
 

  
Abstract— Stocks are one of the investment instruments in 

the form of securities that promise high returns. A very close 
relationship affects return and risk, the greater the profit, the 
greater the risk of loss. The volatility value can be used to 
estimate the level of risk of loss and even profit from decision 
making. The Black-Scholes model (BSM) has the form of a 
partial differential equation which defines the theoretical value 
of financial options based on certain parameters. This model 
can take into account implied volatility which tends to vary 
according to strike price and expiration time. This implied 
volatility is then solved using numerical methods, such as the 
Newton-Raphson Method (NRM) and Secant Method (SM). 
Based on the results of previous study, the convergence of NRM 
is always faster than that of SM. Therefore, this study aims to 
accelerate the convergence of the Secant Method using the 
Aitken Extrapolation (SMAE), which is then compared to the 
other two methods in estimating stock implied volatility. The 
results show that SMAE outperforms the other two methods in 
terms of accuracy and rate of convergence.     
 

Index Terms— Aitken extrapolation, Newton-Raphson 
method, root finding, secant, stock, volatility.  
 

I. INTRODUCTION 
NVESTMENT is the action of saving some funds that are 
expected to provide more profits in the future. Investment 

orders in the form of securities can generally be made 
available through the capital market and money market [1]. 
Stock investment through the capital market is considered as 
attractive. Having stocks from public companies is preferred 
by most investors rather than that from non-public 
companies because this promises high returns [2]. In general, 
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risks and benefits have a very tight relationship, the greater 
the profit, the greater the risk of loss [3] [4]. Furthermore, 
risk can be thought as the chance of acquiring an unwanted 
outcome that occurs [5]. Financial institutions may need to 
manage the risk of reducing the cost of external capital. This 
is necessary to reduce the costs of financial distress and 
income volatility to avoid high tax obligations [6].  

Volatility is a statistical measure of the fluctuation in the 
price of a stock or foreign exchange over a certain period. 
The volatility value can be used to estimate the level of risk 
of loss and even profit from decision-making [7]. The most 
popular and widely used model to determine volatility is the 
BSM [8]. BSM is defined as a partial differential equation to 
calculate the theoretical value of financial options based on 
certain parameters, namely stock price flow, expected 
volatility, expiration time, strike price, and expected 
dividends [9]. BSM is often criticized for assuming that the 
log-return of the underlying asset prices is normally 
distributed [10]. This model can take into account implied 
volatility which tends to vary concerning the strike price and 
expiration time [11]. As the basic principle behind BSM, it 
assumes that the volatility of assets is constant [12]. 
However, this assumption is not fully suitable for real market 
data [13]. This implied volatility model is then solved by 
using numerical methods, such as NRM and SM. 

Nwry et al. [14] compared the use of the bisection, secant, 
and Newton methods in obtaining solutions to non-linear 
equations. They explained that the Newton and secant 
methods converge faster than the bisection method, with 
only a few iterations to converge and a very small error 
tolerance. In addition, Mahrudinda et al. [7] compared the 
use of the three methods to estimate implied volatility. They 
came to the same result as that in [14] in the case of 
estimating implied volatility. On the other hand, Sharma [15] 
compared the rate of convergence of linear and quadratic 
convergent approaches. The study explained that the latter 
has a rate of convergence higher than the former. However, 
the latter is computationally more expensive than the former. 
In general, the convergence rates of the bisection, secant, 
and Newton methods are linear, super linear, and quadratic 
respectively. 

Given the previous results, we aim to accelerate the 
convergence of the secant method by using the Aitken 
extrapolation (SMAE) [16], [17]. The rate of SMAE’s 
convergence is then compared to that of the original secant 
and Newton-Raphson method in the case of predicting 
implied volatility. 
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II. MATERIAL AND METHODS 
The data used is Microsoft Corporation (MSFT) stock 

data in the form of the current stock price ( )0S , strike price 

( )K , call option observation price ( )obsC  with a maturity 

time ( )T of 3 months or 0.25 year, and interest rates ( )r  
obtained from https://www.investing.com/  on 16 November 
2021. Programming done in research was done in Python. 
 

A. Black Scholes Model  
The BSM structure is used to model the option price 

related to the current time, the stock price, the stock's 
volatility, the interest rate, the expiration date, and the strike 
price. Generally, the model assumes that volatility is a 
constant function throughout the option's life. The option 
pricing formula can be used to display volatility stated by 
market price [12]. BSM can be defined as follows, 

 
( )obs BSC C s=                 

 
where obsC  represents the call option observation price 

obtained from the actual market price and ( )BSC σ  
represents the theoretical option price from BSM which is 
defined by, 

 

( ) ( ) ( ) ( )0 1 2
r T

BSC S N d Ke N dσ −= −        
 

with  
( )20

1

1ln
2

S r T
Kd

T t

σ

σ

 + + 
 =

−
         

    
and  2 1d d Tσ= −               
 
where 0S  is the current stock price, K is the strike price, r is 

the interest rate, σ is the volatility, and ( )iN d is the 
standard cumulative normal distribution function. Thus, the 
volatility function related to BSM can be written as follows, 
 

( ) ( ) ( ) ( )( )0 1 2 0r T
obsf C S N d Ke N ds −= − − =    (1) 

 
The root of (1) is then estimated by using the NRM, SM, and 
SMAE methods. 
  

B. Newton-Raphson Method 
NRM is one of the most well-known methods to find the 

root of a function. To obtain the root α of ( )y f σ= we 

generally provide an estimate of ,α  e. g. stated by 0σ . An 
improvement on this estimate is then performed by replacing 
the root-finding of ( )y f σ=  with that of the straight line 

tangent to the graph ( )y f σ=  at ( )( )0 0, fσσ  . It is simply 

a graph for a linear Taylor polynomial ( )1y p σ=  defined as, 

 ( ) ( ) ( )( )1 0 0 0p f fσσσσσ    = + −′            
 
Suppose that 1σ  is the root of ( )1 0p σ = , then we have 
 

( ) ( )( )0 0 0 0.f fσσσσ   ′+ − =            
 
This leads to 
 

( )
( )

0
1 0

0
.

f
f

σ
σσ

σ
−

′
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We hope 1σ  to be a better estimate than 0σ , an 

approximate of ,α  the same way can be performed with 

1σ as an initial prediction. By repeating this method, we will 
get a numerical sequence 1 2 3, , , σσσ   …They are expected to 
approach the root ,α  and the general iteration formula 
defines them recursively as follows, 

 
( )
( )1 ,    0,1 , 2,  n

n n
n

f
n

f
σ

σσ
σ+ −

′
= = …       (2) 

 
This is called NRM which will converge if ( ) 0f α′ ≠ , that 
has a simple root. It is not only used for linear equations but 
also for non-linear equations [14]. Using the following 
Taylor expansion of ( )f α  around nσ  gives, 
 

( ) ( ) ( ) ( ) ( ) ( )21
2n n n n nf f f f cα σ α σσ  α σ− ′ ′+ ′= + −  (3) 

 
where nc  is unknown located between α  and nσ . By 
having ( ) 0f α =  and then dividing (3) by ( )nf σ′ , we 
obtain 
 

( )
( ) ( ) ( ) ( )
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20

2
n n

n n
n n
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′

′
−

′

′
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With (2), we have the first term of (4) to be equal to 

1n nσσ  +− , and we then solve for 1nα σ +−  giving 
  

( ) ( )
( )

2
1 .

2
n

n n
n

f c
f

α σ α σ
σ+

 ′ −
− = − 

 ′



′
           (5) 

 
This shows that the iterate 1nσ +  has an error that is almost 
proportional to the square of the error of the previous iterate 

nσ . As long as the initial error is small enough, formula (5) 
shows that the error in the next iteration will decrease very 
rapidly. The convergence of NRM will be discussed in the 
following section. 
 

C. Convergence of Newton-Raphson Method 
NRM can be restated, in terms of fixed point iteration, as 

follows, 
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We then have  
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and if ( ) 0f α′ ≠ , then ( ) ( )( )0 0g fα α= =′ . We obtain   
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f
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σ
σ

′′
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′
               

We can also show that ( ) 0g α′′ ≠  if furthermore, 

( ) 0f α′′ ≠ . Thus convergence of NRM is of order 2 

provided ( ) 0f α′ ≠  and ( ) 0f α′′ ≠ . This is shown by 

taking a Taylor expansion of ( )ng σ  about ,α  and by 

assuming that ( ) g σ  is twice continuously differentiable,  
 

( ) ( ) ( ) ( ) ( ) ( )21
2n n n ng g g g cσ α σ α α σ α′ ′+ − ′= − +   

 
with  nc  between nσ  and .α   

Applying ( ) ( )1 ,  n ng gσσ  α α+ = =  and the previous 

result ( ) 0g α′ = , we have 
 

( ) ( )2
1

1
2n n ng cσ α σ α+ ′′= + −          

 

Taking the error form and the limit as n → ∞  gives, 
  

( ) ( )2
1

1
2n n ng cα σσ  α+ ′− ′− = −          
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−
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If ( ) 0g α′′ ≠ , then (6) implies that the convergence of 

( )1n ngσσ + =  (2) is of order 2. This means that NRM 
converges quadratically which follows the explanation of (5). 
 

D. Secant Method 
 SM is one of the methods that approximate the root of 

( )y f σ=  by taking that of a linear approximation to 

( )y f σ= . This hence includes SM to methods for obtaining 

a root of ( )f σ . The SM requires 2 initial estimates to the 

root to start the iteration, denoted here by 0σ  and 1σ . The 
linear approximation is then given by, 
 

( ) ( ) ( ) ( ) ( )1 0
1 1
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f f
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Solving for ( )2 0p σ =  gives 
 

( ) ( ) ( )
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2 1 1
1 0

f
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σσ
−

= −
−

        

 

By obtaining 2σ  we can omit 0σ  and have a new pair of 
estimates 1σ and 2σ  to the root α . Repeating the iteration 
with the new initial estimates results in an improved value 

3σ , and we can state the iteration as follows, 
 

( ) ( ) ( )
1

1
1

,    1n n
n n n

n n
f n

f f
σσ

σσσ 
σσ

−
+

−

−
= − ≥

−
      (7) 

 

This is the secant method (SM) which requires two initial 
values to start the iteration. The order of convergence is  

 

1 5 1.618
2

r +
= ≈                    (8) 

 

which is super linear [14]. Its derivation will be given in the 
next section. 
 

E. Convergence of Secant Method 
Restating the secant method (7) for solving ( ) 0f σ =  

gives, 
 

( ) ( ) ( )
1

1
1

,    1, 2,n n
n n n

n n
f n

f f
σσ

σσσ 
σσ

−
+

−

−
= − = …

−
 

 

Assume the iterations converge and obtain a solution ,α  
that is ( ) 0f α = , as n → ∞ . Based on the rule as follows, 

              

1
l

n nKσ α σ α+ − ≈ −            
 

we consider the convergence of the secant method. Let  
 

n nσ α β= +                       (9)  
 

Since nσ α→  then 0nβ → , as n → ∞ . The iterations (7) 
hence become 

 

( )( )
( ) ( )

1
1

1
)n n n

n n
n n

f
f f

α β β β
β β

α β α β
−

+
−

+ −
= −

+ − +
    (10) 

 
Suppose that ( )f σ  has two derivatives with ( ) 0f α′ ≠  

and ( ) 0f α′′ ≠ . The Taylor expansion of  ( )f σ  around α  
can be written as follows, 

 

( ) ( ) ( ) ( ) ( )2
2 .

2
f

f f f S
α

α β α α β β β+ =
′

+
′

′+ +     

 
We have ( ) 0f α = , β  being small, and ( )2S β  being the 

remainder term. Neglecting the terms of order higher than 2 
in β  gives the estimate, 

 

( ) ( ) ( ) 2.
2

f
f f

α
α β α β β
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For simplicity, denote  
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and apply the estimate equalities 
 

( ) ( )( )1n n nf f Nα β β α β′+ ≈ +  
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Equation (10) becomes 
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1n n Nβ β −≈  
 

Using (11) this gives an error relation 
 

( )
( )1 12n n n

f
f

α
β β β

α+ −

′
≈

′

′
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where the terms of order higher than 2 in β  are omitted. 
Compare (12) with (5), the error for Newton, that is 
rewritten as follows, 
 

( )
( )

2
1 2n n

f
f

α
β β

α+

′′

′
≈  

Equation (12) shows that the error tends to zero faster 
than a linear function as n → ∞ , and yet not quadratically. 
Finding out the exponent l in the rule  

 

1
l

n nKβ β+ ≈  
 

defined by (12), leads us to  
 

1
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Hence, 

1
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 and 1

1
l

l
=

−
. Since 0l >  the 

condition on l results in 1 5 1.618
2

l +
= =  the convergence 

order of SM (8) 
Whereas the condition on K implies that 
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This comes to a conclusion that for the secant method 
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5 1
5 12
21 2n n

f
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′′

′
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Even though the order of convergence for the secant 

method (8) is commonly lower than the Newton method, 
however, the former has the advantage of not computing 

( )f σ′ . This is a definite computational advantage. 
 

F. Aitken Extrapolation 
The Aitken Extrapolation is a method used to speed up 

the convergence of iteration methods. The explicit 
assumption in deriving the Aitken Extrapolation and 
assigning acceleration is that successive iterations of the 
error or its approximation have the same sign or have 
alternating sign patterns [18].  

We assume that ( )g σ  is continuous on an interval [ ], a b  
and satisfies 
 

( )       a b a g bσσ ≤ ≤ ⇒ ≤ ≤        (14) 
 
This assumption guaranties the existence of at least one 
solution α  for the iteration ( )gσσ =  in the interval [ ], a b . 

Then, assume that ( )g σ′  is continuous for a bσ≤ ≤ , and g 
follows (14). Furthermore, assume that 
 

( )max 1
a b

g
σ

m σ
≤ ≤

′≡ <             

 
then taking any initial value 0σ  in [ ], a b , results in the 
sequences nσ  that will converge to α  and satisfy [19]. 
 

( )1lim 'n
n n

g
α σ

α
α σ

+

→∞

−
=

−
             

 
Thus, for nσ  close to α , 
 

( )( )1 – 'n ngα σ α α σ+ ≈ −             
 

Let ( )g α′  be denoted by λ , and write the equation with 
n replaced by 1n −  then solve for α  so that 
 

( )1 – n nα σ λ α σ −≈ −             

( )1 
1n n n

λα σσσ 
λ −≈ + −

−
         (15) 

 
To estimate λ  we use the ratios 
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Furthermore, combining (15) and (16) gives, 
 

( )1 
1

n
n n n

n

λ
α σσσ 

λ −≈ + −
−

       (17) 

This is called the Aitken Extrapolation Formula which can be 
used to create a more rapidly convergent sequence. 
Modifying (17) leads to the error in nσ . 
 

( )11
n

n n n
n

λ
α σσσ 

λ −− ≈ −
−

       (18) 

Equation (18) gives a very good error estimate in nσ . The 
convergence will be discussed in the following section. 
 

G. Convergence of Aitken Extrapolation 
Restating (17) and taking 1nσ α+ ≈  gives, 
 

( )1 1 
1

n
n n n n

n

λ
σσσσ  

λ+ −≈ + −
−

       (19) 

 
Using (9) leads (19) to, 

 

( )1 11
n
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n

λ
β β β β
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−

        (20) 

Using (16), leads (20) to the error in 1nσ +  
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+
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−
=
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This equation was also used to transform sequences that 

converge slowly and diverge [20]. It is not clearly shown that 
the iterates nσ  converge quadratically or even more (see 
(21)). Therefore instead of using (21), we will approximate 
the convergence of the Aitken Extrapolation empirically 
using the following equation,  
 

2 1

1

log
log

i i
i

i i
r

σσ
σσ

+ +

+

−
≈

−
            (22) 

 
This will also be applied to the other methods discussed in 
the following section.  
 

III. RESULT AND DISCUSSION 
We form the volatility function using BSM on the data 

obtained which is shown as follows, 
  

( ) ( ) ( ) ( )0.023 0.25
1 224.59 339.51  325.00f N d e N dσ −= − −  

                          (23) 

with   
( )2

1

339.51 1ln 0.023 0.25
325.00 2

0.25
d

σ

σ

 + + 
 =    (24) 

 
and   2 1 0.25d d σ= −            (25) 
 

Using (23), (24), and (25), gives the volatility value which 
is the root of ( ) 0f σ = . The plot of the function is shown in 
Fig. 1. 
 

 
Fig. 1.  The plot of the implied volatility function. 

 
The root α  is the intersection of the curve with the sigma 

axis which is located in the interval 0 0.5σ< < (see Fig. 1). 
The volatility value is then estimated using the Newton-
Raphson Method (NRM), Secant Method (SM), and Secant 
Method accelerated by the Aitken Extrapolation (SMAE). 
The iteration results using NRM and SM are shown in Tables 
I and II respectively. The initial value for NRM is 0 0.5σ = , 

whereas those for SM are 12
0 10σ −=  and 1 0.5σ =  with the 

same error tolerance 12Tol 10−= , as well as the same 
number of digit accuracy (double precision). 

 

 
It can be seen in Table I, with 12 Tol 10−=  NRM gives an 

estimated volatility value of 0.2271852409720807 with the 
function value of -1.06581410364015e-14 reached in 5 
iterations. Performing (22) to the last column of Table I 
gives some empirical prediction of the convergence order of 
NRM with the successive values of 1 3.97r ≈ ,  2 2.18r ≈ , 
and 3 2.07r ≈ . The last value confirms the convergence rate 
of NRM that equals 2. The greater values may reflect the 
value of N (11) being involved. Furthermore, the way NRM 
iterates converge is shown graphically in Fig. 2. 
 

TABLE I 
RESULT OF NRM ITERATION 

    
0 0.5 -17.1941572976078 - 
1 0.23253759195479934 -0.321853505543185 0.2674 
2 0.22719641341702468 -0.00067039971379401 0.0053 
3 0.22718524102320506 -3.0677078655116e-09 1.11e-05 
4 0.2271852409720804 1.77635683940025e-14 5.11e-11 
5 0.2271852409720807 -1.06581410364015e-14 3.05e-16 
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Fig. 2.  The plot of NRM iteration. 

 
It can be seen in Fig. 2 that iterates quickly converge to 

the estimated volatility value. The first iteration almost 
reaches the estimated value, however since it has not met the 
given error tolerance, it continues until the fifth iteration.  

 

 
In addition, Table II represents those results produced by 

SM, with the volatility value of 0.2271852409720808 and 
the function value of -1.77635683940025e-14 attained with 
7 iterations. Performing (22) to the last column of Table II 
gives a few successive values of 1 1.92r ≈ , 2 1.61r ≈ , 

3 1.73r ≈  4 1.64r ≈  and 5 1.48r ≈ , which are some empirical 
prediction of convergence order of SM. These values reflect 
that SM converges more than linear. The various values 
around 1.618 (8) confirm that the convergence of SM is 
super linear. The greater or smaller values may ascribe the 
multiplicity value of (13) being involved.  

These results also imply that SM converges slower than 
NRM. With the error tolerance of 1210−  SM needs 7 
iterates, whereas NRM requires 5 iterates. However, both 
methods provide almost the same values of the function at 
the estimated volatility value. Furthermore, the way SM 
iterates converge is shown graphically in Fig. 3. 

 

 
Fig. 3.  The plot of SM iteration. 

 
Fig. 3 shows that iterates fluctuate at the start and then 

seem to converge monotonically to the estimated volatility 
value. This reflects that sign changes of errors occur at the 
beginning which might be due to the initial values trapping 
the root. However, further iterates seem to have the same 
signs of errors or to have very tiny differences of errors with 
alternating signs, hence they visually seem to converge 
monotonically. The iterate data in Table II can provide this 
information. 

NRM outperforms SM theoretically and empirically, we 
hence intend to accelerate the convergence of SM. We then 
apply the Aitken Extrapolation to SM method to improve its 
performance. The so called SMAE requires 3 initial values to 
start the iteration which include 0  0.5σ = , 

1  σ = 0.161675787074624, 2σ = 0.22272580608014933, as 

well as the same error tolerance of 1210− . The SMAE 
iteration results are given in Table III, 

 

 
Table III shows those results produced by SMAE with the 

volatility value of 0.22718524097208054 and the function 
value of -3.55271367880050e-15 attained with 4 iterations. 
Applying (22) to the last column of Table III gives a few 
successive values of 1 3.43r ≈ ,  2 2.55r ≈  and 3 2.53r ≈ , 
some empirical prediction of convergence order of SMAE. 
These values confirm that SMAE has higher convergence 
order than 2, and the value taken near the root confirms its 
convergence order. Therefore, with the same error tolerance 
SMAE only requires 4 iterations to converge. The way 
SMAE iterates converge can then be seen in Fig. 4. 

 

 
Fig. 4.  The plot of SMAE iteration. 

 
It can be seen in Fig. 4 that SMAE convergence pattern is 

almost similar to that of SM, where the second iterate 
decreases away from the initial value and then moves up to 
converge to the estimated value. Another result is the 
number of iterations required for convergence by SM 
reduced by SMAE by almost 50%, that is, from 7 iterations 
to 4 iterations. Finally, the convergence of SMAE is more 
than quadratic, an improvement over SM which is super 
linear. This is also an improvement over NRM which is 

TABLE III 
RESULT OF SMAE ITERATION 

    
0 0.5 -17.1941572976078 - 
1 0.21339344429367368 0.82260548020850 0.2866 
2 0.22720351671147748 -0.00109663427894091 0.0138 
3 0.22718524097113688 5.66267033264011e-11 1.83e-05 
4 0.22718524097208054 -3.55271367880050e-15 9.44e-13 

 

TABLE II 
RESULT OF SM ITERATION 

    
0 0.5 -17.1941572976078 0.9999 
1 0.161675787074624 3.7857963446334 0.3383 
2 0.22272580608014933 0.26708785395261 0.0611 
3 0.22735981273433428 -0.0104758346961908 0.0046 
4 0.2271849156217955 1.95224690564543e-05 0.0002 
5 0.22718524094883427 1.39488420813904e-09 3.25e-07 
6 0.22718524097208062 1.06581410364015e-14 2.32e-11 
7 0.2271852409720808 -1.77635683940025e-14 1.67e-16 
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quadratic. Having the empirical convergence rates for each 
iteration of each method calculated, we can plot them as 
shown in Fig. 5. 

 
Fig. 5.  The plot of rate of convergence estimates. 

 
We can see that each method has a different range of 

convergence rates. However, theoretically this is considered 
as that near the root, as n → ∞  or nσ α→  (6). Therefore, 
according to the result displayed in Fig. 5, the convergence 
rate of NRM is 2.07, which is almost equal to the theoretical 
result being quadratic. Those of SM are 1.48 and 1.64 
however the latter is almost equal to the theoretical result 
(8). Finally, that of SMAE is 2.53 which confirms its rate of 
convergence be more than quadratic.   

We then perform a comparison of the simulation results 
in estimating implied volatility by using NRM, SM, and 
SMAE. This is concisely presented in Table IV. 

 

 
The superiority of SMAE can be explained by the 

correction factor made to the SM’s estimates that is by 
adding its error term to the estimates (17). This is one of the 
characteristics of extrapolation methods. This hence results 
in a better estimate produced by SMAE than SM or even 
NRM. This infers that SMAE is the best among the three 
methods, in terms of order of convergence and accuracy. 

 

IV. CONCLUSION 
The simulation results in estimating the value of implied 

volatility using the Newton-Raphson method, secant and 
accelerated secant using the Aitken extrapolation yield the 
conclusion that the secant method can produce implied 
volatility at a slower convergence rate than the Newton-
Raphson method. However, the secant method accelerated 
with the Aitken Extrapolation outperforms the Newton-
Raphson method in terms of accuracy and convergence rate. 
Therefore, the secant method accelerated using the Aitken 
extrapolation can be a recommendation in determining a root 
of equations, especially in determining implied volatility in 
the black-schooles model. 
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TABLE IV 
COMPARISON OF THE THREE METHODS 

Method Total 
Iteration     

NRM 5 0.2271852409720807 -1.06581410e-14 
SM 7 0.2271852409720808 -1.77635684e-14 

SMAE 4 0.22718524097208054 -3.55271368e-15 
 

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_03

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 


	I. INTRODUCTION
	II. Material and Methods
	A. Black Scholes Model
	B. Newton-Raphson Method
	C. Convergence of Newton-Raphson Method
	D. Secant Method
	E. Convergence of Secant Method
	F. Aitken Extrapolation
	G. Convergence of Aitken Extrapolation

	III. RESULT AND DISCUSSION
	IV. CONCLUSION
	References



