from all features
to slice the nodes, k features are randomly selected; the best
features are selected from these k features to slice the nodes,
thus further reducing the variance of the model; (2) the base
learner used in the RF is a decision tree [19]. As in Fig. 2, the
RF algorithm contains multiple DTs, and its output category
is determined by the multitree of the categories output by
the individual DTs [20].

The models were adjusted for super-parameters using 10-
fold cross-validation and grid search methods. In 10-fold
cross-validation, the initial sample (sample set X, Y) is split

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_02

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 



Fig. 2. RF structure

into 10 copies; 1 copy is retained as the data for validating the
model (test set) and the other nine copies are used for training
(training set). The cross-validation is repeated 10 times, once
for each copy, and the results are averaged over 10 times or
using other combinations to obtain a single estimate [14]. The
grid search method presets multiple parameter permutations
and uses the cross-validation method for multiple evaluations
to select hyperparameters [21].

C. Model evaluation indicators

Machine learning model prediction performance is com-
monly measured by accuracy, precision, sensitivity, speci-
ficity, F1 score, macro−F1, micro−F1, and weighted−F1.
Each metric is greater than 0 and less than 1, with larger val-
ues representing higher classification accuracy. The formulae
are as follows [21], [22], [23], [24]:

accuracy =
TP + TN

(TP + FN + FP + TN)
(3)

precision =
TP

(TP + FP )
(4)

sensitivity =
TP

(TP + FN)
(5)

specificity =
TN

(TN + FP )
(6)

F1 =
2(precision · sensitivity)
(precision+ sensitivity)

(7)

macro− F1 =

n∑
i=1

Fi

(n)
(8)

precisionm =

n∑
i=1

TPi

(
n∑
i=1

TPi +
n∑
i=1

FPi)
(9)

sensitivitym =

n∑
i=1

TPi

(
n∑
i=1

TPi +
n∑
i=1

FNi)
(10)

micro− F1 =
2(precisionm · sensitivitym)

(precisionm + sensitivitym)
(11)

weighted−F1 =
n∑
i=1

Fiwi (12)

TP represents the number of correct scores into positives.
FP represents the number of incorrectly classified positives.
TN represents the number of correct classifications as neg-
ative. FN stands for the number of incorrectly classified
as negative [25]. Precision and sensitivity are a pair of
contradictory metrics. Usually when precision is high, the
sensitivity value tends to be low; whereas when precision
is low, the sensitivity value tends to be high. In order to
consider these two metrics together, the F1 score (a weighted
summed average of precision and sensitivity) is proposed
[24]. macro − F1 averages the precision and sensitivity of
each category; thus, it does not take into account the sample
size of each category; thus, it is more affected by categories
with higher precisions and sensitivities. micro−F1 takes into
account the number of categories and is not affected by high
precisions and sensitivities; however, it is more affected by
categories with higher numbers. macro−F1 and micro−F1

complement each other to evaluate the model performance.
where wi represents the weight of cancer category in the total
sample, and Fi represents the F1 score value of category.
The macro − F1 is the arithmetic mean of F1 scores of
each category, which treats all categories equally, regardless
of the importance of different categories. micro − F1 is
also calculated on the basis that each sample has the same
weight. The weighted−F1 takes into account the number
of samples per category in the total sample, which can
effectively mitigate the effect of data imbalances [23], [24].

III. RESULTS

A. Characteristic gene selection

The initial tissue genes of 58,938 were not well rep-
resented. The R package t.test function was used to as-
sess the significance of the difference between each gene
in the primary tumor (group1=case) and normal control
(group2=control); then, the p.adjust function was called to
calculate the significant false discovery rate of each gene, and
finally the difference information of each gene was obtained.
A volcano map (Fig. 3 and Fig. 4) was drawn to visualize
the distribution of the expressed genes, with the horizontal
axis representing the fold change, and the farther away from
the center 0, the greater the difference. The vertical axis
indicates p-value, and the point closer to the top indicates
that the expression difference between the two samples is
more significant. The black dots in the middle and lower
part of the figure indicate that genes are not differentially
expressed, and the red and green dots indicate upregulated
and downregulated genes (upregulated + downregulated =
total DEGs) respectively. The Venn diagram (Fig. 5) shows
the information of DEGs among the six cancers with 7447,
10530, 3430, 6253, 11493 and 4433 DEGs for LUAD,
LUSC, THCA, BRCA, KIRC, and KIRP, respectively. In the
differential set, LUAD (1024), LUSC (2780), THCA (740),
BRCA (1405), KIRC (4905) and KIRP (537) ”characteristic”
DEGs (significantly expressed in only one type of cancer;
Fig. 5 non-overlapping part) were identified.

A total of 572 ”characteristic” DEGs (52 LUAD, 139
LUSC, 37 THCA, 71 BRCA, 246 KIRC, and 27 KIRP)
were screened for differential expression in the top 5% of
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Fig. 3. DEGs volcano map1

each cancer. The post-screening information is for genes that
are differentially expressed between each primary tumor and
normal control, and are mutually exclusive between cancer
types.

B. Model construction

Model variable selection: The independent variables in-
cluded 572 ”characteristic” DEGs, all of which were nu-
merical variables. The dependent variable was the tumor
sample type and was named a multicategorical variable,
coded as LUAD=1, LUSC=2, THCA=3, BRCA=4, KIRC=5,
and KIRP=6 in that order.

The matrix data was transposed using the T function and
called the train test split function to create a 7/3 balanced
split of the data (70% as the training set and 30% as the
validation set) [26]. Various machine learning methods [LR,
KNN, SVM and RF] were used to construct the models,
and performance of the classifiers in the validation set was
evaluated regarding accuracy, precision, sensitivity, speci-

Fig. 4. DEGs volcano map2

ficity, F1 score, macro−F1, micro−F1 and weighted−F1

metrics. Finally, the optimal retrospective model and the
”characteristic” DEG attributes that affected the identification
of metastatic LC tissue were filtered and derived.

C. Parameter tuning results

After multiple selections, the range of the RF split dataset
metrics [entropy, gini], the range of maximum depth of each
DT was [7,8,9,10,11], the range of minimum split sample
size of each DT leaf was [4,8,12,16,20,24], and the range of
number of DTs was [13,15,17,19]. An exhaustive search was
performed to select the optimal parameters criterion: gini,
max depth: 8, min samples split:16, n estimators:15.

D. Analysis of model results

The study used an RF algorithm to train a real-world
dataset to obtain an importance score table for the ”char-
acteristic” DEGs attribute for locating the tissue of origin of
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Fig. 5. DEGs Venn diagram

metastatic LC (Table II). The top 10 ”characteristic” DEGs
of LUAD were ACY3, AL121949.1, DDIT4L, ZNF239,
FGB, FAM53A, HMGB3, KRTAP5-1, DOK5, and RAS-
GEF1A in that order. The top 10 ”characteristic” DEGs of
LUSC were TRIM16L, AP3B2, TMEM117, SERPINB13,
RN7SL399P, SFTA3, AC009118.2, ETNK2, CERS3, and
NAP1L4P2 in that order. The top 9 ”characteristic” DEGs of
THCA were AC046143.1, CELF4, ADAMTS9, MAMLD1,
OR4D10, LRG1, AC023490.6, AC016405.2, and KLK11
in that order. The top 10 ”characteristic” DEGs of BRCA
were SMYD3, KCNK15, CIT, TNFSF4, CLIP4, CRYAB,
GNAL, CEMIP, BOC, and DMD in that order. The top 10
”characteristic” DEGs of KIRC are ANXA2R, ATG16L2,
RP11-69E11.4, AL358340.1, TNFRSF4, SAMD3, DPRXP4,
COL4A5, AC008735.1, and PRRT2 in that order. The
top 10 ”characteristic” DEGs of KIRP were RASGRF2,
ASAP2, DNM1, NR2F1, RASD1, PCDH1, TMEM204,
TBX2, THY1, and MEIS3, in that order. The above 59 ”char-
acteristic” DEGs exhibit good representation of the origin of
metastatic LC organs and are useful for the diagnosis and
treatment of the origin of metastatic cancer.

The confusion matrices of LR, KNN, SVM and RF on the
TCGA dataset are shown in Fig. 6. The models all display
excellent prediction results, and the quantitative evaluation
metrics are shown in Tables III, IV and V. Longitudinally
observing the model evaluation effect, RF all scored the
highest in the six cancer accuracy measurement results, with
an average score of 99.78%, higher than LR (average score of

99.19%), KNN (average score of 99.06%) and SVM (average
score of 99.09%). In the precision measurement results, RF
scored the highest except BRCA, with an average score of
99.37%, and increased by 2.61%, 2.8%, and 2.95% compared
with LR, KNN and SVM, respectively. In the specificity
measurement results, all RF scored the highest except BRCA,
with an average score of 99.86%, and increased by 0.33%,
0.42%, and 0.38% compared to LR, KNN, and SVM, re-
spectively. RF scored the highest in all six cancers sensitivity
and F1 score metrics, with 98.9% and 99.12%, respectively.
RF had the highest macro − F1 (99.12%). In addition, RF
had the highest micro − F1 (99.32%) and weighted−F1

(99.41%), with an increase of 1.75% and 1.74%, 2.14%, and
2.13%, 2.04%, and 2.03% compared to LR, KNN and SVM,
respectively. Overall, RF performed well in all eight metrics
evaluated, with LR, KNN, and SVM being second. The
reason is that LR, KNN, and SVM are based on regression
and cannot handle highly correlated and nonlinear data;
the ”characteristic” DEGs have biological correlation among
data variables, so the model prediction effect is somewhat
disturbed. The RF algorithm can handle highly correlated
data, and also effectively overcome the structural limitation
of single tree easy to fit; therefore, the strong classifier RF
algorithm consisting of multiple trees worked best.

Cross-sectional observation of the model assessment ef-
fect showed the highest classification accuracy for THCA
tissue origin, with 100.00% for all metrics under different
algorithms. BRCA followed, especially under LR and SVM
algorithms, with precision and specificity up to 100%, which
are higher than 99.39% and 99.71% of the prediction effect
of the RF algorithm, respectively. However, for LUSC and
KIRP, about 95% precision, sensitivity, and F1 score was
observed under all types of algorithms, even as low as
90.60%. From the confusion matrix (Fig. 6), it can be found
that there is difficulty in distinguishing between some LUAD
and LUSC due to tissue similarity (prediction error data
available off the diagonal); this is similar for KIRC and KIRP.
Since this embedding is heavily dependent on the type and
number of input samples, some misclassification is inevitable
in the absence of a larger sample cohort.

IV. DISCUSSION
In this study, four machine learning methods: LR, KNN,

SVM and RF algorithms were used to construct models
aimed at multiclassification tracing of primary tissue origins
of metastatic LC of patients in the TCGA database. A high
value of the model evaluation index strongly validates the
hypothesis. When a patient with metastatic LC is being
treated, the physician can select the retrospective model that
best assesses the effect. Patient-specific DEG field values (60
influencing factors for metastatic LC tissue identification) are
then entered sequentially in order of importance to obtain
output results to trace the patient’s tissue of cancer cell
origin.For example, when the model retrospective result is
type=3 (tissue origin is THCA), the physician can feasibly
combine thyroid cancer and LC treatment plans and be alert
to the disease status of the cancer origin site during the
follow-up period. The clinical treatment plan is based on
a combination of patient condition, follow-up, and physician
experience, and the results of this study only serve as an
auxiliary reference.
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TABLE II
”CHARACTERISTIC” DEGS ATTRIBUTE IMPORTANCE SCORE

LUAD(DEGs) score LUSC(DEGs) score THCA(DEGs) score

ACY3 1.25E-02 TRIM16L 9.05E-02 AC046143.1 9.52E-02
AL121949.1 6.18E-04 AP3B2 6.21E-02 CELF4 1.31E-02
DDIT4L 5.61E-04 TMEM117 3.02E-02 ADAMTS9 1.86E-03
ZNF239 4.66E-04 SERPINB13 2.34E-02 MAMLD1 1.44E-03
FGB 3.50E-04 RN7SL399P 2.31E-02 OR4D10 1.24E-03
FAM53A 3.33E-04 SFTA3 1.79E-02 LRG1 9.30E-04
HMGB3 2.75E-04 AC009118.2 1.60E-02 AC023490.6 3.05E-04
KRTAP5-1 2.66E-04 ETNK2 1.06E-02 AC016405.2 2.07E-04
DOK5 1.71E-04 CERS3 8.98E-03 KLK11 7.30E-05
RASGEF1A 9.94E-05 NAP1L4P2 8.45E-03 GALE 0.00E+00
BRCA(DEGs) score KIRC(DEGs) score KIRP(DEGs) score

SMYD3 2.02E-02 ANXA2R 7.20E-02 RASGRF2 2.72E-01
KCNK15 1.90E-02 ATG16L2 1.92E-02 ASAP2 8.69E-03
CIT 1.55E-02 RP11-69E11.4 1.22E-02 DNM1 4.74E-03
TNFSF4 9.39E-03 AL358340.1 4.69E-03 NR2F1 1.34E-03
CLIP4 8.89E-03 TNFRSF4 4.21E-03 RASD1 8.70E-04
CRYAB 5.57E-03 SAMD3 4.00E-03 PCDH1 4.60E-04
GNAL 1.76E-03 DPRXP4 2.87E-03 TMEM204 3.21E-04
CEMIP 7.75E-04 COL4A5 2.11E-03 TBX2 2.83E-04
BOC 7.72E-04 AC008735.1 1.11E-03 THY1 2.81E-04
DMD 7.50E-04 PRRT2 1.10E-03 MEIS3 2.24E-04

TABLE III
MACHINE LEARNING CLASSIFICATION PERFORMANCE COMPARISON

Type Accuracy (%) Precision (%)
LR KNN SVM RF LR KNN SVM RF

LUAD 99.03 98.54 98.74 99.81 95.00 93.71 94.90 99.35
LUSC 98.74 98.35 98.35 99.81 90.60 94.04 94.04 99.33
THCA 100 100 100 100 100 100 100 100
BRCA 99.61 99.22 99.61 99.81 100 99.38 100 99.39
KIRC 98.83 99.22 98.93 99.61 96.82 98.09 97.44 98.14
KIRP 98.93 99.03 98.93 99.61 92.13 94.19 92.13 100
Ave 99.19 99.06 99.09 99.78 96.76 96.57 96.42 99.37

TABLE IV
MACHINE LEARNING CLASSIFICATION PERFORMANCE COMPARISON

Type Sensitivity (%) Specificity (%) F1 Score (%)
LR KNN SVM RF LR KNN SVM RF LR KNN SVM RF

LUAD 98.70 96.75 96.75 99.35 99.08 98.86 99.08 99.89 96.81 95.21 95.82 99.35
LUSC 94.67 94.67 94.67 99.33 99.43 98.97 98.97 99.89 95.63 94.35 94.35 99.33
THCA 100 100 100 100 100 100 100 100 100 100 100 100
BRCA 98.78 98.17 98.78 100 100 99.71 100 99.71 99.39 98.77 99.39 99.69
KIRC 95.60 96.86 95.60 99.37 99.42 99.65 99.54 99.65 96.21 97.47 96.51 98.75
KIRP 95.35 94.19 95.35 95.35 99.26 99.47 99.26 100 93.71 94.19 93.71 97.62
Ave 97.18 96.77 96.86 98.90 99.53 99.44 99.48 99.86 96.96 96.67 96.63 99.12

TABLE V
MACHINE LEARNING CLASSIFICATION PERFORMANCE

COMPARISON

Evaluation LR KNN SVM RF

macro−F1 96.96% 96.67% 96.63% 99.12%
micro− F1 97.57% 97.18% 97.28% 99.32%
weighted−F1 97.67% 97.28% 97.38% 99.41%

A combination of differential expression analysis and
machine learning was used to extract ”characteristic” DEGs
and present model data relationships. The original machine
learning methods can perform feature extraction but have
limited understanding of raw information. Differential ex-
pression analysis allowed the selection of a small number of
572 ”signature” DEGs from the initial tissue of 58,938 genes
based on upregulation and downregulation information of the

genes; these DEGs had significant differential expression.
The selected ”characteristic” DEGs control biomorphological
and physiological processes and are central to the regulation
of cellular life processes [27]; this is an important observation
regarding the origin of metastatic LC tissue in this study.
The pre-experimental differential expression analysis can
distinguish the genetic differences between different primary
cancer tissues and surrounding conventional tissues; the post-
machine learning model construction can distinguish the
genetic differences between different cancers in a clear and
articulated manner. Therefore, in feature engineering, differ-
ential expression analysis is used to extract ”characteristic”
DEGs for multiclassification problems, which can provide a
reference for machine learning engineers.

This study evaluates the multicategory classification capa-
bility of machine learning methods based on eight metrics.
The RF average accuracy, precision, sensitivity, specificity,
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Fig. 6. Model Confusion Matrix

F1 score, macro − F1, micro − F1, and weighted−F1

are as high as 99.78%, 99.37%, 98.90%, 99.86%, 99.12%,
99.12%, 99.32%, and 99.41%; the prediction results are even
better than the popular deep learning or image processing
disease research methods in recent years. For example, Shin
et al. trained a deep learning model with foreign body
surface-enhanced Raman spectroscopy signals from normal
and LC cell lines; their classification accuracy was 95%
lower than the RF model (99%) in this study [28]. Nasrullah
et al. proposed a new deep learning multi-strategy model
for the accurate diagnosis of malignant nodules in the lung;
its sensitivity (94%) and specificity (91%) were assessed
lower than 98% and 99% in the present study [29]. Shaffie
et al. extracted the appearance and shape features of LC
from CT images and later used a classifier to classify the
feature data, which could accurately assist in diagnosis;
however, its accuracy (92.55%) sensitivity (91.70%) and

specificity (93.40%) were lower than 99.78%, 98.90% and
99.86% in this study [30]. Muhammad et al. developed a
multilayer feed-forward neural network to identify 10 amino
acid biomarkers in saliva that can affect gastric cancer to aid
in diagnosis and treatment [31]. The accuracy, sensitivity, and
specificity of this method were 92.27%, 94.8% and 90.2%,
which were lower than 99.78%, 98.90% and 99.86% in this
study [31].

Clinical practice mainly uses established medical instru-
ments to determine the origin of cancer tissue. Even though
machine learning is beginning to be applied to primary tissue
detection, origins are rarely traced for specific metastatic
cancers. This study is the first to propose the use of machine
learning algorithms to trace the origin of metastatic LC, and
then to detect the relationship between ”characteristic” DEGs
and the tissue of origin to assist physicians in diagnosis and
treatment, which has theoretical and medical implications.
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Currently, clinical medicine often targets various antigenic
substances (proteins, peptides, enzymes, etc.) by immuno-
histochemistry to visualize in situ cellular tissue and assist
in localizing the origin of cancer [1], [32]. This method is
highly sensitive to establish and even develop more practical
immunoenzymatic techniques, but it is still labor-intensive
and only applicable to small-scale data, making it difficult
to overcome the accuracy bottleneck [8]. Although PET
and CT have been applied in medical imaging diagnosis to
accurately distinguish benign and malignant cancer lesions;
their low accuracy of 24-40% and 20-27% of origin retro-
spectively has been a pressing problem [10]. Therefore, new
inspection technology is urgently required to replace such
labor-intensive or low-accuracy inspections. Avanzo et al.
applied machine learning models for automatic segmentation
of organs at risk for LC radiotherapy; stratifying patients
according to local and distant recurrence risk to identify can-
didates for molecularly targeted therapy and immunotherapy,
demonstrating high accuracy, convenience, generalizability,
noninvasiveness, and reproducibility [33]. Machine learning
algorithms assist in the diagnosis and treatment of LC with
precision and convenience, which can effectively assess the
urgency of patients’ conditions and provide a reference for
clinical practice.

Although the present study performed well in tracing
the tissue of origin of metastatic LC, it still has some
limitations. (1) Osteosarcoma is an important tissue of origin
of metastatic LC, but the TCGA database does not include
routine tissue samples for osteosarcoma, resulting in models
predicting y values in only six categories (LUAD, LUSC,
THCA, BRCA, KIRC, and KIRP). (2) This study was
limited to tracing the organ of origin of the cancer and
did not consider primary aggregates outside the organ. For
example, a study based on unsupervised analysis of TCGA
data from multiple genomics platforms showed that tumors
can aggregate outside the tissue of origin, between unrelated
cancer types, or as a heterogeneous group independent of
known tumor types [34]. (3) This study only used the cross-
validation internal validation method. Although the repro-
ducibility of the model development process was effectively
verified, its generalizability and portability are yet to be
verified. Dual internal and external validation needs to be
taken at the same time; external validation such as time-
period validation, spatial validation, and domain validation
is performed based on the good performance of the internal
validation of the developed model.

The study only traced the tissue of origin of metastatic
LC and did not map the overall metastatic trajectory of
the cancer. Although the primary cancer tissue is the key
diagnostic target in clinical practice, the historical and fu-
ture metastatic trajectories are also important references for
treatment and prognostic follow-up. Medeiros et al. found
that understanding the mechanisms driving cancer metastasis
is essential for identifying new biomarkers and therapeutic
targets, and that lung metastasis from breast cancer is associ-
ated with 60-70% mortality, with metastatic trajectories and
organophilia as important bases for diagnosis and treatment
[35]. Physicians need to develop individualized treatment
plans for different cancers and patient conditions. Therefore,
our next research work will use machine learning methods to
create models for mapping historical metastasis trajectories

and future metastasis directions in patients with metastatic
LC, and to fully consider signs of metastasis beyond organs.
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