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Abstract—This paper considers H∞ anti-synchronization
(HAS) for uncertain neural networks subject to time-varying
delay. An output-feedback-based adaptive control scheme is
used to ensure the HAS of the considered networks. An
existence condition and update laws of the unknown param-
eters for the desired controller are developed by resorting
to the Lyapunov-Krasovskii functional theory, Bessel-Legendre
inequality, as well as reciprocal convex combination. Then,
a linear-matrix-inequalities-based design method is developed
for the output-feedback gain by decoupling nonlinear terms.
Finally, a numerical example is given to illustrate the lower
conservatism and effectiveness of the present HAS control
method.

Index Terms—Anti-synchronization, output-feedback control,
H∞ control, delayed neural networks.

I. INTRODUCTION

NEURAL networks (NNs) are computing systems in-
spired by the human brain, consisting of interconnected

nodes (called neurons). Such systems, which have many
important characteristics including self-organization, self-
learning, parallel processing, and high fault tolerance, have
found widespread applications in various engineering areas
from image encryption [1], consensus tracking [2], safety
assessment [3], and video reconstruction [4], to nonlinear
control [5] and satellite data prediction [6]. In practice,
parameter uncertainty and time delay occur unavoidably,
leading to complex dynamic behaviors such as Hopf bifur-
cations, oscillations, and strange chaos. Correspondingly, a
great deal of research in the analysis and control of uncertain
delayed NNs (UDNNs) has been carried out over the past few
decades (see, e.g., [7–11]).

Anti-synchronization is a special synchronous behavior in
which the states of coupled systems have the same ampli-
tude but totally different signs. As early as 1665, Huygens
observed such a phenomenon in his famous experiment of
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resonance clocks. In 1990, Pecora and Carroll proposed a
drive-response synchronization framework [12]. Based on
the framework, many researchers have investigated the anti-
synchronization of different NN models. For UDNNs, Ahn
studied the H∞ anti-synchronization and gave an adaptive
control method based on linear matrix inequalities (LMIs)
[13]; In [14], Yan et al. further examined the mixed H∞
anti-synchronization and presented a new adaptive controller
design scheme with fewer LMI decision variables.

Note that in most literature on UDNNs, the time delay is
assumed to be time-invariant, which may be overly restric-
tive. In reality, the time delay in biological and artificial NNs
may dynamically change within a certain range. Therefore,
the anti-synchronization of UDNNs with time-varying delays
deserves more attention than that of UDNNs with constant
delays. In addition, it is found that the adaptive controller
mechanisms in [13, 14] are based on full-state feedback.
However, in a practical dynamic system, comprehensive
measurement of state information is often difficult and costly
[15, 16].

In this paper, we revisit the H∞ anti-synchronization
(HAS) of UDNNs. Unlike [15, 16], we aim to determine an
output-feedback-based adaptive control scheme for the time-
varying delay case. Compared with the state-feedback mech-
anism, the considered output-feedback mechanism, which
does not need all the system states to be measurable, is eas-
ier to implement. By resorting to the Lyapunov-Krasovskii
functional (LKF) theory, Bessel-Legendre inequality (BLI)
[17], as well as reciprocal convex combination (RCC) [18],
we propose an existence condition and update laws of the
unknown parameters for the desired output-feedback-based
adaptive controller. Then, we develop an LMIs-based design
method for the output-feedback gain by decoupling nonlinear
terms. Lastly, we provide a numerical example to show
the lower conservatism and validity of the present output-
feedback-based adaptive HAS control method.

II. PRELIMINARIES

Throughout, col{·} represents a column vector and
diag{·} denotes a block-diagonal matrix. For any matrix X ,
superscripts T and −1 stand for its transpose and inverse,
respectively, and He(X) denotes X +XT .

Consider UDNN

α̇(t) =Aα(t)+ Āα(t− υ(t))+Bf(α(t))+ B̄g(α(t− υ(t)))

+

N1∑
k=1

Φk(α(t))θk +

N2∑
l=1

Ψl(α(t− υ(t)))φl (1a)

β(t) =Cα(t) (1b)
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In the UDNN considered, α(t) and β(t) ∈ Rn are the
neuron state and output; A, Ā, B and B̄ are self-feedback
and connection matrices, and υ(t) denotes a time-varying
delay, which is continuous and fulfills 0 ≤ υ1 ≤ υ(t) ≤ υ2
as in [19], where υ1 and υ2 are constants corresponding
to the infimum and supremum of υ(t), respectively. Fur-
thermore Φk(α(t))(k = 1, ..., N1) : Rn → Rn×r and
Ψl(l = 1, ..., N2) : Rn → Rn×s are nonlinear function
matrices, θk ∈ Rr(k = 1, ..., N1) and φl ∈ Rs(l = 1, ..., N2)
represent the unknown parameters, and f(α(·)) : Rn → Rn
and g(α(·)) : Rn → Rn stand for activation functions
satisfying [20, 21]:

||f(α(·)) + f(β(·))|| ≤ Lf ||α(·) + β(·)|| (2a)
||g(α(·)) + g(β(·))|| ≤ Lg ||α(·) + β(·)|| (2b)

for two given positive constants Lf and Lg and any
α(·), β(·) ∈ Rn. UDNN (1) is considered as a drive system.
The response UDNN is given as

˙̂α(t) =Aα̂(t) +Āα̂(t−υ(t))+Bf(α̂(t)) +B̄g(α̂(t− υ(t)))

+ u(t) +Gd(t) (3a)

β̂(t) =Cα̂(t) (3b)

where α̂(t), β̂(t), u(t) ∈ Rn are the state, output, control
input, respectively, d(t) stands for a bounded disturbance
belonging to L2[0,∞) [22], and G ∈ Rn×n is a constant
coefficient matrix. Defining κ(t) = α̂(t)+α(t), we can write
the anti-synchronization error system (ASES) as

κ̇(t) =Aκ(t) +Āκ(t− υ(t)) +B(f(α̂(t)) + f(α(t)))+ u(t)

+ B̄(g(α̂(t− υ(t))) + g(α(t− υ(t)))) +Gd(t)

+

N1∑
k=1

Φk(α(t))θk +

N2∑
l=1

Ψl(α(t− υ(t)))φl. (4)

Unlike [15, 16], the following output-feedback-based adap-
tive controller

u(t) =K(β̂(t) + β(t))−
N1∑
k=1

Φk(α(t))θ̄k

−
N2∑
l=1

Ψl(α(t− υ(t)))φ̄l (5)

will be used in this paper, where K is the control gain, and
θ̄k(k = 1, ..., N1) and φ̄l(l = 1, ..., N2) are the estimates of
θk and φl, respectively.

Definition 1. Given a level γ > 0, UDNNs (1) and (3) are
called H∞ anti-synchronized if∫ ∞

0

κT (µ)Sκ(µ)dµ < γ2
∫ ∞
0

dT (µ)d(µ)dµ (6)

within the zero initial condition, where S is a positive
symmetric matrix. The parameter γ is known as the H∞
disturbance-attenuation performance level (DAPL) [23, 24].

Definition 2. UDNNs (1) and (3) are called asymptotically
anti-synchronized if limt→∞ κ(t) = 0 when d(t) = 0.

Lemma 1. [17] (BLI) Given a matrix W ∈ Sm+ and a
differentiable function κ(t): [a, b]→ Rm,∫ b

a

κ̇T (µ)Wκ̇(µ)dµ ≥ 1

b− a
ΩT diag(W, 3W, 5W )Ω

holds, where σa,b(µ) = 2µ−ab−a − 1 and

Ω =

 κ(b)− κ(a)

κ(b) + κ(a)− 2
b−a

∫ b
a
κ(µ)dµ

κ(b)− κ(a)− 6
b−a

∫ b
a
σa,b(µ)κ(µ)dµ

 .
Lemma 2. [18] (RCC) Let y1(t), y2(t) be two functions
that possess positive values in an open set z ∈ Rn. Then,
for any ε ∈ (0, 1) and symmetric function o(t) defined on

Rn with
[
y1(t) ∗
o(t) y2(t)

]
≥ 0, the RCC of y1(t) and y2(t) over

z satisfies
1

ε
y1(t) +

1

1− ε
y2(t) ≥ y1(t) + y2(t) + 2o(t).

The following notations will be frequently employed in
the subsequent section:

ξi =
[
0n×(i−1)n In 0n×(16−i)n

]
, i = 1, ..., 16,

H2 =
[
ξT1 − ξT2 ξT1 + ξT2 − 2ξT5 ξT1 − ξT2 − 6ξT6

]T
H3 =

[
ξT2 − ξT3 ξT2 + ξT3 − 2ξT7 ξT2 − ξT3 − 6ξT8

]T
H4 =

[
ξT3 − ξT4 ξT3 + ξT4 − 2ξT9 ξT3 − ξT4 − 6ξT10

]T
Γ =

[
HT3 HT4

]T
, κt(s) = κ(t+ s), υ12 = υ2 − υ1

η0(t) =
[
κT (t) κT (t− υ1) κT (t− υ(t)) κT (t− υ2)

]T
η1(t) =

1

υ1

[∫ 0

−υ1 κ
T
t (s)ds

∫ 0

−υ1 σ1(s)κTt (s)ds
]T

η2(t) =
1

υ(t)− υ1

[∫ −υ1
−υ(t) κ

T
t (s)ds

∫ −υ1
−υ(t) σ2(s)κTt (s)ds

]T
η3(t) =

1

υ2 − υ(t)

[∫ −υ(t)
−υ2 κTt (s)ds

∫ −υ(t)
−υ2 σ3(s)κTt (s)ds

]T
η4(t) =(υ(t)− υ1)η2(t), η5(t) = (υ2 − υ(t))η3(t),

η6(t) =
[∫ −υ1
−υ2 κ

T
t (s)ds υ12

∫ −υ1
−υ2 σ4(s)κTt (s)ds

]T
σ1(s) =2

s+ υ1
υ1

− 1, σ2(s) = 2
s+ υ(t)

υ(t)− υ1
− 1

σ3(s) =2
s+ υ2
υ2 − υ(t)

− 1, σ4(s) = 2
s+ υ2
υ12

− 1.

III. MAIN RESULTS

Theorem 1. Given a scalar γ > 0 and a matrix S > 0,
suppose there exist constant ε1 > 0 and ε2 > 0 and positive
matrices P ∈ S5n+ , S1, S2, W1, W2 ∈ Sn+, constant matrices
N1, N2 ∈ R16n×2n, U1, U2 ∈ Rn×n, and M ∈ R3n×3n,
such that , for any υ ∈ {υ1, υ2},

Π0 =

[
W̃2 ∗
MT W̃2

]
≥ 0 (7)∆(υ) (ξT1 U1 + ξT15U2)B (ξT1 U1 + ξT15U2)B̄

∗ −ε1I 0
∗ ∗ −ε2I

 < 0 (8)

hold, where

∆(υ) =He(ĤT0 (υ)P Ĥ1 +N1g1(υ) +N2g2(υ) + Ŝ

+ ξT15(υ21W1 + υ212W2)ξ15 −HT2 W̃1H2 + Πij

+ ξT1 Sξ1 − γ2ξT16ξ16 − ΓTΠ0Γ

H0(υ) =(υ2 − υ)(ξ11 + ξ14) + (υ − υ1)(ξ12 − ξ13)

Ĥ0(υ) =col{ξ1, υ1ξ5, υ1ξ6, ξ11 + ξ13,H0(υ)}
H1 =υ12(ξ2 + ξ4)− 2(ξ11 + ξ13)
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Ĥ1 =col{ξ15, ξ1 − ξ2, ξ1 + ξ2 − 2ξ5, ξ2 − ξ4,H1}
Ŝ =diag{S1,−S1 + S2, 0n×n,−S2, 012n×12n}
W̃i =diag{Wi, 3Wi, 5Wi}, i = 1, 2

Πij =He(ξT1 (U1A+U1KC)ξ1+ξT15(U2A+U2KC)ξ1

+ ξT1 U1Āξ3 + ξT15U2Āξ3 + ξT1 U1Gξ16

+ ξT15U2Gξ16 − ξT1 U1ξ15 − ξT15U2ξ15)

+ ε1L
2
fξ
T
1 ξ1 + ε2L

2
gξ
T
3 ξ3

g1(υ) =(υ − υ1)
[
ξT7 ξT8

]T − [ ξT11 ξT12 ]T
g2(υ) =(υ2 − υ)

[
ξT9 ξT10

]T − [ ξT13 ξT14 ]T .
Then, under adaptive laws

˙̄θk = ΛΦTk (α(t))(UT1 κ(t) + UT2 κ̇(t))− σkθ̆ (9a)
˙̄φl = ΥΨT

l (α(t− υ(t)))(UT1 κ(t) + UT2 κ̇(t))− σlφ̆ (9b)

the HAS for UDNNs (1) and (3) is achieved under controller
(5).

Proof: Using schur’s complement to (8), one has

∆(υ) + (ξT1 U1 + ξT15U2)
1

ε1
BBT (UT1 ξ1 + UT2 ξ15)

+(ξT1 U1 + ξT15U2)
1

ε2
B̄B̄T (UT1 ξ1 + UT2 ξ15) < 0

which can be rewritten as

Φ0(υ)− ΓTΠ0Γ < 0

where

Φ0(υ) =He(ĤT0 (υ)P Ĥ1 +N1g1(υ) +N2g2(υ)) + Ŝ

+ ξT15(υ21W1 + υ212W2)ξ15 −HT2 W̃1H2 + Πij

+ (ξT1 U1 + ξT15U2)
1

ε1
BBT (UT1 ξ1 + UT2 ξ15)

+ (eT1 U1 + ξT15U2)
1

ε2
B̄B̄T (UT1 ξ1 + UT2 ξ15)

+ ξT1 Sξ1 − γ2ξT16ξ16.

Substituting (5) into (4) gives

κ̇(t)=(A+KC)κ(t)+Āκ(t−υ(t))+B(f(α̂(t))+f(α(t)))

+ B̄(g(α̂(t− υ(t))) + g(α(t− υ(t)))) +Gd(t)

−
N1∑
k=1

Φk(α(t))θ̆k −
N2∑
l=1

Ψl(α(t− υ(t)))φ̆l

where θ̆k = θ̄k − θk and φ̆l = φ̄l − φl.
Denote ζ(t) = col{η0(t), · · · , η5(t), κ̇(t), d(t)}. Then, for

slack variables N1 and N2, one can establish that

0 =ζT (t) (He(N1g1(υ(t)) +N2g2(υ(t)))) ζ(t).

For slack variables U1 and U2, from the Lipschitz conditions

(2), one can obtain

0 =2(κT (t)U1 + κ̇T (t)U2)(−κ̇(t) + (A+KC)κ(t)

+ Āκ(t− υ(t)) +B(f(α̂(t)) + f(α(t)))

+ B̄(g(α̂(t− υ(t))) + g(α(t− υ(t)))) +Gd(t))

− 2(κT (t)U1 + κ̇T (t)U2)(

N1∑
k=1

Φk(α(t))θ̆k

+

N2∑
l=1

Ψl(α(t− υ(t)))φ̆l)

≤ζT (t)Πijζ(t)− 2(κT (t)U1 + κ̇T (t)U2)(

N1∑
k=1

Φk(α(t))θ̆k

+

N2∑
l=1

Ψl(α(t− υ(t)))φ̆l)

+
1

ε1
(κT (t)U1 + κ̇T (t)U2)BBT (UT1 κ(t) + UT2 κ̇(t))

+
1

ε2
(κT (t)U1 + κ̇T (t)U2)B̄B̄T (UT1 κ(t) + UT2 κ̇(t)).

Consider LKF

V (κt, κ̇t) = V1(κt) + V2(κt) + V3(κt, κ̇t) + V4(κt) (10)

where

V1(κt) =κ̃T (t)Pκ̃(t)

V2(κt) =

∫ t

t−υ1
κT (s)S1κ(s)ds+

∫ t−υ1

t−υ2
κT (s)S2κ(s)ds

V3(κt, κ̇t) =υ1

∫ 0

−υ1

∫ t

t+λ

κ̇T (s)W1κ̇(s)dsdλ

+ υ12

∫ −υ1
−υ2

∫ t

t+λ

κ̇T (s)W2κ̇(s)dsdλ

V4(κt) =

N1∑
k=1

θ̆Tk Λ−1θ̆k +

N2∑
l=1

φ̆Tl Υ−1φ̆l

in which κ̃(t) = col{κ(t), υ1η1(t), η6(t)}. One calculates
that

V̇1(κt) =ζT (t)He(ĤT0 (υ(t))P Ĥ1 +N1g1(υ(t))

+N2g2(υ(t)))ζ(t)

V̇2(κt) =ζT (t)Ŝζ(t)

V̇3(κt, κ̇t) =ζT (t)ξT15(υ21W1 + υ212W2)ξ15ζ(t)

− υ1
∫ t

t−υ1
κ̇T (s)W1κ̇(s)ds

− υ12
∫ t−υ1

t−υ2
κ̇T (s)W2κ̇(s)ds (11)

V̇4(κt) =2

N1∑
k=1

θ̆Tk Λ−1 ˙̄θk + 2

N2∑
l=1

φ̆Tl Υ−1 ˙̄φl.
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By applying Lemma 1 and Lemma 2, one has

−υ1
∫ t

t−υ1
κ̇T (s)W1κ̇(s)ds− υ12

∫ t−υ(t)

t−υ2
κ̇T (s)W2κ̇(s)ds

−υ12
∫ t−υ1

t−υ(t)
κ̇T (s)W2κ̇(s)ds

≤− ζT (t)HT2 W̃1H2ζ(t)− ζT (t)
(
HT3 HT4

)
×

(
υ12

υ(t)−υ1 W̃2

υ12
υ2−υ(t)W̃2

)(
H3

H4

)
ζ(t)

≤− ζT (t)HT2 W̃1H2ζ(t)− ζT (t)ΓT
(
W̃2 ∗
MT W̃2

)
Γζ(t)

=− ζT (t)HT2 W̃1H2ζ(t)− ζT (t)ΓTΠ0Γζ(t)

which together with (11), gives

V̇3(κt, κ̇t) ≤ζT (t)ξT15(υ21W1 + υ212W2)ξ15ζ(t)

− ζT (t)HT2 R̃1H2ζ(t)− ζT (t)ΓTΠ0Γζ(t).

Combining the previous expressions, one is able to write

V̇ (κt, κ̇t)

≤ζT (t)He(ĤT0 (υ(t))P Ĥ1 +N1g1(υ(t))

+N2g2(υ(t)))ζ(t) + ζT (t)Ŝζ(t) + ζT (t)ξT1 Sξ1ζ(t)

−γ2ζT (t)ξT16ξ16ζ(t)+ζT (t)ξT15(υ21W1 + υ212W2)ξ15ζ(t)

− ζT (t)HT2 W̃1H2ζ(t)− ζT (t)ΓTΠ0Γζ(t)

+ ζT (t)Πijζ(t) + 2

N1∑
k=1

θ̆Tk Λ−1θ̇k + 2

N2∑
l=1

φ̆Tl Υ−1φ̇l

+ ζT (t)((ξT1 U1 + ξT15U2)
1

ε1
BBT (UT1 ξ1 + UT2 ξ15)

+ (eT1 U1 + ξT15U2)
1

ε2
B̄B̄T (UT1 ξ1 + UT2 ξ15))ζ(t)

− 2(κT (t)U1 + κ̇T (t)U2)(

N1∑
k=1

Φk(α(t))θ̆k

+

N2∑
l=1

Ψl(α(t−υ(t)))φ̆l)−κT (t)Sκ(t) + γ2dT (t)d(t)

=ζT (t)(Φ0(υ)− ΓTΠ0Γ)ζ(t) + 2

N1∑
k=1

θ̆Tk Λ−1(θ̇k

− ΛΦTk (α(t))(UT1 κ(t) + UT2 κ̇(t))) + 2

N2∑
l=1

φ̆Tl Υ−1

× (φ̇l −ΥΨT
l (α(t− υ(t)))(UT1 κ(t) + UT2 κ̇(t)))

− κT (t)Sκ(t) + γ2dT (t)d(t).

Using further the adaptive laws (9), one gets

V̇ (κt, κ̇t) ≤ −κT (t)Sκ(t) + γ2dT (t)d(t). (12)

From (12) one has

V (∞)−V (0)≤−
∫ ∞
0

κT (t)Sκ(t)dt+γ2
∫ ∞
0

dT (t)d(t)dt.

Noticing that V (∞) ≥ 0 and V (0) = 0, one can obtain
inequality (6), which means that ASES (4) possesses the H∞
DAPL γ. Thus, the proof is finished.

Theorem 1 provides an existence condition and the update
laws of the unknown parameters for the desired output-
feedback-based adaptive controller. Following the proof steps

TABLE I
MINIMUM ALLOWABLE VALUE γ FOR GIVEN K

γ k

-10 -20 -30 -40 -50

Theorem 1 in [13] 0.3475 0.0933 0.0589 0.0436 0.0347
Theorem 1 in [14] 0.3138 0.1825 0.1415 0.1195 0.1055

Theorem 1 0.2283 0.0696 0.0411 0.0291 0.0226

in [25], it is easy to demonstrate that the inequality con-
ditions in this theorem can also ensure the asymptotical
anti-synchronization of UDNNs (1) and (3). However, the
inequality conditions are not linear due to the existence
of nonlinear coupling terms consisting of K and decision
variables U1 and U2. To fix the issue, we introduce a new
decision variable L and set L = U1K, U2 = ιU1, where ι is
a pre-set constant. Then, we arrive at the following theorem:

Theorem 2. Given scalars γ > 0 and ι > 0, and a matrix
S ∈ Sn+, suppose there exist constant ε1 > 0 and ε2 > 0,
and matrices P ∈ S5n+ , S1, S2, W1, W2 ∈ Sn+, N1, N2 ∈
R15n×2n, U1 ∈ Rn×n, L, and M ∈ R3n×3n, for any υ ∈
{υ1, υ2}, such that LMIs (7) and ∆̂(υ) (ξT1 + ιξT15)U1B (ξT1 + ιξT15)U1B̄

∗ −ε1I 0
∗ ∗ −ε2I

 < 0

hold, where

∆̂(υ) =He(ĤT0 (υ)P Ĥ1 +N1g1(υ) +N2g2(υ)) + Ŝ

+ ξT15(υ21W1 + υ212W2)ξ15 −HT2 W̃1H2

+ Π̂ij + ξT1 Sξ1 − γ2ξT16ξ16 − ΓTΠ0Γ

Π̂ij =He(ξT1 (U1A+ LC)ξ1 + ξT15(ιU1A+ ιLC)ξ1

+ ξT1 U1Āξ3 + ξT15ιU1Āξ3 + ξT1 U1Gξ16

+ ξT15ιU1Gξ16 − ξT1 U1ξ15 − ξT15ιU1ξ15)

+ ε1L
2
fξ
T
1 ξ1 + ε2L

2
gξ
T
3 ξ3.

Then, under controller (5) with control gain K = U−11 L and
adaptive laws (9), the HAS for UDNNs (1) and (3) can be
achieved.

IV. NUMERICAL EXAMPLE

Example 1. Consider UDNN (1) with


A f(·)
Ā g(α(·))
B Φ1(·)
B̄ Ψ1(α(·))

=



−1 0 tanh(α1(·))
0 −1 tanh(α2(·))
0 0 tanh(α1(·))
0 0 tanh(α2(·))
2 0 −tanh(α2(·))
−5 1.5 0
−1.5 −0.1 0

0 −1 −tanh(α1(·))


.

For numerical calculation and simulation, we set θ1 = 0.1,
φ2 = 0.2, Lf = Lg = 1, G = S = diag{1, 1}, Λ = 50,
Υ = 200, σk = 0.8, σl = 0.8, and d(t) = 1.8e(−0.5t).

Consider the following two cases:
Case 1: C = diag{1, 1} and υ(t) = 1. In this case,

the output feedback reduces to the state feedback. For this
situation, Theorem 1 of this paper, Theorem 1 in [13] and
Theorem 1 in [14] are capable of checking adaptive HAS of
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Fig. 2. The trajectory of H(t)

the NN with the state feedback. However, as listed in TABLE
I, the results of [13] and [14] are much conservative than
present Theorem 1.

Case 2: C 6= diag{1, 1}. In this case, the theorems in
[13] and [14] are not applicable, while the present method

may be resorted to. We take C =

[
−1 1
−1 0

]
as an example,

use scalar parameter ι = 1 to analyze output-feedback
adaptive HAS of the NN, and choose

[
αT1 (0) αT2 (0)

]T
=[

0.5 −0.5
]T

,
[
α̂T1 (0) α̂T2 (0)

]
=
[
−2.6 3.3

]T
, θ̄1(0) =

−0.5, and φ̄1(0) = 0.3 as initial conditions. The time-
varying delay is given by υ(t) = 0.15 + 1.6 |sin(t)|. Fig.
1 depicts the trajectory of the chaotic attractor. When γ
is assigned a value of 0.5, the trajectory of H∞ is plotted
(6). Based on Theorem 2 we can obtain a solution, where
ε1 = 1.0735, ε2 = 0.0306, and

 S1 S2

R1 R2

U1 L

=


0.7698 −0.0505 0.3347 −0.0238
−0.0505 0.5883 −0.0238 0.2498
0.0023 0.0000 0.0046 0.0003
0.0000 0.0024 0.0003 0.0058
0.0124 0.0011 0.0359 1.6506
0.0013 0.0164 −1.5568 1.5210

.
Therefore, we can get the control gain

K =

[
11.6019 125.3661
−96.0699 83.3791

]
.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

-5

0

5

Fig. 3. State trajectories
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Fig. 4. Trajectories of θ̄1(t) and φ̄1(t)

The curve H(t) versus time is shown in Fig. 2. It can be
found that theH∞ norm from d(t) to anti-synchronization er-
ror κ(t) is bounded and smaller than the given γ. Fig. 3 gives
the curve of state trajectories, while Fig. 4 shows estimated
values θ̄1(t) and φ̄1(t) for θ1(t) and φ1(t), respectively. As
can be seen from these three figures, the anti-synchronization
of UDNNs is well guaranteed, and the estimates θ̄1(t) and
φ̄1(t) eventually converge to 0.1 and 0.2, respectively.

V. CONCLUSIONS
The issue HAS for UDNNs was considered. An output-

feedback-based adaptive control scheme was used to ensure
the HAS of the considered networks. An existence condition
and update laws of the unknown parameters for the desired
controller were developed by resorting to the BLI, LKF (10),
as well as the RCC. Then, a LMIs-based design method
for the output-feedback gain was developed by decoupling
nonlinear terms. Finally, a numerical example was provided
to explain the lower conservatism and effectiveness of the
present HAS control method.
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