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A Novel Two-stream Architecture Fusing Static
And Dynamic Features for Human Action
Recognition

Fan Yue,Shijian Huang*,Qingming Chen, Siyan Hu,Yong Tan,Suihu Dang, and Derong Du

Abstract—Action recognition in real-world videos is difficult
because of factors such as scenery muddle, scale alter, dynamic
standpoint, and sharp motion.This paper proposes a novel
two-stream architecture fusing static and dynamic features
to recognize human actions in videos. Firstly, the original
image (single frame and optical flow fields) is extracted by
Convolutional Neural Network (CNN) to obtain feature maps.
Secondly, we extract the obtained feature maps via a 3x3
convolution over all the neighbor features, leading to a static
representations of features. Then we concatenate these static
features with input feature maps to produce the dynamic
attention matrix through two 1x1 convolutions. All of the
generated feature maps are then aggregated using the learnt
attention matrix, producing a dynamic representation. Thirdly,
we take the interaction of the static and dynamic presentations
as final outputs. Finally, we utilize Long Short-Term Memory
(LSTM) to catch time sequence information among dense
optical flow.The experimental results on the three hard datasets
UCF101, HMDBS51, and Kinetics400 have shown that the
method works better than other state-of-the-art methods.

Index Terms—Human action recognition, Two-stream struc-
ture, Static features, Dynamic features, Feature fusion

I. INTRODUCTION

HE field of visual computing[1] has recently put in-

creasing emphasis on action recognition, which is a task
to infer human actions based on consecutive action execu-
tions. Recognizing and distinguishing actions in a video se-
quence from a surveillance stream is a particularly interesting
and challenging field of study in the present day.Monitoring
the behavior of old people, surveillance systems, human and
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computer interaction, video retrieval, public opinion polling,
and many more applications are just some of the many ways
that action recognition has been put to use.

In recent years, many researchers have developed similar
methods for high-level discriminative features learning and
making end-to-end systems in video-based action recog-
nition.The effectiveness of adopting Convolutional Neural
Networks (ConvNets) on somehow images inspired these re-
searchers. current approaches can be separated into Recurrent
Neural Networks (RNN)[2], 3D Convolutional Networks[3],
and two-stream Convolutional Networks[4] according to the
dimension of the convolution unit that is utilized in the
network.LSTM[S5]is a special RNN that, because of its mem-
ory cells and door control structure, is able to successfully
extract information about time sequences information, but
it is not sufficient for abstracting pixel-level information.3D
Convolution Networks[6] incorporate a temporal dimension.
In current data-driven action recognition designs, 3D con-
volution has been frequently employed. Through 3D con-
volution, the video’s extracted features contain information
about both time and space that can be used to generate
results for action recognition. 3D Convolutional Networks
have a low recognition efficiency,because the accuracy of
3D convolution depends on a large number of network
parameters. This obviously impedes the achievement of real-
time action recognition.Recent work has established a two-
stream architecture to address this issue by utilizing both
RGB and optical flow pictures as input data. This model is
useful in capturing spatial and motion information. spatial
and temporal information plays a crucial role in video
recognizing different human actions.

Inspiring by the aforementioned research, we present a
novel two-stream architecture for action recognition by fus-
ing static and dynamic information and utilizing ResNet101
as the fundamental framework. The CoT block[7] replaces
the 3x3 convolution in ResNet101 architecture called Cot-
Netl01. By constructing appropriate representations, the
proposed static and dynamic interaction two-stream network
is able to overcome the difficulties given by complicated
actions.

This paper has two primary contributions. The first is
the proposal of novel two-stream architecture. We extract
appearance and motion features by CotNetl01 architecture
on each stream of the two-stream network, and LSTM is used
to model time sequence information once motion features
have been extracted. The second is that we proposed a data
variation augmentation strategy. We randomly rotate and
erase the contents of each frame and flip it horizontally.
This increases the input variations strengthens the connection
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between RGB and optical flow and overcomes the problem to
a certain extent. We obtain a competitive performance on the
UCF101, HMDB51 and Kinetics400 dataset compared with
the other state-of-the-art works. Fusing static and dynamic
representations can improve the expression of features, and
combing the LSTM can enhance the ability of optical flow
field representation verified by experiment.

II. RELATED WORK

Self-attention on Classification Task. The research com-
munity focuses more on self-attention in visual scenarios,
inspired from self-attention in Transformer, which achieves
great performance in many NLP tasks. The initial self-
attention mechanism in the NLP area[8] intends to get long-
range dependency in sequence modeling.It developed for
NLP can be easily applied for use in the vision field[9],
where it can be used to guide attention across multiple feature
vectors located in various parts of an image.Specifically,
one of the earliest initiatives to investigate self-attention
in Convolutional Networks (ConvNets) is the nonlocal op-
eration,which is a supplementary building component for
employing self-attention on convolutional outputs. integrates
a global multi-head self-attention method[10] with convo-
lutional operators to optimize picture classification perfor-
mance. Without using global self-attention across the whole
feature map, that really doesn’t scale well, should be using
local self-attention within a patch. Such a design of local
self-attention significantly restricts the number of parameters
and computations utilized by the network, and can therefore
completely replace convolutions throughout the entire deep
architecture.

Deep Learning with Action Recognition. Rapid advances
in deep learning have resulted in numerous works in action
recognition being investigated in order to gain deep features
and devise efficient architectures for video action recognition.
We briefly divide the ways to recognize actions into three
groups: RNN, 3D Convolutional Networks, and two-stream
Convolutional Networks.A recurrent network composed of
LSTM cells was used by Donahut et al.[11] to process the
returned spatial features at each time step. Unlike convention-
al models, which have limited spatial and temporal regions
and can handle a count of temporal inputs.The research from
Karpathy et al.[12] modified the first convolutional way to
obtain the spatiotemporal features by stacking successive
video frames,and they tested with both early and slow fusion
methods.Going this approach further,C3D[13] uses GPU
memory inefficiently to switch out all 2D convolutional ker-
nels for 3D kernels.When training 3D convolutional kernels,
the high complexity can be avoided by parameterizing the
3D kernels into 2D spatial and 1D temporal kernels,as Sun
et al.[14] conducted.Furthermore,another subfield of action
recognition research involves the extraction of temporal
information from conventional optical flow images.In the
field of action recognition, the two-stream ConvNet is now
the most prevalent and successful.

Unfortunately, these existing models lack high capacity
for modeling, which is not believed to be the interaction
between neighboring features. This paper presents a novel
two-stream architecture for human action recognition fuses
static and dynamic features.

III. PROPOSED WORK
A. the proposed two-stream architecture

The overview of the proposed static and dynamic feature
interaction two-stream network is shown in Fig.1. The two-
stream ConvNet is constructed using two independent spatio-
temporal stream ConvNets. The spatial stream network ac-
cepts RGB images as input, whereas the temporal-stream
network accepts optical flow images that have been stacked.
Residual Networks (ResNets) have proven their ability to
capture still image features.ResNet uses identity shortcut
connections, allowing information to flow between layers
without decay, and allows deep networks to build structures
of up to lots of layers, which is what is needed to design
deeper two-stream Convolutional Networks.A building block
in ResNets is defined as:

y=F(x,{wi}) +x 6]

Here, Layer inputs and outputs are denoted by x and Yy,
w; presents the weights of iy layer. The residual mapping
to be learned is shown by the function F(x,{W;}). In the left
of Fig.2 that has two layers.F+x is computed by performing
a shortcut connection followed by an elementwise addition,
one on each channel of two feature maps.We replace the
3x3 convolution with CoT block in ResNet-101. CoT block
replaces the 3x3 convolution with on the right of Fig.2.

X \ X \
1x1,64 1x1,64
F(x)| relu F(x)| relu

denti .
33,64 heed] | CoTblock [deriv)
F(x) relu F(x)| relu
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F(x)+X F(x)—&-Xl

S

Fig. 2. The residual structure of CoT block.

The CoT block is shown in Fig.3. A 2D feature map X €
ROMPW a5 input. Keys(K) are defined as X, Queries(Q) as X,
and Values(V) as V = X« W,. The representation of each key
in CoT block is originally placed in context using kxk group
convolution over all adjacent keys in a kxk grid to get the
key K I e RCXW Tq be sure, K! reveals the static relevant
information around regional neighbor keys, and it is the static
context representation of input X.The attention map is then
obtained by following linear 1x1 convolutions, with each
convolution being conditioned on the union of contextualized
keys kxk and queries Q(Wy with ReL.U activation function
and WyW; without activation function).

W = [K', Q1W,W; 2)

Furthermore, the local matrix at each spatial site of W is
learned using the query and the learned key feature rather
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Fig. 1. The overall framework of the proposed action recognition model.

than the separate query-key pairs.Using this method, the
efficacy of such miners static context K' is added to the
enhancement of self-attention learning. Then, the dynamic
feature contacts between inputs are obtained by a calculation
of the attended feature map K2. As its ultimate output, the
CoT block combines the static context K! with the dynamic
context K.
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Fig. 3. The structure of CoT block.

B. The Spatial And Temporal Model

Action recognition in video requires associating the visual
attributes of objects and motion components for certain
action. The proposed architecture for a deep neural network
employs the two information stream flows depicted in Fig.
1. The spatial stream accepts an RGB signal image as
input, while the temporal stream accepts volumes of optical
flow field stacking as input. The temporal stream input is
a series of optical flow frames {C1,C2...Ct}.The frame’s
temporal order is indicated by where Ct is inserted. The
current frame Ct records just the immediate action context,
which is insufficient for recognition due to the absence
of the temporal component associated with accomplished
actions. The performance of a two-stream neural network
is contingent on the capacity and resilience of the properties
gathered by each information stream.

Spatial stream contains the appearances information ex-
isted in the current RGB frame. We use CoTNet-101 network
for high-dimensional appearance feature extraction from of
each video frame. The present spatial stream is the result of
the dense layer FC-1 processing the RGB frame’s features.

Temporal stream contains the spatiotemporal synthesis
of the input optical flow frames getting the motion and

time sequence patterns. We use use CoTNet-101 network
to learn the motion flows information from the input optical
flow frames sequence as deep features.we utilize LSTM to
catch the time sequence information among dense optical
flows. LSTM is designed as a resolution to the challenges of
typical RNN’s long-term dependency.For this reason, LSTM
has seen widespread application in capturing the long-term
development of actions in video clips. which is illustrated in
Fig.4.The fundamental equations are shown below:

Z = tanh(W,. = [h,_1, x;] + b) 4)
Z = o(W;  [h_y, 5] + by) 6)
Z° = o(W, = [h_1, x:] + b,) (6)
C'=7'«xC""+Z7Z %7 (7)
h' = Z° * tanh(c") (8)

where, x,is the current cell input. /,_; is the last cell
input. Z is update cell. Z' is the input gate. Z/ is the
forget gate. Z° is the output gate. C' is its memory cell.
K is the final state. o represents the sigmoid function.
X = {x1, x2...x;} is the output of CoTNet-101 on the temporal
stream , which is the input of LSTM consisting of t time
steps of features. [hl([hO h1 ,hﬁ,...hi])] denotes the hidden
state of the top LSTM layer, and the input feature x, at
the #,, time step. hﬁ represents the I, layer of LSTM at 1y,
time step.After processing the current optical flow frames, the
temporal stream’s output is the hidden state of the top LSTM
layer. This is the final output of the temporal stream.The
spatial stream and temporal stream are combined by linear
concatenation. The fusion of both streams is carried out in a
high-dimensional feature space in order to provide a single
representation for the input sequence.Softmax activation is
utilized in feature fusion to predict the action category
for a given input frame sequence.lt’s significant that the
video stream’s spatiotemporal structure is translated into one-
dimensional feature streams.

C. Data Variation Augmentation strategy

Video, unlike an image, is three-dimensional data with
varying lengths of time.n the initial two-stream net-
work,Videos were broken up into frames based on a time
interval, and the optical flow fields between those frames
were used to model the motion information. But because of

Volume 50, Issue 2: June 2023



TAENG International Journal of Computer Science, 50:2, [JCS 50 2 07

ct

)
-
i

ht! xt

tanh

ht—l

Fig. 4. The structure of LSTM.

data duplication across successive frames, action recognition
would lack the ability to discriminate between similar ac-
tions.To boost data diversity, we not only crop the prominent
portions of the image during training in the proposed work,
but we also offer a strategy of data variation augmentation.
With a fixed frame size of 256x256, all frames are randomly
rotated and erased the contents of the frame,which was meant
to make use of representations of diversity.After resizing the
cropped areas to 224x224 and flipping them horizontally.
Figure.5 is an illustration of several RGB and optical flow
frame samples, along with an example of data augmentation
that goes along with it.This manner of augmentation strategy
significantly enhances the variability of inputs, which also
helps to eliminate the problem of overfitting.

RGB

Optical-flow x  Optical-flow y
Fig. 5. Examples of data augmentation.In here, a represents
the original RGB images and corresponding optical flow
frames in x and y directions , b represents corresponding
data augmentation.

D. Implementation considerations

In order to implement the proposed work some critical
details must be considered, and we will discuss them below.

Network Input: In the proposed two-stream structure,
a single RGB image serves as the input for the spatial
network. TVL1 optical flow is used for transitions between
frames. dense optical flow frames (10 in our experiment) are
used to record motion information for the temporal network.
Figure.5 shows some frame samples and the accompanying
optical flow fields. It has been discovered that the background
contains a large degree of horizontal or vertical movement.
In addition, more training samples can be produced by means
of the data variation augmentation strategy.

Network Training: The suggested two-stream Network
is trained to utilize the PyTorch toolkit. Momentum is set
to 0.9, and stochastic gradient descent (SGD) is performed
using a 64-mini-batch size. An initial learning rate of 0.001
is used in the model and a maximum iteration of 500. At
iteration number 450, the learning rate is lowered to 0.0001.

IV. EXPERIMENTS

We conducted our experiments on UCF101, HMDBS51 and
Kinetics400 dataset.Under UCF101, 13,000 video clips are
sorted into 101 distinct action genres. The vast majority of
these films are from unscripted, impresses YouTube videos
with wildly varying lighting, camera angles, levels of oc-
clusion, etc. The duration of the clip is between 1 and 71
seconds, while the frame rate is 25 and the resolution is 320
x 240. Training and testing data are separated into three equal
parts in this dataset. There are the usual three divisions for
training and testing in the dataset. HDMBS51 is a collection
of films found on the internet that show individuals carrying
out a variety of activities, including moving their faces with
and without touching anything, moving their bodies with
and without touching anything, and conversing with one
another. There are a total of 6,800 films included in the
collection, and these videos have been categorized into 51
distinct sorts of activities. Each action category has at least
101 footage, with the shortest clip clocking in at only one
second in duration. The action categories also have at least
101 clips overall. The HMDBS51, in contrast to the UCF101,
maintains 30 frames per second even while scaling video to
maintain a height of 240 pixels across the frame. In addition,
there are three train/test splits of 70/30 for each action type
inside the dataset.Kinetics400 is a massive video dataset
that includes 240 thousand training clips, twenty thousand
validation movies, and forty thousand testing clips.

Evaluation indicators:Top-1 and top-5 accuracy are
commonly employed as measures of action recognition
precision.Top-1 accuracy indicates that the action class that
has the greatest possibility of being classifiable based on the
prediction results has been correctly classified.It is believed
that the sample is authentic.Top- 5 accuracy indicates that
the sample is deemed accurate if the correct classification is
among the five action groups that have the greatest likelihood
of categorizing in the prediction result. This suggests that the
sample is accurate.We use the top-1 accuracy on the UCF101
and HMDBS51 dataset, and the top-1 and top-5 accuracy on
the Kinetics400 dataset to verify the performance.

A. Experiments with Dropout

We assess the proposed method on the UCF101, HMD-
B51, and Kinetics400 datasets. The results are summarized
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TABLE I: Recognition accuracy on UCF101,HMDBS51 and
Kinetics400 datasets

Dataset train test

UCF101 94.2% 92.6%
HMDBS51 75.5% 73.7%
Kinetics400-top-1 76.5% 74.7%

in TABLE I. To evaluate the proposed network architecture’s
learning and generalizability, we record the training set’s
accuracy across all datasets. TABLEAU 1 illustrates that the
proposed network is able to utilize spatial and temporal
connection for successful fusion and categorization. The
existence of many dense layers in the network needs an
analysis of the dropout pattern on the FC-1 and FC-2 layers.
Dropout pattern implementation attempts in the proposed
network architecture are detailed in TABLE II.(dropout rate
relates to retention rate). In the UCF101 dataset, we have
a 2.4% increase in test case accuracy, whereas in the
Kinetics400 dataset, we achieve a 1.2% increase in test
case accuracy. This reveals that the network is overfitting
for the two datasets because of the high dimension of the
medial features. By applying a dropout pattern on FC-1
and FC-2 layers, we gain a minor increase of 0.3% for the
HMDBS51 dataset. Although the improvement is minor, we
retain dropout for training the completed network since it
reduces generalization errors. Separate streams of spatial and
temporal features, together with their respective identification
accuracies, are also provided.The finding shows that fusion
effectively takes up the multimodal connection, resulting in
improved performance in video recognition.

TABLE II: Dropout pattern:evaluation on UCF101,HMDB51
and Kinetics400 dataset.

Dataset Accuracy (%)

Dropout layer and rate  spatial  temporal  fusion
UCF101 {FC-1, 0.5} 88.5 87.3 93.6
{FC-2, 0.5} 86.5 87.8 93.6
{FC-1, 0.5},(FC-2, 0.5}  87.1 89.5 95.0
HMDB51 {FC-1, 0.5} 67.2 66.4 724
{FC-2, 0.5} 66.8 68.9 73.8
{FC-1, 0.5},{FC-2, 0.5}  68.3 71.2 75.0
Kmf;l;_sfoo' {FC-1, 0.5) 683 672 732
{FC-2, 0.5} 68.7 69.5 72.7
{FC-1, 0.5}{FC-2, 0.5}  69.6 70.5 74.9

B. Exploration study

We compare two training methods: (1) baseline set-
ting in initial two-stream ConvNets[15],where a crop of a
fixed size is flipped haphazardly from the entire frame. (2)
data variation augmentation strategy, which is discussed in
II.C. The outcomes are shown in Fig.6.It is evident to us
that the effectiveness of the data variation augmentation
strategy is significantly higher than that of the baseline
setting(97.3%vs 95% on UCFI101 dataset,78.5% vs 75%
on HMDBS51 dataset,75.8% vs 74.9% top-1 and 95.2% vs
93.5% top-5 accuracy on the Kinetics400 dataset.), indicating
that the data variation augmentation strategy can effectively
improve the action recognition accuracy.

100

ESN] Data augemenation [ Original data

97.3
95 95.2
93.5
78.5
75 '

UCF101 HMDBS!  Kinetics400-top-1Kinetics400-top-5

90

80

70

60

50

Fig. 6. Comparison of effectiveness of the data variation
augmentation on UCF101 dataset and HMDBS51 dataset.

We compare two network structures:(1)The essential
structure-ResNet101, where the backbone has 3x3 convolu-
tion.(2)The structure-CotNet101, where the 3%3 convolution
in the backbone is replaced by Cotblock.The results can be
seen in Fig. 7. It turns out that the CotNetlO1 performs
somewhat better than the ResNet101 (97.3%vs 96.8% on the
UCF101 dataset,78.5% vs 77.8% on the HMDBS51dataset,
75.8% vs 74.9% top-1 and 95.2% vs 94.8% top-5 accuracy
on the Kinetics400 dataset),indicating that the CotNet101
network is more effective for action recognition.

100 E==Y ResNetl01 [ CoTNetl01
95.2 948
90
80
(o2 74.9

70

60

50

UCF101

HMDBS51  Kinetics400-top-1 Kinetics400-top-5

Fig. 7. Comparison of effectiveness of different network
structures on the UCF101,HMDBS51 and Kinetics400 dataset.
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C. Comparison with those hand-designed descriptors

We compare the proposed two-stream network on the
UCF101 and HMDBS51 datasets using a variety of manually
crafted descriptors. We cannot compare the experimental
results to those of the Kinetics400 dataset since there are no
manually defined features for conducting tests on the Kinetic-
s400 dataset. According to TABLE III, traditional approaches
have a performance rate of approximately 80% in UCF101.
Since the HMDB51 dataset is more complicated than the
UCF101 dataset, the overall performance in HMDBS5I is
pretty poor, below 70%.The hand-crafted features, such as
iDT, are shallow. Even though these features are handled
to reduce noise and capture hidden relationships, they are
not distinctive enough for precise action recognition. With
shallow features, the handcrafted features can’t generalize
well because they can’t model the spatiotemporal information
under complex backgrounds and quickly changing action dy-
namics. TABLE III demonstrates that our suggested method
performs significantly better than those manually-designed
descriptors, demonstrating that the interaction between static
and dynamic features has a greater capacity for discrimina-
tion in the action recognition.

TABLE III: We compare our proposed model with hand-
designed descriptors on the UCF101 and HMDBS51 dataset.
Experiments verify the effectiveness of our model.

of our method is 97.3% on the UCFI101 dataset, which
is 9.3%, 3.1%, 8.7% ,3.7%, 6.9% and 4.1% greater than
Two-stream CNN, Temporal Seg.Net, Two Stream+LSTM,
L2LSTM,C3D+IDT and Temporal 3D CNN respectively.
Our method achieves 78.5% accuracy on the HMDBS51
dataset, outperforming Two-stream CNN, Temporal Seg.Net,
L2LSTM, and Temporal 3D CNN by 21.1%, 18.1%, 12.3%,
and 5.0%, respectively. In the HMDBS51 dataset, the im-
provement brought about by our method is more evident.
This demonstrates that fusing static and dynamic features
is crucial for action recognition.From TABLE V, it can
be seen that for the Kinetics400 dataset, STM accuracy is
84.34% top-1 and 96.23% top-5. MSNet achieves a top-1
accuracy of 76.4%. R(2+1) D-Two-Stream achieves 75.4%
top-1 and 91.9% top-5 accuracy. Two-stream+CMA yields
top-1 accuracy of 76.4%. The top-1 and top-5 accuracy rates
for I3D non-local are 75.5% and 92.4%, respectively. S3GD
achieves 74.7% top-1 and 93.4% top-5 accuracy. MARS
achieves a top-1 accuracy of 74.9%. On the Kinetics400
dataset, the accuracy of our proposed method is 75.8% top-1
and 95.2% top-5. Our method has the best top-1 and top-5
accuracy among these state-of-the-art methods, as shown in
TABLE V. On the one hand, the results presented in TABLE
IV and TABLE V demonstrate that the propsoed two-stream
architecture can significantly improve action recognition by
adopting the proposed data variation augmentation strategy.
On the other hand, it may suggest that most deep convolu-

Method UCF101 HMDBS1 tional networks’ poor performance is due to their disregard
9, . . . .
HOG [16] 72.4% 402% for the relationship between static and dynamic features.
HOF[17] 76.0% 48.9%
MgH [17] :223 2223 TABLE IV: comparison with state-of-the-arts methods on the
HOF+MBH [17] 2% 7.2% UCF101 and HMDBS| dataset,
iDT[18] 84.7% 72.4%
Ours 97.3% 78.5% Method UCF101 HMDBS51
Two-stream CNN[15] 88.0% 59.4%
Temporal Seg,Net[19] 94.2% 60.4&
D. Comparison with other state-of-the-art methods Z‘;’ESS;;?;;LSTM[ZO] 2223 ;6 e
o ‘0 N 0
On the UCF101, HMDB51, and Kinetics400 datasets, we C3D+IDT[13] 90.4% _
compare the objective outcomes of our method to those Temporal 3D CNN [22] 93.2% 63.5%
of deep learning methods. Based on the two streams, we Ours 97.3% 78.5%

select comparable approaches for the UCF101 and HMDBS51
datasets, including Two-stream CNN, Temporal Seg.Net,
Two Stream+LSTM, and L2LSTM. In addition, we also
select some state-of-the-art methods based on 3D ConvNets,
including C3D+IDT and Temporal 3D CNN. The perfor-
mance of deep learning-based methods far outperforms that
of more conventional approaches. Since the deep features
considerably enhance the spatial and temporal representa-
tion, the accuracy is approximately over 90% on UCF101
and 60% on HMDBS51.From TABLE 1V, we can see that
Two-stream CNN’s accuracy obtains 88.0% on the UCF101
dataset, 59.4% on the HMDBS5 1dataset. Temporal Seg.Net’s
accuracy achieves 94.2% on UCF101 datasets, 60.4% on
HMDB51dataset. Two Stream+LSTM achieves 88.6%the
accuracy on the UCFI101 dataset. L2LSTM achieves an
accuracy of 93.6% on the UCF101 dataset and 66.2% on
the HMDBS51 dataset. C3D+ IDT achieves 90.4% accuracy
on the UCF101 dataset. The accuracy of a temporal 3D CNN
is 93.2% on the UCF101 dataset and 63.5% on the HMDB51
dataset. In the meanwhile, we can see that our approach
outperforms the competition on both datasets. The accuracy

TABLE V: comparison with state-of-the-arts methods on the
Kinetics400 dataset.

Method top-1 top-5
STM][23] 73.7% 91.6%
MSNet[24] 76.4% -
R(2+1)D-Two-Stream [25] 75.4% 91.9%
Two-stream+CMA[26] 75.98% -

13D non-local[27] 75.5% 92.4%
S3GD [28] 74.7% 93.4%
MARS[29] 74.9% -
Ours 75.8% 95.2%

E. Visualization

To understand the static and dynamic feature interplay of
the trained two-stream network. From the UCF101 dataset,
certain RGB and optical flow frames are chosen to input into
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the spatial and temporal stream, each representing a differ-
ent activity category like “ApplyEyeMakeup”, “Basketball”,*
CricketShot” and“Fencin”. The Class Activates Mapping
(CAM)[30] of the last layer is then visualized.Fig.8 displays
the outputs of the visualization process. From the visualized
samples, we can see that the CAM of the last layer is highly
concentrated on appearance and motion area. It suggests
that the proposed two-stream network integrating static and
dynamic variables has a greater modeling ability to produce
more contextual power for video action recognition.

V. CONCLUSIONS AND FUTURE WORK

Throughout this work, we introduced an innovative two-
stream architecture that learns high-dimensional representa-
tions for action cognition in videos by combining static and
dynamic feature.According to the results of the experiments,
the proposed static and dynamic feature interaction two-
stream network can achieve a higher recognition accuracy
than the state-of-the-art, specifically 97.3% on the UCF101
dataset, 78.5% on the HMDBS51 dataset, 75.8% top-1, and
95.2% top-5 on the Kinetics400 dataset..Given the rapid
growth of live video streaming,it is important that human ac-
tion be detected in real-time. Our network needs to compute
optical flow, Which is hard to achieve the real-time video
recognition requirements. Our future work will focus on
optimizing our model using transformer structures to improve
the feature representation, allowing for more accurate action
recognition in real-time.

a b c d e f

Fig. 8. We visualize their corresponding CAM of the last
layer. here, a is RGB,b is spatial CAM, c is Flow-x, d is
flow-x CAM, e is Flow-y, f is Flow-y CAM.
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