Vibration Suppression Control of Space Flexible Manipulator with Varying Load Based on Adaptive Neural Network

Jinniao Shen, Wenhui Zhang, Shuhua Zhou, and Xiaoping Ye

Abstract—A neural network control method for terminal load identification is designed to solve the variable load problem of the space robot terminal. The space robot model is decomposed into two dynamic sub models by singular perturbation theory: rigid and flexible. Considering the influence of variable load mass on the dynamic model, a weighted recursive least squares method (WRLSM) is designed to identify the estimation of unknown quality. The uncertain model error is compensated by neural network. Aiming at the problem of elastic vibration caused by flexible characteristics, a linear quadratic regulator (LQR) strategy is designed to suppress the chattering of robot flexible arm. Simulation verifies the effectiveness of the controller.

Index Terms—Space flexible manipulator; Variable load; Quality estimation; Adaptive control; Neural network; Vibration suppression.

I. INTRODUCTION

Comparing with rigid manipulator, flexible manipulator has lighter weight, higher speed and lower energy consumption [1], so it has been widely used in space technology. From the earlier Canadian canadarm-2 space manipulator of the European Union "International Space Station" to the large space manipulator of the Chinese "Tiangong 1" space station, Manipulator made of flexible composite material, which makes the space manipulator show strong flexibility. This flexibility can better absorb the impact energy generated when the robot collides with other objects. However, the flexible characteristics will make the robot chatter in the process of motion [2-4], which will seriously affect the high accuracy of the robot terminal. Moreover, robots will have more difficult tasks in space, such as cleaning up space garbage or capturing unknown targets [5-7]. The target load quality is unknown. If the difference between the captured target load and the preset load is too large, it is easy to cause load mutation, which will damage the stability of the actuator [8-9]. Therefore, the research of space flexible arm control based on non-cooperative target acquisition has important practical significance.

In recent years, few international scholars have studied the problem of non-cooperative target load acquisition, but they have proposed different control strategies for robot control, such as sliding mode [10-12], adaptive [13,14], neural network [15,16], robust [17]. There have also made some meaningful research results on the space flexible arm robot with varying load [18-23].

Lei et al. [24] proposed a fault-tolerant control tactics by neural network for floating space flexible robot, and a quadratic optimal controller to suppress elastic vibration. Chen et al. [25] proposed an active disturbance rejection control (ADRC) tactics for the single flexible arm with disturbance. The state observer is designed to estimate the disturbance, and the feedback controller is designed to compensate the disturbance. Hamzeh et al. [26] proposed a composite control tactics based on sliding mode for a single arm, in which one controller realizes position tracking and the other controller suppresses elastic vibration. Lei et al. [27] proposed an adaptive control method based on H∞ for free floating space flexible robot, and designed a robust controller based on H∞ to track the desired trajectory, and devised an adaptive controller based on optimal control theory to suppress elastic vibration.

At present, scholars at home and abroad mainly focus on the flexible arm without considering the load change, but the research on variable load target is relatively few. In fact, considering the complex task conditions of the space robot, such as cleaning up space garbage or capturing unknown targets, the target load quality is unknown. If load is too large, it is easy damage the stability of the control system.

Through the above analysis, a neural network control tactics based on calculated torque is devised. The purpose of the controller is to estimate the unknown load mass, and realize the complete decoupling of the unknown nonlinear model, and suppress the elastic vibration. The main innovation points are as follows.

1) Different from the traditional control, which controls the robot dynamics model as a whole, this research decomposes dynamics model into two dynamics subsystem models to realize the separate control of the two subsystems;

2) Different from the traditional control object which is a constant mass load, the recursive weighted least squares
method is devised to discriminate identification of the variable mass load;

3) Different from the partial decoupling of nonlinear model in traditional control, an adaptive controller based on neural network is designed to realize compensation control, so as to realize complete decoupling of nonlinear model. At the same time, a LQR controller is devised to suppress the elastic vibration.

II. DYNAMIC MODELING OF FLOATING SPACE FLEXIBLE MANIPULATOR

From Fig. 1, the free-floating space flexible robot is composed of carrier \(B_0 \), flexible rods \(B_1 \) and \(B_2 \). The joint system \(B_i (i = 0, 1, 2) \) of each split \(O_i x_i y_i \) is established. The load mass \(p \) is \(m \), and the specific parameters are defined in references [24,28].

Assuming that the flexible arm with two degrees of freedom is a slender homogeneous arm, if rod \(B_1 \) is regarded as a simply supported beam and rod \(B_2 \) as a cantilever beam, it is a Bernoulli Euler beam [25]. Here, bending deformation is mainly considered. Shear deformation is ignored. If the bending rigidity of the section is \((EI)_i\) and the linear density of the flexible rod \(B_i (i = 1, 2) \) is \(\rho_i \), its elastic deformation is recorded as

\[
\begin{align*}
\mathbf{u}_i(x_i,t) &= \sum_{j=1}^{\infty} \phi_{ij}(x_i) q_{ij}(t) \\
\end{align*}
\]

Where \(\mathbf{u}_i(x_i,t) \) is the transverse elastic deformation of \(B_i \) at section \(x_i (0 \leq x_i \leq l_i) \). \(\phi_{ij}(x_i) \) is the \(j \) order modal function of \(B_i \). The specific modal function is referred to [28]. \(q_{ij}(t) \) is the modal coordinate corresponding to \(\phi_{ij}(x_i) \). \(n_i \) is the number of truncation terms, where the first two modes are taken as \(i = 1, 2 \).

Based on the Lagrange equation of the second kind and the momentum conservation theorem, the dynamic equation of the flexible robot can be obtained as follows and the detailed calculation process is shown in [31]:

\[
M(\theta_b, q) \frac{\partial^2 \theta}{\partial t^2} + H(\theta_b, \dot{\theta}, q, \dot{q}) \frac{\partial \theta}{\partial t} + \frac{\xi}{Kq} = \tau
\]

(2)

Where \(\theta_b = [\theta_l, \theta_r]^T \), \(\theta = [\theta_l, \theta_r]^T \) and \(\theta \) is the rigid generalized coordinate column vectors of the joint angle of the arm. \(q = [q_{11}, q_{12}, q_{21}, q_{22}]^T \) is the flexible generalized coordinate column vector of the flexible modal coordinates of the member. \(H(\theta_b, \dot{\theta}, q, \dot{q}) \) is column vector containing Coriolis force and centrifugal force. \(K = \text{diag}(k_{11}, k_{12}, k_{21}, k_{22}) \) is the stiffness matrix of the member. \(k_{ij} = (EI)_i \int_{0}^{l_i} (\phi_i'\phi_j')d\xi \). \(\tau = [\tau_1, \tau_2]^T \) is the output torque of the rod joint, and \(\xi \) is the external interference and joint friction.

Writing (2) as a block matrix in the form of

\[
\begin{bmatrix}
M_{rr} & M_{rf} \\
M_{fr} & M_{ff}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_r \\
\dot{\theta}_f
\end{bmatrix}
+
\begin{bmatrix}
H_{rr} & H_{rf} \\
H_{fr} & H_{ff}
\end{bmatrix}
\begin{bmatrix}
\theta_r \\
\theta_f
\end{bmatrix}
+
\begin{bmatrix}
\frac{\xi}{Kq_r} \\
\frac{\xi}{Kq_f}
\end{bmatrix}
=
\begin{bmatrix}
\tau_r \\
\tau_f
\end{bmatrix}
\]

(3)

Where \(M_{rr} \in \mathbb{R}^{2x2}, M_{rf} = M_{fr}^T \in \mathbb{R}^{2x2}, M_{ff} \in \mathbb{R}^{4x4}, H_{rr} \in \mathbb{R}^{2x2}, H_{rf} \in \mathbb{R}^{4x2}, H_{fr} \in \mathbb{R}^{4x2}, H_{ff} \in \mathbb{R}^{4x4} \).

\[
M^{-1} = N = \begin{bmatrix}
M_{rr} & M_{rf} \\
M_{fr} & M_{ff}
\end{bmatrix}^{-1} = \begin{bmatrix}
N_{rr} & N_{rf} \\
N_{fr} & N_{ff}
\end{bmatrix}
\]

(4)

If the singular perturbation scale factor is defined as \(\mu = (\min(k_{11}, k_{12}, k_{21}, k_{22}))^{1/2} \), and the state variable is defined as \(z = q / \mu^2 \), and the new stiffness matrix is defined as \(\tilde{K} = \mu^2 K \), then (3) can be decomposed into and characterized as a fast subsystem with flexible characteristics:

\[
\begin{align*}
\ddot{\theta} &= -(N_{rr} H_{rr} + N_{rr} H_{fr}) \dot{\theta} - (N_{rf} H_{rf}) \dot{\theta} \dot{\theta} - N_{ff} \tilde{K} \tilde{z} + N_{rr} (\tau - \tilde{\xi}) \\
\mu^2 \ddot{\tilde{z}} &= -(N_{rf} H_{fr} + N_{rf} H_{ff}) \dot{\theta} - (N_{fr} H_{fr} + N_{fr} H_{ff}) \dot{\theta} \dot{\theta} \dot{\theta} - N_{ff} \tilde{K} \tilde{z} + N_{fr} (\tau - \tilde{\xi})
\end{align*}
\]

(5)

The design master controller is

\[
\tau = \tau + \tau_f
\]

(7)

Where \(\tau_f \) is a slowly varying subsystem controller, which is used to track the desired trajectory. \(\tau_f \) is a fast-changing subsystem controller, which is used to suppress elastic vibration.
In order to obtain the slowly varying subsystem model representing the rigid characteristics, letting $\mu = 0$ be substituted into equation (6) to sort out the slowly varying manifold expression \overline{z}:

$$\overline{z} = \tilde{K}^{-1}\overline{N}_f^{-1}[-(\overline{N}_f \overline{F}_f + \overline{N}_g \overline{F}_g)\dot{\theta} + \overline{N}_f (\overline{\vartheta} - \overline{x})]$$ (8)

Where the superscript "-" represents the physical quantity of the slowly varying subsystem. Then, substituting (8) into (7) and combining with $\overline{M}_r^{-1} = \overline{N}_r^{-1} - \overline{N}_g \overline{N}_f$, the slowly varying subsystem is obtained as follows:

$$\overline{M}_r \ddot{\theta} + \overline{H}_r \dot{\theta} + \overline{x} = \overline{\vartheta}$$ (9)

In order to obtain the fast-varying subsystem model that characterizes the flexibility, the time scale of the fast-varying subsystem $p_1 = z - \overline{z}$, $p_2 = \mu \dot{z}$ is set as $\overline{\varphi} = t / \mu$ and t as time. Let $\mu = 0$ be carried into (6) to sort out the expression of fast-changing manifold:

$$\frac{dp_1}{d\overline{\varphi}} = p_2$$ (10)

$$\frac{dp_2}{d\overline{\varphi}^2} = -\overline{N}_f \tilde{K} p_1 + \overline{N}_f \tau_f$$ (11)

III. DESIGN OF ROBUST COMPENSATION CONTROLLER BASED ON ADAPTIVE NEURAL NETWORK

Figure 2 is the flow chart of the design control system for the space flexible robot.

A. Unknown load quality estimation

Considering the unknown and uncertainty of the end load mass, the model items containing the load mass is decomposed into:

$$\overline{M}_r(\theta_b) = M_0(\theta_b) + C_m(\theta_b)\hat{m}$$ (12)

$$\overline{H}_r(\theta_b, \dot{\theta}) = H_0(\theta_b, \dot{\theta}) + C_H(\theta_b, \dot{\theta})\hat{m}$$ (13)

Where $M_0(\theta_b)$ and $H_0(\theta_b, \dot{\theta})$ are known deterministic models. $C_m(\theta_b)m$, $C_H(\theta_b, \dot{\theta})m$ are unknown uncertain models.

Substituting (12) and (13) into (2) to obtain

$$\phi^T \hat{m} = \eta$$ (14)

Where

$$\phi^T = C_m(\theta_b)\dot{\theta} + C_H(\theta_b, \dot{\theta})\dot{\theta} ;$$

$$\eta = \overline{\vartheta} - d - M_0(\theta_b)\dot{\theta} - H_0(\theta_b, \dot{\theta})\dot{\theta}.$$

Assuming that the actual quality of the load is m and the estimated quality is \hat{m}, the quality estimator is designed based on the improved weighted recursive least square method (WRJSM):

$$\hat{m}_k = \hat{m}_{k-1} + K_k (\eta_k - \phi_k^T \hat{m}_{k-1})$$ (15)

$$N_k = N_{k-1} - N_{k-1} \phi_k (L_k + \phi_k^T N_{k-1} \phi_k)^{-1} \phi_k^T N_{k-1}$$ (16)

$$K_k = N_{k-1} - \phi_k (L_k + \phi_k^T N_{k-1} \phi_k)^{-1}$$ (17)

Where $\eta_k - \phi_k^T \hat{m}_{k-1}$ is the prediction error. K_k is the gain matrix. L_k is the weighting matrix.

According to (14), the designed quality estimator needs to know the angular acceleration signal. The higher-order differential of the angular position signal. Then the tracking differentiator (TD) is designed as:

$$\begin{cases}
\hat{x}_1 = x_2 \\
\hat{x}_2 = h(x_1 - \overline{\vartheta}, x_2, r, \overline{h}_0)
\end{cases}$$ (18)
Where $x_i = \theta$ and h_0 are filter factors. r are velocity factors. τ are torque output.

Design the function of $h(x_i - \tau, x_i, r, h_0)$ as

$$
\begin{align*}
 h &= -r \text{sgn}(a) \\
 h &= -r a / d
\end{align*}
$$

(19)

Where

$$
 a = \begin{cases}
 x_2 + 0.5(a_0 - d) \text{sgn}(y) & |y| > d_0 \\
 x_2 + y / h_0 & |y| \leq d_0
 \end{cases},
 d_0 = h_0 d,
$$

$$
a_0 = \sqrt{d^2 + 8r^2} , d = rh_0 , y = x_1 + h_0 x_2.
$$

B. Neural network control design

Defining the sliding surface as:

$$
 s = \dot{e} + \Lambda e
$$

(20)

Where Λ is positive matrix. $e = \theta - \dot{\theta}_d$ is position error. $\dot{\theta}_d$ is ideal angle. \dot{e} is velocity error. Defining reference input as θ^*, then

$$
 \dot{\theta}_d = \dot{\theta}_d - \Lambda e
$$

(21)

Combing (18) - (19) can obtain

$$
 s = \dot{e} - \dot{\theta}_d
$$

(22)

In order to prove the stability of the system, the following functions are constructed

$$
 V(t) = \frac{1}{2} s^T \bar{M}_v s
$$

(23)

Differentiate the above equation

$$
 \dot{V}(t) = s^T \bar{M}_v \dot{s} + \frac{1}{2} s^T \bar{M}_v \dot{s} = -s^T [\bar{M}_v \dot{\theta}_d + \bar{H}_v \dot{\theta}_d + \xi - \tau^*] - s^T \bar{K}_v s \leq 0
$$

(24)

Assuming that models \bar{M}_v and \bar{H}_v are accurately known. ξ is also accurately known. The following control law can be devise as

$$
 \bar{T} = \bar{M}_v \ddot{\theta}_d + \bar{H}_v \dot{\theta}_d + \xi - \tau^* s
$$

(25)

Where K_v is a positive matrix. If (25) is brought into (24), getting

$$
 \dot{V}(t) = -s^T \bar{K}_v s \leq 0
$$

(26)

However, in the actual project, $\xi \neq 0$, and the designed load quality estimator must have some identification errors. Especially in the initial stage, there are few sample data, and there are large identification errors. With the iteration of online data samples, the identification accuracy will gradually improve. Letting the quality identification error be $\Delta m = m - \hat{m}$, and from (12) - (13), the model error is

$$
\Delta \hat{M}_v(\theta_d) = \hat{M}_v - \bar{M}_v = C_w(\theta_d) \Delta m
$$

(27)

Where $\Delta \hat{M}_v(\theta_d)$ is the dynamic estimation models with load estimation mass \hat{m} are defined as \bar{M}_v and \bar{H}_v respectively. The error models caused by load quality estimation errors are $\Delta \bar{M}_v$ and $\Delta \bar{H}_v$.

Bringing (27) - (28) into the controller (23), and considering the existence of external interference and other uncertain factors, $\xi \neq 0$. Then the new controller is designed as:

$$
\bar{T} = \hat{M}_v \ddot{\theta}_d + \hat{H}_v \dot{\theta}_d + f - K_v s
$$

(29)

If f can be accurately obtained, Then the function can be composed as follows

$$
V(t) = \frac{1}{2} s^T \bar{M}_v s
$$

(30)

Differentiate the above equation

$$
\dot{V}(t) = s^T \bar{M}_v \dot{s} + \frac{1}{2} s^T \bar{M}_v \dot{s} = -s^T [\bar{M}_v \ddot{\theta}_d + \bar{H}_v \dot{\theta}_d + \xi - \tau^*] = -s^T K_v s \leq 0
$$

(31)

Then the control system is stable.

However, since f is an uncertain nonlinear function, it needs to be compensated. Considering that the neural network has good nonlinear compensation ability and is widely involved in the field of motion control, the neural network is used for compensation [29, 30].

RBF neural network f optimal output is

$$
 f(x) = W^T \varphi(x) + \varepsilon
$$

(32)

Where $x = (\theta_0, \theta_1, \theta_2)$ is the input. W^T is the weight matrix. ε is the approximation error. $\varphi(x)$ is a Gaussian function.

According to the learning characteristics of neural network, the following assumptions are made:

Assumption 1: The optimal weight parameter W^*, that is, there is a normal number W_m, which satisfies $\|W^*\| \leq W_m$ and there is any small positive number ε_m, so that the neural network approximation error ε can meet $|\varepsilon| < \varepsilon_m$.

If actual output is \hat{f},

$$
 \hat{f} = \hat{W}^T \varphi
$$

(33)

Where \hat{W} is the actual weight.

From (32) and (33), It can be concluded that
\[\Delta \hat{f} = f - \hat{f} = W^T \varphi + e - \hat{W}^T \varphi = \hat{W}^T \varphi + e \]
(34)

Where \(\hat{W} = W^* - \hat{W} \).

In order to eliminate the influence of error \(\Delta \hat{f} \), a robust controller \(\tau_\nu \) is designed here to increase the stability of the system, and the control law (31) is rewritten as

\[\tau_\nu = e_\varphi \text{sgn}(s) \]
(36)

The weight adaptive law is devised as

\[\dot{\hat{W}} = -\gamma_0 \varphi s^\top \]
(37)

Where \(\gamma_0 \) is positive matrix.

Theorem: for the space robot formula (9), the control formula (35), formula (33), formula (37) and formula (36) can ensure the global asymptotic stability.

Proof: defining function

\[V = \frac{1}{2} s^\top \hat{M}_n s + \frac{1}{2} tr(\hat{W}^T \gamma_0^{-1} \hat{W}) \]
(38)

Differentiate the above equation

\[\dot{V}(t) = -s^\top [\Delta \hat{M}_n \dot{\theta}_i + \hat{M}_n \dot{\theta}_i + \dot{f} + K_\nu s - \tau_\nu] + e_\varphi \text{sgn}(s) + tr(\hat{W}^T \gamma_0^{-1} \dot{\hat{W}}) \]
(39)

Substituting (34) and (35) into (39), getting

\[\dot{V} = -s^\top [f - \dot{f} - K_\nu s - e_\varphi \text{sgn}(s)] + tr(\hat{W}^T \gamma_0^{-1} \dot{\hat{W}}) \]
(40)

Substituting (37) into (40), after simplification, getting

\[\dot{V} = -s^\top K_\nu s - s^\top (e_\varphi \text{sgn}(s) + e) \leq -s^\top K_\nu s \]
(41)

Since \(K_\nu \) is a positive definite symmetric matrix

\[\dot{V} \leq 0 \]
(42)

Then the system will finally be in a stable state.

C. Quick change subsystem LQR controller

Writing (10) ~ (11) in the form of state space, and making

\[L = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \]

state variable, which express as:

\[\dot{L} = A_f L + B_f \tau_f \]
(43)

Where \(A_f = \begin{bmatrix} 0 & I \\ -\hat{N}_\varphi & \hat{K} \end{bmatrix} \) , \(B_f = \begin{bmatrix} 0 \\ \hat{N}_\varphi \end{bmatrix} \).

The optimal control technology is adopted for vibration suppression. The objective function is selected as

\[J = \frac{1}{2} \int_0^\infty (L^\top Q L + \tau_f^\top R \tau_f) dt \]
(44)

Where \(Q \) and \(R \) are weight coefficient matrices. If the standard LQR design is adopted, the control output is

\[\tau_f = -KL \]
(45)

Where \(K = -R^{-1}B_f^\top P(t) \).

Then the system will finally be in a stable state.

Taking the dynamic model given in Fig. 1 as an example. Combined with the load estimation (16) - (18), the simulation is carried out by using formula (23) and formula (44). The parameters of the floating space flexible manipulator are as follows:

- \(l_0 = l_1 = 2m \), \(l_2 = 2.5m \), \(m_0 = 40kg \), \(m_1 = 5kg \), \(m_2 = 2.5kg \), \(J_0 = 35kg \cdot m^2 \), \(\rho_1 = 4kg/m \), \(\rho_2 = 1.2kg/m \cdot (EI_1) = 50N \cdot m^2 \cdot (EI_2) = 50N \cdot m^2 \).

The trajectory of the manipulator is:

\[q_d = [\cos 0.2\pi t + \sin 0.2\pi t]^\top \]

TD parameters are:

- \(r_{11} = r_{12} = 3200 \), \(h_{110} = h_{210} = 0.04 \), \(r_{21} = 1500 \), \(r_{22} = 2000 \), \(h_{210} = 0.03 \), \(h_{220} = 0.04 \).

The controller parameters are:

- \(e_{\varphi 0} = 0.05 \), \(\Lambda = \text{diag}(5,5) \), \(K_\nu = \text{diag}(10,10) \)

The weight coefficient matrix of LQR is selected as:

\[Q = \text{diag}(100,10,10,10,10,10,10,10) \]

\[R = \text{diag}(100,10) \]

Uncertain nonlinear term is:

\[\xi = [q_1 \dot{q}_1 0.3 \sin t, q_2 \dot{q}_2 0.3 \sin t]^\top \]

Initial value:

- \(\theta_0 = 0 \), \(q_1(0) = \dot{q}_1(0) = 0 \), \(q_2(0) = \dot{q}_2(0) = 0 \).

The number of hidden neurons is \(n = 25 \). The initial weights of the network is 0. The width of basis function and the center of the basis function is randomly designated within \((0 \sim 0.1) \).

IV. EXPERIMENTAL SIMULATION

The initial parameter of the WRLSM quality estimator is \(N_0 = 2000 \) and \(\hat{n} \) is the estimated load mass. The given initial mass is \(1kg \) and the real mass is set to \(6kg \). At this time, \(\Delta M = 2m_2 = 5kg \) is twice the mass of arm 2. The end load identification is shown in Fig. 3.
From Fig. 3, when the error of the initial value of load quality is relatively large, the quality estimator quickly tracks the real value in less than 0.5s. The overshoot is small. This shows that the designed WRLSM quality estimator is effective and can accurately estimate the unknown quality when the initial quality error is large.

B. Neural network adaptive control of variable load

To verify the effectiveness of the adaptive neural network (ANN) control tactics and the impact of WRLSM quality estimator on the control effect. W-ANN represents the ANN algorithm using WRLSM quality estimator. ANN represents the control algorithm without WRLSM quality estimator.

a) Unknown load small range uncertainty $\Delta M = 0.5kg$

When the uncertainty of the end load is small, such as $\Delta M = 0.2m_2 = 0.5kg$, control algorithm is verified. Fig. 4, 6 is the joint angle trajectory tracking diagram using W-ANN algorithm. Fig. 7, 10 is the first-order modal diagram of the arm using W-ANN algorithm. Fig. 8, 11 is the joint angle trajectory tracking diagram using ANN algorithm. Fig. 9, 12 is the first-order modal diagram of the arm using ANN algorithm.

From Fig. 4, 6 and Fig. 8, 11, when the load uncertainty is $\Delta M = 0.2m_2 = 0.5kg$, the proposed W-ANN algorithm or ANN algorithm can accurately track the actual trajectory within about 1s. Due to the small uncertainty of load, the control effect achieved by using W-ANN algorithm or ANN algorithm is similar, which shows that the designed ANN controller has good robustness and can realize better compensation control for model mutation caused by small load change. In the case of small load uncertainty, From Fig. 7, 10 and Fig. 9, 12 that the first-order modal shape of the flexible arm is not violent.
C. Unknown load large range uncertainty $\Delta M = 5\text{kg}$

When the uncertainty of the end load is large, such as $\Delta M = 2m_b = 5\text{kg}$, the change of the end load is twice the mass of the boom, and control tactics is verified. Fig.13,16 is the joint angle trajectory tracking diagram using W-ANN algorithm. Fig.14,17 is the first-order modal diagram of the arm using W-ANN algorithm. Fig.15,18 is the joint angle trajectory tracking diagram using ANN algorithm. Fig.19,22 is the first-order modal diagram of the arm using ANN algorithm.
From Fig. 13, 16 and Fig. 15, 18 that the proposed two algorithms can gradually converge to the actual trajectory when the load uncertainty is $\Delta M = 2m_2 = 5kg$, which shows that the ANN algorithm is effective and still has good robustness when the load changes greatly. This shows that the ANN algorithm is effective and still has good robustness in the case of large load changes. The proposed W-ANN algorithm can accurately track the actual trajectory in about 2s (Fig. 13, 16). The ANN algorithm can accurately track the actual trajectory in about 5s (Fig. 15, 18). This shows that if the load uncertainty is large, the control performance obtained by using W-ANN algorithm is significantly better than that of ANN algorithm. Using quality estimator to estimate the unknown quality can effectively improve the...
control effect. From the comparison between Fig.14,17 and Fig.19,22 that when the load is uncertain, the first-order modal vibration morphology of the flexible arm is obviously aggravated, and the modal vibration mode generated by the W-ANN algorithm is better than the ANN algorithm.
D. System simulation analysis when LQR control is closed
From Fig.20,23 and Fig.21,24, if the fast variable LQR controller is turned off, the trajectory will oscillate severely and it is completely impossible to track the upper trajectory. At the same time, it can be seen that if ΔM is larger, the oscillation is more severe.

V. CONCLUSION
A neural network control method for terminal load identification is designed to solve the variable load problem of the space robot terminal. The dynamic model of the model is decomposed into two dynamic sub models representing rigid and flexible characteristics by using singular perturbation theory. WRLSM algorithm is designed to realize identification and estimation of quality. The uncertain model error is compensated by neural network. A linear quadratic regulator (LQR) controller is designed to suppress the elastic vibration of the flexible robot. The results show that the designed controller can effectively deal with the quality change, and the control effect is effective.

REFERENCES