TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

Optimizations of Distributed Computing Processes
on Apache Spark Platform

Tarik Hajji, Member, IAENG, Riad Loukili, Ibtissam El Hassani, and Tawfik Masrour, Member, IAENG

Abstract—The frequently difficult process of examining large
and diverse amounts of information is known as “’big data
analysis.” The goal is to find insights, such as hidden patterns,
unexpected correlations, or market trends like consumer pref-
erences. Thus, these insights can help companies make quick
and informed business decisions. First, we suggest a manual
database schema creation technique to reduce the response time
of the data analysis process in the context of big data under
the Spark platform. Then, in order to distribute the activities
to be performed on the Spark slots more evenly, we suggest
a data allocation technique. The data is then saved in RAM,
using the cache for faster reading. Finally, to solve the problems
of loading data into the cache, we suggest using a different file
format called ’Parquet.”” We evaluated our strategy using the
”fire calls for service” (CFS) data set, which led to a 97.77%
faster response time. This demonstrates how the suggested
optimization options considerably reduce the time needed to
import the cache and read the database.

Index Terms—Distributed computing, Big data, Hadoop,
Spark, Optimization, Machine learning, Random forest

I. INTRODUCTION

PPLICATIONS for artificial intelligence [1], [2] are

increasingly diverse, and many of them are based on a
large amount of data (big data), especially in an industrial en-
vironment [3], [4], [5], [6]. Big data (BD) refers to extremely
large data sets that can be analyzed by computers to reveal
patterns, trends, and associations, particularly with respect
to human behavior and interactions [7]. The explosion of
data availability, increased storage capacity, and analysis
capability have given birth to the notion of BD [8]. Every
second, 29,000 “gigabytes” of information are published
in the world, which is 2.5 “exabytes” per day or 912.5
“exabytes” per year [9]. This volume of BD is growing at
a dizzying pace and is giving rise to new types of statistics
[10]. This gigantic amount of data is characterized by the

Manuscript received May 16, 2022; revised January 01, 2023. This work
was supported in part by Moulay Ismail University, Meknes, Morroco.

Tarik Hajji is Professor at Laboratory of Mathematical Modeling, Simu-
lation and Smart Systems (L2M3S), Artificial Intelligence for Engineering
Sciences Team (IASI), Department of Mathematics and Computer Science,
15290 ENSAM, Moulay Ismail University, 50500 Meknes, Morocco, e-mail:
t.hajji@umi.ac.ma

Riad Loukili is PhD student at Laboratory of Mathematical Mod-
eling, Simulation and Smart Systems (L2M3S), Artificial Intelligence
for Engineering Sciences Team (IASI), Doctoral Studies Center, 15290
ENSAM, Moulay Ismail University, 50500 Meknes, Morocco, e-mail:
r.loukili@edu.umi.ac.ma

Tawfik Masrour is Professor at Laboratory of Mathematical Modeling,
Simulation and Smart Systems (L2M3S), Artificial Intelligence for Engi-
neering Sciences Team (IASI), Department of Mathematics and Computer
Science, 15290 ENSAM, Moulay Ismail University, 50500 Meknes, Mo-
rocco, e-mail: t.masrour@ensam.umi.ac.ma

Ibtissam EL Hassani is Professor at Laboratory of Mathematical Mod-
eling, Simulation and Smart Systems (L2M3S), Artificial Intelligence for
Engineering Sciences Team (IASI), Department of Mathematics and Com-
puter Science, 15290 ENSAM, Moulay Ismail University, 50500 Meknes,
Morocco, e-mail: i.elhassani @ensam.umi.ac.ma

following problems (5V’s): Volume, Velocity, Variety, Value,
and Veracity [11].

BD analytic functions include statistics [12], spatial analy-
sis [13], semantics [14], interactive discovery and visualiza-
tion [15]. Analytical models are used to correlate different
types and sources of data to create associations and make
relevant discoveries [16]. Unstructured and semi-structured
data types in Fig. 1 are generally not suitable for traditional
relational databases (RD) [17]. This is because they are
based on structured data sets. Moreover, RD cannot always
handle large data packages with frequent or even continuous
updates [18]. This is the case, for example, for stock market
transactions, the online activities of Internet users, or the
performance of mobile applications. So many organizations
that collect, process, and analyze large amounts of data are
turning to "NoSQL” databases [19]. The best solution of BD
problems is to use the distributed system techniques [20]
which is a model whose components located on networked
computers communicate and coordinate their actions by
transmitting messages on a computer cluster like in Fig. 2
such as Hadoop Eco-system in Fig. 3 and its complementary
tools [21], [22], [23], including : "YARN” [24], "Map
Reduce” [25], Spark [26], HBase [27], Hive [28], Kafka [29]
and Pig [30]. These technologies form the basis of an open
source software infrastructure that supports the processing
of large and heterogeneous data sets on clustered systems.
Hadoop, displayed in Fig. 4, is an open source framework in
Java that enables distributed processing of large data sets on
clusters of commodity computers using simple programming
models [31]. In the Hadoop implementation, the program is
sent to the data, unlike traditional systems where the data is
sent to the program. In the latest version 3.3.x of Hadoop,
we find three essential components: Hadoop’s distributed file
system (HDFS) to manage data storage problems in Hadoop
clusters, ”YARN” for managing cluster resources, and "Map
Reduce” as a data processing framework [32].

A. HDFS Architecture and Components

Hadoop clusters can read and write more than a “terabyte”
of data per second, and HDFS, a distributed file system,
eliminates all the major drawbacks of traditional file systems
in terms of cost (no licensing and support fees), speed, and
reliability (HDFS copies data multiple times). HDFS in Fig.
5 allows user data to be stored in files, follows a hierarchical
file system with directories or files, and supports operations
such as create, remove, move, and rename.

HDEFS provides the following access mechanisms: a Java
API for applications, Python access, a C language wrapper
for ’non-Java” applications, "Web GUI” (content manage-
ment system) utilized through an "HTTP” browser, and a
file system shell for executing HDFS commands.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

[[

Structured data]

Semi-Structured
data

Unstructured

) e

17 BmALCT]

LIl | T 1AL

__HyANE

AT]

10 LI A

Al AN ENIm

RDB and XML and Images and
Excel email videos
— = — = — =

Fig. 1.
very particular and is stored in a preset manner.

Master machine

A slave machine

Unstructured data is a collection of many different forms of data that are saved in their native formats, as opposed to structured data, which is

Network connection

~" Rack of machines

#

L}

HII <
=
HII <
]

K

: 3
A {-

L} .'-
I -

L}

L}
I -

L}

e

L1

Fig. 2. A group of computers that cooperate so that they can be perceived as a single system is known as a computer cluster.

B. YARN Architecture and Components

”YARN” (Yet Another Resource Negotiator) is a resource
manager designed to monitor and manage workloads, main-
tain a multi-tenant environment, manage Hadoop’s high
availability features, and implement security controls. It was
created by separating the processing engine and management
functions from “Map Reduce”. Reduced data movement
(there is no need to move data between Hadoop and systems
running on different clusters), increased cluster utilization
(resources unused by one can be consumed by another), and
lower operational costs are just a few of the benefits offered
by ”YARN,” which takes care of providing computational
resources for application execution (there is only one “do-
it-all” cluster to manage). The three important elements of
the ”YARN” architecture in Fig. 6 are the resource manager
(RM), the application master (AM), and the node manager

(NM).

The RM is the master, it runs several services, including
the resource scheduler. The AM negotiates resources so that
a single application runs in the first container allocated to it.
A container is a fraction of the NM capacity and is used by
the client for running a program. NM is the slave when it
starts; it announces itself to the RM and offers the working
containers requested by each AM to the RM. Each NM takes
instructions from the RM reports and handles containers on
a single node.

C. Distributed Processing in "Map Reduce” (MR)

MR is a programming model in Fig. 7 that allows huge
data sets to be processed and analyzed simultaneously in a
logical manner in distinct clusters. While sorting the data,

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

IR
¥

B |

ive

Solr

#1
GraphX sﬂﬂﬁ(
MLIib
I
ﬂ Spa . .
Pig Streaming Spﬂﬁf sal

5 STORM

[i81

I'-'_ .

spanc | i

v i

ZooKeeper

v
wedEln alala

B
s
cassandra

§3 kafka

1

Fig. 3.

The many parts of the Apache Hadoop software library are collectively referred to as the "Apache Hadoop ecosystem,” which also contains

a wide variety of auxiliary tools and open source projects. The Hadoop ecosystem includes a number of well-known tools, such as HDFS, Hive, Pig,

”YARN”, Map Reduce, Spark, HBase, Oozie, Sqoop, Zookeeper, etc.

HADOOP
1.0

HADOOP >1.0

MapReduce
Data processing

Others
Data processing

MapReduce
(Cluster resource
management and
data processing)

J C
\/

(Cluster resource management)

J C
ANy
YARN

HDFS
(Redundant,
reliable storage)

(Redundant, reliable storage)

HDFS

Fig. 4. This is a Hadoop ecosystem. Before 2012, users could write "Map Reduce” programs using scripting languages. Since 2012 users could work

on multiple processing models in addition to "Map Reduce” like in Fig. 3.

the map condenses it into logical clusters, removing useless
information while keeping the relevant one.

The MR execution process starts with the map phase (reads
assigned input split from HDFS, parses the input into records
as key-value pairs, applies the map function to each record,
and informs the master node of its completion). Then, the
partition phase begins (each mapper must determine which
reducer will receive each of the outputs, for any key, the
destination partition is the same as the number of partitions,
which determine the number of reducers). After that, the
shuffle phase (which fetches input data from all map tasks
for the portion corresponding to the reduce tasks bucket)
Then, the sort phase (merge and sort all map outputs into a
single run). Finally, the reduce phase applies the user-defined
reduce function to the merged data.

The essentials of each MR phase are as follows: the
number of reduce tasks can be defined by the users. Each

reduce task is assigned a set of record groups, that is,
intermediate records corresponding to a group of keys. For
each group, a user-defined reduce function is applied to the
recorded values. The reduce tasks are read from every map
task, and each read returns the record groups for that reduce
task. It is not possible to begin the reduction phase until all
mappers have finished processing.

D. MR Limits and Paper Architecture

We started our paper by introducing the notion of BD
and its different problems. Then, we presented Hadoop and
its major elements as well as a proposed solution. But in
reality, the MR model of Hadoop has several disadvantages
[33]. For example, the reduce phase cannot start until all
mappers have finished processing, and MR does not allow
writing complex processes consisting of several map and

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

Datais divided into 128 MB per

block. MetaData keeps
information about
HDFS stores files MetaData Z the block and its
in a number of ? replication. It is
blocks. e strored in
NameNode NameNode.
B Node A Node B

o1
o2

b3 -

Very large

data file.

b4 Node C

Node D

Each block is replicated
to few separate
computers.

Fig. 5. HDFS architecture and components of Hadoop: Each file is split into a sequence of blocks. The metadata are kept in the NameNode and the data

are stored on the different DataNode.

DataNode

DataNode

NameNode

DataNode

Application Master }

_ NodeManager

‘ grosmreemnea s
l NodeManager

[—]_ T
manlager NodeManager

: 5/

................. s

NodeManager

Fig. 6.

DataNode

There are five steps involved in running an application by "YARN”: the client submits an application to the RM, the RM allocates a container,

the AM contacts the related NM, the NM launches the container and the container executes the AM.

reduce phases because the data of each phase must be stored
in HDFS to be reused immediately afterwards in the next
phase. This takes a lot of time and space, as "YARN” jobs
take a long time to start and run. What does it mean that
there is considerable latency.

To remedy this problem, Apache Spark (AS) has been
proposed as an alternative to Hadoop MR because it makes
much better use of the central memory of the machines in the
cluster and manages the chaining of tasks itself. In order to
further improve the efficiency of using AS, we present in this
article an optimization approach to be made in the process
of BD analyzing with AS. These optimizations lead to a
97.77% gain in exclusion time, which proves the efficiency

of the proposed approach.

The rest of this paper is organized as follows: The related
works section is composed of a presentation of AS and
some related works. The methodology section is composed of
different stages of our approach. We first proposed a manual
approach to define the database schema. Then, we proposed
a data allocation algorithm to better distribute the tasks to
be executed on the AS slots. Then, we used the cache to
save the data in the central memory for a higher reading
speed. Finally, we proposed to use a specific file format
called ”Parquet” to address the problems of loading data into
the cache. At the end of this paper, the results and discussion
section are presented.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

il

1000
il
il
il
il
i

100

il

Fig. 7.

Shuffile Reduce

Hadoop Map Reduce uses data when it works with user provided mappers and reducers. The data is read from files into mappers and emitted

by mappers to the reducers. The processed data is sent back by the reducers. Data emitted by reducers goes into output files.

II. BD ANALYSIS PROCESS WITH AS AND RELATED
WORK

Typically, BD analysts adopt the concept of a Hadoop
data pool [34]. In such architectures, data can be analyzed
directly in a Hadoop cluster so that it can be executed using
AS. Stored data must be properly organized, configured, and
partitioned [35], [36]. This way, good performance of "ETL”
(Extract, Transform, and Load) tasks and analytical queries
can be achieved [37]. Once the data is ready, it can be
analyzed. This can be done using software with data mining
tools [38] or predictive analysis tools [39]. But also machine
learning [40] which uses algorithms to analyze large data
sets, as well as deep learning [41], a more advanced branch
of machine learning [42].

However, integrating BD tools into a coherent architecture
remains a challenge for many “IT” and analytic teams.
That’s because they need to identify the right combination
of technologies. Then put the pieces together to meet their
data analysis needs.

A. Spark Resilient Distributed Data Set (RDD) vs Spark-
SQL

Spark RDD is an immutable collection of objects that
defines the data structure of Spark. Which is characterized
by the following features: lazy evaluation, coarse grained op-
eration, in memory computation, fault tolerant, partitioning,
persistent, immutable and location-stickiness [43]. The RDD
in Spark allows us to perform a lot of operations, such as
iterative algorithms, interactive data mining tools, inefficient
implementation of distributed shared memory (DSM), and
slower computation when distributed computing systems
store data in HDFS or Amazon S3 [44]. However, Spark
RDD has no optimization engine, which represents our
problems that we try to treat in this article.

Spark RDD supports many types of data: primitive (In-
teger, Character, Boolean), sequence (Strings, Lists, Arrays,
Tuples, Dicts, Nested), Java and Scala objects, and mixed
data. And the RDD can be created by three different ways
[45]:

1) Paralleled collections (RDDs are created by taking an
existing collection and passing it to the Spark context
parallelize method).

2) Existing RDDs (RDDs can be created from existing
RDDs by transforming one RDD into another one).

3) External Data (the external data set supported by
Hadoop, including the local file system, HDFS, Cas-
sandra, HBase, and many more (CSV, JSON, and text
files) can be loaded from an external storage system to
create RDDs).

4) Using the “Parquet” format for data materialization in
the cache.

RDD supports two types of operations: transformation and
action.

1) Transformation allows us to create a new data set
using the existing one, and there are two types: narrow
transformation (is self sufficient, it is the result of map
and filter, such that the data is from a single partition
only) and wide transformation (is not self sufficient,
it is the result of group by key and reduce by key
like functions, such that the data can be from multiple
partitions).

2) Action allows us to return a value to the driver pro-
gram, after running a computation on the data set.
Actions are the RDD operations that produce non RDD
values [46].

To store the result of RDD evaluation, we can use two
techniques (which offer benefits in terms of cost and execu-
tion time): caching and persistence (see [47]). These RDDs
are connected together in the form of a graph named a

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

directed acyclic graph (DAG), which groups the operations to
be performed on RDDs. To get around the drawbacks of the
DAG perspective, computation in MR is done as follows:
Data is read from HDFS, map and reduce operations are
applied to it, and the result is written back to HDFS. The
requirement for DAG in Spark was established [48].

The data in an RDD is split into various configurable
segments called partitions” (while running on a cluster, the
number of partitions by default is 2) of three types based
on size: hash partitioning, range partitioning, and custom
partitioning.

In this paper, we propose an approach for the optimal
configuration of the number of partitions to minimize the
execution time, which is related to the two types of schedul-
ing in Spark (scheduling across applications and scheduling
within applications).

Spark offers Spark-SQL a very clever (is a module for
structured data processing that is built on top of Spark’s
core) mechanism that allows users to use the power of
”SQL” to query data [49]. Spark-SQL provides the following
capabilities for using structured and semi structured data: it
acts as a distributed SQL query engine, provides data frames
for programming abstraction, and can be used with platforms
such as Scala, Java, R, and Python. It allows users to query
structured data in Spark programs.

To process data using Spark-SQL, we must convert our
RDD to a Spark-SQL data frame. For example, we can use
the reflection based approach to automatically convert an
RDD with case classes to a data frame using a relational
schema. We show in this paper that this approach is relatively
too slow compared to the programmatic approach, which is
used when you cannot define case classes ahead of time.

B. Related Work

There are many works in the literature that adapt Spark to
the problem at hand in order to obtain a faster computational
speed when processing large data compared to the standalone
method. [50], [51], [52], [53], [54].

Yinan and all authors in [50] worked on wind speed
time series prediction to promote the use of wind energy.
However, traditional standalone methods are not able to
meet the requirements of BD environments. For this, they
proposed a hybrid distributed computing framework on AS
that divides wind speed BD into RDD groups and operates
them in parallel. The proposed module can accurately predict
the wind speed in several steps. In addition, the efficiency of
different components of the framework is verified. It is also
proven that the proposed distributed computing framework
has a faster computational speed when processing large data
sets.

Population-based “meta-heuristic” algorithms are also
used to provide optimizations in the computational process
in AS. The authors of [51] used the whale optimization
algorithm (WOA), which is a recent artificial intelligence
meta-heuristic algorithm based on the feeding behavior of the
humpback whale bubble network, to improve performance
and reduce computational complexity in the AS context.
Similarly, the experimental results demonstrated the superi-
ority of the proposed implementation in terms of speed and
scalability.

In [52], the authors presented a distributed computing
method for accelerating the space-time linear "K-function”
in AS, proposing four strategies for simplifying procedures
and accelerating distributed computing.

Our optimization approach for distributed computing pro-
cesses on the AS platform differs from others in that it is
universal, as it can be adapted to most big data analysis prob-
lems, is simple to implement, and offers a faster computing
speed.

III. METHODOLOGY

Our optimization methodology in Fig. 8 is composed of
the following four interventions:

1) Data importation process.

2) Data distribution algorithm to better exploit resources.

3) Cache configuration in the RAM to reuse the data.

4) Using the “Parquet” format for data materialization in
the cache.

With a manual schema design technique, we start our proce-
dure by loading data as a Spark-SQL data frame from multi-
ple file systems. Then, a data frame partitioning mechanism
is used to bypass Spark’s default settings, which frequently
cause problems. The partitions must then be converted to
“Parquet” format and loaded into memory as RDDs. Finally,
configure the services for the in-memory cache.

A. Data Importation Process

Spark performs all data analysis operations in memory and
in real time. It only calls on disks when its memory is no
longer sufficient. This work in memory reduces the latency
between treatments, which explains this velocity. However,
Spark does not have its own file management system. It
needs to be provided with one, for example: HDFS, Informix,
Cassandra, Open Swift, or Amazon S3. It is advisable to
use it with Hadoop, which currently remains the best global
storage solution due to its more advanced administration,
security, and monitoring tools.

There are two ways to import data into Spark. The first
one, we use in the auto-detection of the schema. The second
one is that we indicate the database schema manually. We
performed a comparative study (to be detailed later) using a
database to select the appropriate data import approach. We
noticed that when we specify the database schema manually,
the execution time is improved by 97.7%.

Technically, Spark-SQL provides functions to read and
write a file or directory of files in "CSV” format into a Spark
data frame. The option function can be used to customize the
read/write behavior, such as controlling the behavior of the
header, delimiter character, character set, etc.

The Spark-SQL API includes several classes to write
”SQL” queries using chained method calls. Data frame is the
main class; It defines the methods to be applied to the tables.
A data frame can be created either directly when loading data
or via an RDD, but a schema must be defined first. It should
be noted that a schema is a list of ”StructFields”, each of
which is a pair (name, type).

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

Various data sources |

[1. Data injection process

Spark performs all data analysis operations
in memory and in real time. The first one, we
use in the auto-detection of the schema. The -
second one, we indicate the database
schema manually.

[2. Distrubution algorithm description |

RDD is partitioned to m partitions, or the
default level of parallelism (the number of
partitions to use by default).

| 3. RDD conversion into the Parquets | i

We use the cache in order to save the data in
the memory for a higher reading speed.

Fig. 8.

CE

[:] o

Data |mportat|on process

Data distribution algorithm

[Partition 1 J [Partition j J

Partition m

Parquet format for data materialization in the cache |

T

| RDD 1 in Parquet format | | RDD 2 in Parquet format |

RDD in Parquetformat |

Description of the methodology: we start with the data import process, then the description of the data distribution algorithm, then the maturity

of the data in the cache, and finally the conversion of the RDD into "Parquet” format.

B. Data Distribution Algorithm

An immutable, partitioned collection of objects that may
be processed in parallel is represented by a resilient dis-
tributed data set (RDD), which is the fundamental data
structure of Spark. RDD is partitioned on a fixed number
of partitions, or an default level of parallelism is used (the
number of partitions to use by default). The number of
partitions can increase or decrease the level of parallelism
in this RDD. Internally, this uses a shuffle to redistribute the
data.

To define an appropriate number of partitions, we propose
(Fig. 9) : to obtain information about the resources assigned
to the task from a resource manager such as "YARN” and
to calculate the maximum number of cores for the container.
Then we set the new partition number to this maximum.

To get information about a specific container
for an application attempt we can use RM REST
APT’s (Allow the user to get information about the
cluster, metrics on the cluster, scheduler information,
information about nodes in the cluster, and information
about applications on the cluster.) For example, the
following "GET-HTTP” request “http://rm-http-address:port/
/{appid}/appattempts/{appAttemptld }/containers/{contld}”
returns the maximum number of cores allocated to the job
for the container as an integer.

C. Configuration of the Cache in the RAM to Reuse the Data

For some workloads, it is possible to improve performance
either by caching data in memory or by enabling some ex-
perimental options. To cache tables in-memory using Spark-
SQL in columnar format we can call the Spark catalog cache
table or data frame cache. But to be more efficient, we need
to configure some parameters in Tab. I correctly.

D. Parquet Format for Data Materialization in the Cache

We use the cache in order to save the data in the memory
(RAM) for a higher reading speed. But this operation takes

relatively more time because we copy a file to RAM, which is
not an easy task. To remedy this problem, we propose to use
“Parquet” file format. Which is an open source file format
available to any project in the Hadoop ecosystem. Apache
“Parquet” is designed for efficient as well as performing flat
columnar storage format of data compared to row based files
like "CSV” or "TSV” files. Our data frames can be saved as
“Parquet” files, maintaining the schema information and the
result is also a data frame.

IV. CASE STUDY

In this case study, we developed an ML model to dis-
tinguish between genuine and fake emergency calls using
the default mode and the suggested method. We processed
this study using two data sets: fire incidents (FI) and San
Francisco open data on public safety (SFODPS). SFODPS
includes all fire unit responses to calls. Each record includes
the call number, incident number, address, unit identifier,
call type, and disposition. All relevant time intervals are also
included. Since this data set is response-based and most calls
involve multiple units, there are multiple records for each
call number. Addresses are associated with a block number,
intersection, or call box, not a specific address.

A. Data Set Description

FI in Fig. 10 includes a summary of each incident (non
medical) that the San Francisco fire department responded
to. The call number, incident number, address, number, and
type of each responding unit, call category (as determined by
dispatch), primary circumstance (field observation), actions
taken, and property damages are all included in each incident
report. This data set satisfies the 5 requirements (5Vs) of BD.
In a public safety framework for BD use, the importance of
the 5V can be illustrated as follows:

1) Volume: In the field of public safety, and especially for

firefighters, the volumes of data to be collected and
analyzed are considerable and constantly increasing.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

B L L LL T,
e .,
s e

"~ Application ™
{ Schedule oo M
HTTP GET Request e, .. Rt T .,______anag?_r_.__...""
HTTP GET
Response
1
Resource ! 1
Manager ITEM DATA DESCRIPTION
REST APIs TYPE

Containerld String Container id
Allocated MB Long Amount of memory allocated for the
Partition containerin MB
Number Allocated Vcores | Int Amount of virtual cores allocated for
the container

Fig. 9. This figure shows how to get information about the resources of a specific container by using the resource manager REST API to determine the
proper number of data partitions.

TABLE I
CONFIGURATION OF CACHE PARAMETERS RAM TO USE SPARK CATALOG CACHE TABLE

Default

True

Parameters+ Meaning

Compression+ When set to true Spark-SQL will automat-
ically select a compression codec for each

column based on statistics of the data.

10000 Controls the size of batches for columnar
caching. Larger batch sizes can improve
memory utilization and compression, but

risk OOMs when caching data.

Batch Size+

Max Partition Bytes + | 128 MB | The maximum number of bytes to pack into

a single partition when reading files.

Open Cost In Bytes+ 4 MB The estimated cost to open a file, measured
by the number of bytes could be scanned
in the same time. This is used when putting
multiple files into a partition. It is better to
over estimated, then the partitions with small
files will be faster than partitions with bigger

files (which is scheduled first).

Configures the number of partitions to use
when shuffling data for joins or aggrega-
tions.

Shuffle Partitions+ 200

Analytics and geolocation practices, for example, are is actionable.
areas that contribute to the explosion of data volume,
which needs to be augmented by data from connected
objects.

. B. Development Environment
Velocity: More and more often, data must be collected

2)

and processed in real time, such as for some uses of
predictive emergency calls on a website.

Variety: data can take many different and heteroge-
neous forms (voice, web analytics, text, images, etc.).
Veracity: The veracity or reliability of data is threat-
ened by declarative behavior (on forms), by the diver-
sity of collection points, by the multiplication of data
formats, and by false alerts.

Value: in the context of infrared obesity, it is a matter
of being able to focus on data that has real value and

3)

4)

5)

We used the Data-bricks Community Edition [55], which
is the free version of the Data-bricks cloud-based BD
platform. Its users can access a microcluster as well as a
cluster manager and a notebook environment. Data-bricks is
an American enterprise software company founded by the
creators of Spark. The company also created "Delta Lake,”
“MLflow” and “Koalas,” open source projects that span data
engineering, data science, and machine learning. Data-bricks
develops a web based platform for working with Spark that
provides automated cluster management and Python-style
notebooks.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

CalNumber Unitld IncidentNumber CallType CallDate WatchDate
1 | 219690030 T03 21030278 Alarms 03/10/2021 03/10/2021
2 | 203421272 | BLS841 20139667 Medical Incident 12/07/2020 12/07/2020
3 | 213602525 T10 21160001 Structure Fire 12/26/2021 12/26/2021
4 | 210683285 58 21030264 Structure Fire 03/29/2021 03/29/2021
5 | 201354667 VAN1 20136406 Medical Incident 11/29/2020 11/29/2020
Fig. 10. Extract from data set used.
v
o
(78]
n ~
3 The auto-detection of the
Y schema spark.read.csv |——
n (infer schema = True) p
£ J E
(] =]
I c
— 2
S =
“ Data 3
& . . %
. v
(] Importatlon Partitions a
\—— =
(o) process s
= &
a S
3 S
-] age . (1]
—__ Manula specification of o
" 3 shemat spark.read.csv(
L
T _Infer Shema = Shemat)
[N}
&
~—

Fig. 11. Automatic and manual data import modes: we can see that the automatic mode lasted 87 seconds, while the manual mode lasted only 2 seconds
/\ I —
A
DS1: Partition
v
sFoops || 1,2,n |H | %
wv)
i S
i)
v J -g 3
— 5 > Partition
/\ I I E 1’ 2’ 3’
£
\—/ - ssey n - 1 ’ n -
c
DS2: crs S i
. Partition =
Fire 12
. m ~
Incidents rer .
Fig. 12. Concatenation of data sources to create a homogeneous data set.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

[Random Forest Classifier]

: Jreel : : Jree2 : : Jree3 :
Class A Class B Class C
I
Majority-Voting

Final-Class

Fig. 13. A well-known machine learning method from the supervised learning

approach is Random Forest. It can be applied to classification and regression

issues in machine learning. It is based on the idea of ensemble learning, which is the practice of integrating various classifiers to address a complicated

issue and enhance the model’s performance.

C. Database Import

As illustrated in Fig. 11, there are two methods for import-
ing data into Spark: The first one uses the auto-detection of
the schema. The second one is that we specify the database
schema manually. This allows us to reduce the execution
time from 1 minute and 27 seconds to only 2 seconds.

D. Full Data Scan

A complete scan of all the data allows us to know the total
number of records. This operation took us 35 seconds. In
order to minimize this execution time, we combine several
techniques. By default, Spark subdivides the database into
17 partitions. In our case, we will spread our data over 6
partitions in order to better distribute the tasks to be executed
on the Spark slots (3 slots). This allows us to exploit our
resources in a better way. Then we use the cache in order to
save the data in the RAM for a higher reading speed.

E. Materialize the Data in the Cache

This operation took much longer than before since we
were copying a "CSV” file to RAM, which is not a smooth
task (6 minutes). To solve this problem, we have to use
the “Parquet” file format. Our final execution time was only
0.43 seconds, demonstrating that these strategies do shorten
the time spent reading from the database and importing the
cache. Hence, an improvement of 4400% and a 97.77% of
time saving.

F. Machine Learning and Prediction

First, we need to join the two databases by adding a
column for false calls. The figures in Fig. 12 illustrate this
process. Then we prepare the processing pipeline and the
random forest learning algorithm for classification, like in

Fig. 13. It supports both binary and multiclass labels, as well
as both continuous and categorical features. The training did
not take much time since we used the ”SparkML” library,
which uses paralyzed machine learning algorithms. This
operation took 3 minutes for the whole data set.

V. CONCLUSION

Users want to use stream processing engines like Spark,
Flink, and Storm to feed data into Hadoop ecosystems and
execute real-time analytics on it. In addition, the develop-
ment of Al technologies has made BD intelligence software
simpler to use.

For many ”IT” and analytic teams, integrating BD tools
into a coherent architecture is still difficult. They must
determine the best technological fusion. They then assembled
the parts to satisfy their requirements for data analysis.

We have suggested a set of practices in this post that have
proven to be incredibly successful. We initially suggested
defining the database schema manually. Then, we propose
a data allocation algorithm to better distribute the tasks to
be executed on the Spark slots. Then, for faster reading, we
employ the cache to store the data in the memory (RAM).
Finally, we suggest using the “Parquet” file format to address
the issue of loading data into the cache.

It should be underlined at the conclusion that despite the
BD mode’s significant expansion, the subject is still open
and has a number of untapped potentials.

REFERENCES

[1] H. Canot, P. Durand, E. Frenod, B. Hassoune-Rhabbour, and
V. Nassiet, “Regularized artificial neural networks for predicting
the strain of traction-aged polymer systems part i,” in International
Conference of Applied Ingineering Mathematics, 2022.

[2] K. Ota and H. Katagiri, “Demand forecast for bento by machine
learning using product popularity based on rating systems.”

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

[3]

[4]

[5]

[6]

[7]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Z. Hu, L. Wang, Y. Luo, Y. Xia, and H. Xiao, “Speech emotion recog-
nition model based on attention cnn bi-gru fusing visual information.”
Engineering Letters, vol. 30, no. 2, pp. 427-434, 2022.

1. E. Hassani, C. E. Mazgualdi, and T. Masrour, “Artificial intelligence
and machine learning to predict and improve efficiency in manufac-
turing industry,” arXiv preprint arXiv:1901.02256, 2019.

M. Rhazzaf and T. Masrour, “Smart autonomous vehicles in high
dimensional warehouses using deep reinforcement learning approach.”
Engineering Letters, vol. 29, no. 1, pp. 244-252, 2021.

C. El Mazgualdi, T. Masrour, I. El Hassani, and A. Khdoudi, “Machine
learning for kpis prediction: a case study of the overall equipment
effectiveness within the automotive industry,” Soft Computing, vol. 25,
no. 4, pp. 2891-2909, 2021.

S. Yin and O. Kaynak, “Big data for modern industry: challenges and
trends [point of view],” Proceedings of the IEEE, vol. 103, no. 2, pp.
143-146, 2015.

S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big data: Issues
and challenges moving forward,” in 2013 46th Hawaii International
Conference on System Sciences. 1EEE, 2013, pp. 995-1004.

Y. Khourdifi and M. Bahaj, “Analyzing social media opinions using
hybrid machine learning model based on artificial neural network opti-
mized by particle swarm optimization,” in International Conference on
Advanced Intelligent Systems for Sustainable Development. Springer,
2019, pp. 123-131.

D. A. McFarland, K. Lewis, and A. Goldberg, “Sociology in the era
of big data: The ascent of forensic social science,” The American
Sociologist, vol. 47, no. 1, pp. 12-35, 2016.

M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis:
A survey,” Digital Communications and Networks, vol. 4, no. 3, pp.
161-175, 2018.

P. Galeano and D. Pefia, “Data science, big data and statistics,” Test,
vol. 28, no. 2, pp. 289-329, 2019.

T. J. Barnes and M. W. Wilson, “Big data, social physics, and spatial
analysis: The early years,” Big Data & Society, vol. 1, no. 1, 2014.
P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-Mauroux,
E. Damiani, A. Mazak, M. Van Keulen, M. Jarrar, G. Santucci et al.,
“Big data semantics,” Journal on Data Semantics, vol. 7, no. 2, pp.
65-85, 2018.

Q. Liu, M. Vorvoreanu, K. P. Madhavan, and A. F. McKenna, “De-
signing discovery experience for big data interaction: a case of web-
based knowledge mining and interactive visualization platform,” in
International Conference of Design, User Experience, and Usability.
Springer, 2013, pp. 543-552.

J. Ming, L. Zhang, J. Sun, and Y. Zhang, “Analysis models of technical
and economic data of mining enterprises based on big data analysis,”
in 2018 IEEE 3rd International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA). 1EEE, 2018, pp. 224-227.

R. Sint, S. Schaffert, S. Stroka, and R. Ferstl, “Combining unstruc-
tured, fully structured and semi-structured information in semantic
wikis,” in CEUR Workshop Proceedings, vol. 464. Heraklion Crete,
Greece, 2009, pp. 73-87.

H. Mohanty, P. Bhuyan, and D. Chenthati, Big data: A primer.
Springer, 2015, vol. 11.

R. Addo-Tenkorang and P. T. Helo, “Big data applications in
operations/supply-chain management: A literature review,” Computers
& Industrial Engineering, vol. 101, pp. 528-543, 2016.

I. Gorton and J. Klein, “Distribution, data, deployment: Software
architecture convergence in big data systems,” IEEE Software, vol. 32,
no. 3, pp. 78-85, 2014.

S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A
survey of open source tools for machine learning with big data in the
hadoop ecosystem,” Journal of Big Data, vol. 2, no. 1, pp. 1-36, 2015.
M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, ‘“Real-
time big data stream processing using gpu with spark over hadoop
ecosystem,” International Journal of Parallel Programming, vol. 46,
no. 3, pp. 630-646, 2018.

S. Mazumder and S. Dhar, “Hadoop ecosystem as enterprise big
data platform: perspectives and practices,” International Journal of
Information Technology and Management, vol. 17, no. 4, pp. 334—
348, 2018.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth er al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th annual Symposium on Cloud Computing, 2013, pp. 1-16.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online.” in Nsdi, vol. 10, no. 4, 2010.

S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big
data analytics on apache spark,” International Journal of Data Science
and Analytics, vol. 1, no. 3, pp. 145-164, 2016.

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

R. C. Taylor, “An overview of the hadoop/mapreduce/hbase framework
and its current applications in bioinformatics,” BMC Bioinformatics,
vol. 11, no. 12, pp. 1-6, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution
over a map-reduce framework,” Proceedings of the VLDB Endowment,
vol. 2, no. 2, pp. 1626-1629, 2009.

P. Le Noac’H, A. Costan, and L. Bougé, “A performance evaluation of
apache kafka in support of big data streaming applications,” in 2017
IEEE International Conference on Big Data (Big Data). 1EEE, 2017,
pp. 4803-4806.

A. Jain and V. Bhatnagar, “Crime data analysis using pig with hadoop,”
Procedia Computer Science, vol. 78, pp. 571-578, 2016.

V. B. Bobade, “Survey paper on big data and hadoop,” Int. Res. J.
Eng. Technol, vol. 3, no. 1, pp. 861-863, 2016.

A. Alam and J. Ahmed, “Hadoop architecture and its issues,” in 2014
International Conference on Computational Science and Computa-
tional Intelligence, vol. 2. 1EEE, 2014, pp. 288-291.

L. Song, H. Zhang, and D. Feng, “Design of sprint parallelization
of data mining algorithms based on cloud computing.” Engineering
Letters, vol. 30, no. 2, pp. 399405, 2022.

A. Schitzle, M. Przyjaciel-Zablocki, A. Neu, and G. Lausen, “Sem-
pala: Interactive sparql query processing on hadoop,” in International
Semantic Web Conference. Springer, 2014, pp. 164-179.

J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing
framework for processing large-scale spatial data,” in Proceedings
of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2015, pp. 1-4.

Y. Arfat, R. Mehmood, and A. Albeshri, “Parallel shortest path graph
computations of united states road network data on apache spark,” in
International Conference on Smart Cities, Infrastructure, Technologies
and Applications. Springer, 2017, pp. 323-336.

N. Biswas and K. C. Mondal, “Integration of etl in cloud using
spark for streaming data,” in International Conference on Emerging
Applications of Information Technology. Springer, 2021, pp. 172-182.
S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big
data analytics on apache spark,” International Journal of Data Science
and Analytics, vol. 1, no. 3, pp. 145-164, 2016.

T. Daghistani, H. AlGhamdi, R. Alshammari, and R. H. AlHazme,
“Predictors of outpatients’ no-show: big data analytics using apache
spark,” Journal of Big Data, vol. 7, no. 1, pp. 1-15, 2020.

H. Tarik and O. J. Mohammed, “Big data analytics and artificial intel-
ligence serving agriculture,” in International Conference on Advanced
Intelligent Systems for Sustainable Development. Springer, 2019, pp.
57-65.

H. Tarik, M. Tawfik, D. Youssef, S. Simohammed, O. J. Mohammed,
and J. E. Miloud, “Towards an improved cnn architecture for brain
tumor classification,” in International Conference Europe Middle East
& North Africa Information Systems and Technologies to Support
Learning. Springer, 2019, pp. 224-234.

Y. Douzi, T. Hajji, M. Benabdellah, A. Azizi, and T. Masrour,
“Classification and watermarking of brain tumor using artificial and
convolutional neural networks,” in International Conference on Ar-
tificial Intelligence & Industrial Applications. Springer, 2020, pp.
61-77.

R. K. Mishra, “Spark architecture and the resilient distributed dataset,”
in PySpark Recipes. Springer, 2018, pp. 85-114.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10), 2010.
J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in apache
spark: the geospark perspective and beyond,” Geolnformatica, vol. 23,
no. 1, pp. 37-78, 2019.

S. Chellappan and D. Ganesan, “Introduction to apache spark and
spark core,” in Practical Apache Spark. Springer, 2018, pp. 79-113.
Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate data
caching optimization for multi-stage and parallel big data frameworks,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). 1IEEE, 2018, pp. 277-284.

H. Sreeyuktha and J. Geetha Reddy, “Partitioning in apache spark,” in
Innovations in Computer Science and Engineering. Springer, 2019,
pp. 493-498.

T. Ivanov and M.-G. Beer, “Performance evaluation of spark sql using
bigbench,” in Big Data Benchmarking. Springer, 2015, pp. 96-116.
Y. Xu, H. Liu, and Z. Long, “A distributed computing framework for
wind speed big data forecasting on apache spark,” Sustainable Energy
Technologies and Assessments, vol. 37, 2020.

M. AlJame, I. Ahmad, and M. Alfailakawi, “Apache spark implemen-
tation of whale optimization algorithm,” Cluster Computing, vol. 23,
no. 3, pp. 2021-2034, 2020.

Volume 50, Issue 2: June 2023

TAENG International Journal of Computer Science, 50:2, [JCS 50 2 11

[52] Y. Wang, Z. Gui, H. Wu, D. Peng, J. Wu, and Z. Cui, “Optimizing and
accelerating space—time ripley’s k function based on apache spark for
distributed spatiotemporal point pattern analysis,” Future Generation
Computer Systems, vol. 105, pp. 96-118, 2020.

[53] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, “Parallel and
distributed dimensionality reduction of hyperspectral data on cloud
computing architectures,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2270-2278,
2016.

[54] 1. Chebbi, W. Boulila, N. Mellouli, M. Lamolle, and I. R. Farah,
“A comparison of big remote sensing data processing with hadoop
mapreduce and spark,” in 2018 4th International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP).
IEEE, 2018, pp. 1-4.

[55] R. Ilijason, Beginning Apache Spark Using Azure Databricks: Un-
leashing Large Cluster Analytics in the Cloud. Springer, 2020.

Volume 50, Issue 2: June 2023

