
 

  

Abstract—Aiming at the problems of image degradation 

caused by uneven illumination, dense haze and high noise under 

the mine environment, an enhancement algorithm of mine 

image based on adaptive transmittance and hierarchical 

threshold function is proposed. Firstly, the multiscale 

decomposition of the mine degradation image is carried out by 

wavelet transform. The low-frequency image with haze and the 

high-frequency images with noise are separated. Secondly, the 

low-frequency image is dehazed. Through adaptive judgment 

on the position at the edge of the field depth, the transmittance 

of this position is optimized by minimum filtering, and the 

optimized transmittance is smoothed by guide filtering, which 

can retain the image edge details and suppress the generation of 

white halo blocks. After that, the high-frequency images are 

denoised by the hierarchical threshold function, and 

high-frequency wavelet coefficients are estimated in three 

sections. The adjustment factors are set to select appropriate 

parameters to suppress the noise with different scales and keep 

more high-frequency details while the denoising effect is 

satisfied. Finally, the brightness of the wavelet reconstructed 

image is equalized in HSI space to obtain the final enhanced 

image. Experiment results show that the proposed approach 

can suppress the noise and haze and enhance image details. 

Meanwhile, compared with the dark channel prior algorithm, 

the running efficiency is also improved effectively. 

 
Index Terms—image enhancement, adaptive transmittance, 

image dehazing, threshold denoise 

I. INTRODUCTION 

ith the continuous development of the coal mining 

industry, the mine video surveillance system has 

played an essential role in the safety production of coal 

mining enterprises and disaster emergency rescue [1-2]. Due 

to the influences of noise, dense haze, and uneven 

illumination under the mine environment [3], the image 

details in the dark area are lost, and halo artifacts exist in the 
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highlighted area. The scene information under the mine is 

ambiguous, which affects the image quality collected by the 

video surveillance system seriously. Therefore, improving 

mine image quality is significant to mine automation and 

intelligent mining. 

To solve the degradation problem of video surveillance 

images in mines, there are mainly two methods: image 

enhancement and image restoration. 

(1) Image enhancement-based methods mainly include 

histogram equalization (HE) [4], wavelet transformation 

(WT) [5], the Retinex method [6]. HE algorithm can enhance 

local contrast, but there are some color distortion and partial 

overexposure in the enhanced image [7]. The WT algorithm 

has a good denoising effect but does not adjust the 

low-frequency coefficient, which makes the enhanced image 

brightness not improve significantly. The Retinex method can 

improve the image brightness effectively, but the processed 

image exists color distortion, and halo artifacts are existed 

due to uneven illumination. Therefore, to overcome these 

problems, some improved algorithms are employed. Liya 

Zhang et al. [8] combined the retinex algorithm with bilateral 

filtering, which can overcome the phenomena of halo 

artifacts and edge blur. Shoufeng Tang et al. [9] employed an 

MSR algorithm on the basis of multiscale guided filtering, 

which can suppress noise and retain edge details. Li et al. [10] 

proposed the LightenNet for the mapping relationship 

estimation of low-light images and combined the retinex 

model to enhance the image brightness. Wei et al. [11] 

proposed the RetinexNet fully convolutional network, which 

can improve image contrast effectively. However, it is easy to 

lose edge details while denoising. The enhancement effect of 

the above methods is improved significantly, but there are 

still some problems, such as noise, detail loss and 

overexposure. 

(2) Image restoration-based method. He algorithm [12-13] 

has a better dehazing effect, but the restored image is dark. 

Yingjie Mei et al. [14] combined dark channel prior (DCP) 

algorithm and multiscale retinex for the improvement of 

image contrast and brightness. However, there was the halo 

artifact in the restored image. Yong Chen et al. [15] proposed 

an algorithm combining super pixel segmentation with dark 

and bright channels to improve the transmittance. Xinyu Zh- 

ao et al. [16] proposed a dual-channel prior and illumination 

map-guided filtering algorithm to refine the transmittance. 

These methods can avoid residual haze and partial darkness, 

but there are still halo blocks at the edges. Cai et al. [17] 

adopted the DehazeNet to learn and estimate the relationship 

between transmittance and hazy images directly. However, 

this method is ineffective in restoring the depth of field 
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changes, and it is easy to lose edge information. Besides, the 

algorithm has many parameters, and it is inefficient. Li et al. 

[18] proposed the AODNet network, in which all parameters 

were estimated in a unified model. This method can reduce 

the parameter estimation error and improve computational 

efficiency significantly. Chen et al. [19] proposed the 

GCANet network, which restored images without relying on 

prior knowledge and solved the problem of grid artifacts. But 

it has high data set requirements and limited application 

scenarios. The network-based on deep learning can improve 

the dehazing effect effectively. However, the network 

structure often fails to consider all haze map features 

thoroughly, and halo blocks are existed resulting in an 

incomplete dehazing effect.   

Although image quality is improved by the above 

enhancement methods, the performance of denoising and 

dehazing cannot be satisfied simultaneously, and image 

details are lost. To optimize the dehazing and denoising effect, 

this research mainly conducted two contributions: (1) The 

adaptive transmittance is proposed at the edge of field depth, 

which can eliminate halo artifacts and improve the contrast. 

(2) The hierarchical threshold function is divided into three 

sections to estimate the wavelet coefficients, which can 

improve the denoising effect and retain more detail 

characteristics. 

The remainder of this paper is organized as follows. In 

Section 2, the adaptive transmittance and hierarchical 

threshold function are described. Then, we mainly introduce 

the working principle and process of the proposed approach 

in Section 3. Next, the comparison and analysis of the 

dehazing, denoising effect, and overall enhancement 

performance are presented in Section 4, respectively. The 

conclusion is summarized in Section 5. 

II. PROPOSED ALGORITHM 

Haze is represented by slow transformation information, 

mainly concentrated in the low-frequency part after wavelet 

decomposition [20]. The noise and detailed information in 

the image are contained in the high-frequency part of the fast 

transformation. Through comprehensive analysis, the low- 

frequency component is dehazed by adaptive transmittance, 

and hierarchical threshold function is employed to denoise 

high-frequency components. The processing framework is 

shown in Fig. 1. 

A. Adaptive transmittance 

The mine environment is full of roadway structures and no 

sky domain. Therefore, the dark channel prior (DCP) 

algorithm is naturally suitable for image dehazing in the mine 

scene. The low-frequency images are dehazed based on the 

DCP algorithm [12].  The specific steps of the DCP algorithm 

are as follows. Firstly, the dark channel is obtained with 

formula (1). The brightest pixel value of the first 0.1% is 

taken from the dark channel. Then the highest brightness 

value of the corresponding point in the original image is 

selected as atmospheric light value A. The initial 

transmittance can be obtained with formula (2), and the final 

low-frequency dehazing image can be obtained with formula 

(3). 
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Where ( )cj y  is a color channel of the image; ( )x  is the 

local area centered at pixel point x; 0t  is the threshold with 

the value of 0.1. 

He et al. [12] adopted minimum filtering to obtain the dark 

channel image, so there is a blocky effect at the edge of the 

field depth, and the restored image is darker overall. The 

initially estimated transmittance is shown in Fig. 2 (a). He 

algorithm [13] optimizes the initial transmittance through 

guide filtering. However, this method does not eliminate the 

white halo blocks at the edge but dilutes them to the 

surrounding. The transmittance optimized by guided filtering 

is shown in Fig. 2 (b).  

Aiming at this problem, adaptive transmittance is proposed 

to eliminate halo blocks. The steps of transmittance 

optimization are as follows. 

(1) The transmittance of minimum filtering ( )2t x  is 

obtained with formula (4), which is the optimized transmitt- 

ance at the edge of the field depth. 

 ( )
( )

( )2 1min
x x

t x t x


=  (4) 

(2) The difference between ( )1t x  and ( )2t x  can be 

obtained with formula (5). The position at the edge of the 

field depth can be judged by the threshold value T with the 

formula (6). 

 ( ) ( )1 2t t x t x = −  (5) 

 

Fig. 1. Processing frame diagram of the low and high-frequency components. 
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(3) If t T  , the transmittance is considered in the edge 

region of field depth and ( )3t x  will be taken as ( )2t x . On 

the contrary, it will be taken as ( )1t x . The formula is defined 

as follows: 

 ( )
( )

( )

2

3

1

,

,

t x t T
t x

t x t T

 
= 
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 (7) 

(4) ( )3t x  is smoothed by guided filtering and ( )4t x  is the 

final optimized transmittance. The guide filtering is defined 

as follows: 

 ,k i k ki
a I b i wq = +   (8) 

Where ka  and kb  denote linear parameters of the window 

kw ; 
i

q  represents the output pixel value; iI  denotes the 

pixel value of the guide image. 

  

(a) initial transmittance (b) He algorithm 

  

(c) optimized transmittance (d) guided filtering 

Fig. 2. Comparison of initial transmittance optimization 

As can be seen from Fig. 2 (c) and (d), the proposed 

algorithm can remove white halo blocks in the initial 

transmittance effectively. Compared with Fig. 2 (c), Fig. 2 (d) 

shows that the halo block in the detail-rich area is diluted 

through guided filtering. 

B. Hierarchical Threshold Function 

Since the denoising performance of the fixed threshold is 

quite thorough, it is selected to separate the detail component 

and noise component of high-frequency images preliminarily, 

which is defined as follows: 

 ( )= 2ln M N    (9) 

 ( )1,= / 0.6745kmeidan   (10) 

Where   is the fixed threshold, M×N denotes image size, 

  is standard noise variance, and 
1,k  represents the first 

high-frequency coefficients. 

Due to the problems of discontinuity and constant 

deviation of traditional threshold functions, the following 

threshold functions are proposed in the literature [21] and 

[22], respectively: 
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The asymptotic semi-soft threshold function proposed in 

the literature [21] can reduce constant deviation. However, it 

is not flexible enough due to the lack of adjustable factors, 

and the effect of lowering the deviation is not obvious enough. 

In the literature [22], the high-frequency coefficients less 

than the threshold are regarded as a quadratic function 

without being zeroed directly, which can avoid oscillation 

caused by direct truncation. However, for the high-frequency 

coefficient less than the fixed threshold, the threshold 

function proposed in the literature [22] fails to suppress the 

noise completely, and the denoising effect is not ideal 

enough. 

Given the problems with the threshold functions 

mentioned above, the hierarchical threshold function is 

proposed and defined as: 
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Where m and   are adjustable parameters within the range 

of (0,1). 

As shown in Fig.3, when the high-frequency coefficients 

are greater than the fixed threshold, the estimated wavelet 

coefficient can reduce constant deviation and approach the 

original wavelet coefficients rapidly. The high-frequency 

coefficient between   and   can be improved effectively 

to protect the edge details of the image. When the 

high-frequency coefficient is less than  , the noise 

coefficient in the high frequency can be set to 0, which can 

suppress noise effectively. 

The performance of the hierarchical threshold function 

will be analyzed from the following aspects. 

(1) Continuity 

 ( )( )
, ,

, , ,lim = lim sgn
j k j k

j k j k j k m
   
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+ −

 

→ →
=  (14) 

Equation (14) indicates the hierarchical threshold function 

is continuous at  . In the same way, it's also continuous at 

- . 

, ,

, ,lim = lim 0
j k j k

j k j k
   

 
+ −

 

→ →
=                  (15) 

Equation (15) shows the hierarchical threshold function is 

continuous at  . It's also continuous at - .  
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Fig. 3. Threshold function curve

 

Fig. 4. The adjustment factors of each layer 

The pre-estimated wavelet coefficients obtained by the 

hierarchical threshold function have better continuity, which 

can avoid oscillation, truncation effect and other visual 

distortions of the reconstructed image. 

(2) Constant deviation  
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It can be seen from Equation (16) that the constant 

deviation is eliminated effectively. Compared with the 

threshold function proposed in the literature [21], the 

hierarchical threshold function can approach the original 

wavelet coefficient rapidly, and the image distortion can be 

avoided. 

(3) Adjustment factors m and   

In this paper, noise components are separated by the fixed 

threshold. The noise components will decrease with the 

increase of the decomposition scale [23]. Hence, the 

hierarchical threshold function sets two adjustment factors to 

keep more detailed components of high-frequency images 

and compensate for the loss of the effective coefficient 

caused by the fixed threshold. 

When m increases gradually, the wavelet coefficients can 

be improved effectively, and the image details can be 

maintained. When   increases gradually, the denoising 

effect is more complete. As the number of decomposition 

layers increases, m will increase and   will decrease. 

Fig.4 shows that, with the increase of decomposition layers, 

the hierarchical threshold function can be closer to the 

original wavelet coefficient and retain more high-frequency 

details by adjusting factors. Compared with the threshold 

function proposed in the literature [22], the hierarchical 

threshold function is divided into three sections and set two 

adjustment factors to estimate the wavelet coefficients, which 

makes the denoising effect more flexible and accurate. 

To sum up, by analyzing the continuity, deviation and 

adjustment factors of the hierarchical threshold function, it is 

concluded that the proposed method can eliminate deviation 

and has good continuity and strong flexibility. 

III. WORKING PRINCIPLE AND PROCESS  

In this paper, the mine image is decomposed by wavelet 

transform to acquire low-frequency and high-frequency 

components [24]. Then the coefficients in the low-frequency 

part are dehazed by adaptive transmittance, and the 

coefficients in the high-frequency part are denoised by the 

hierarchical threshold function. Next, the reconstructed 

enhanced (
RE

f ) image is converted into the HSI space, and 

the I component is equalized to expand the dynamic range of 

the pixel gray level while keeping the original H and S 

components unchanged. Finally, the processed components 

are converted to RGB space, and the output is the mine 

enhanced image. The flow chart is presented in Fig. 5. 

IV. EXPERIMENTAL RESULTS 

Three kinds of experiments are conducted to verify the 

dehazing, denoising and overall enhancement effect of the 

proposed algorithm. 

For the evaluation of the denoising quality, the peak 

signal-to-noise ratio (RPSN) is employed and defined as 

follows: 

 ( )( )2

PSN 10 SE10 log 2 1 /nR M=  −  (17) 
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Fig. 5. Flow diagram of the proposed approach 

Where SEM  is the mean square error. 

Information entropy (IE) is employed to represent the 

amount of image information, and it is defined as follows. 

 
255

2

0

( ) log
i i

i

IE p p p
=

= −  (18) 

Where 
i

p  denotes the probability of occurrence of the i-th 

gray level. 

The standard deviation (SD) is employed to reflect the 

dispersion of the image pixel value and the mean value. The 

greater SD value, the greater image contrast. 

 ( )( )
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1 1

1
,

M N

i j

SD P i j
M N


= =

= −


  (19) 

Where M N  is the size of the image; ( ),P i j  denotes the 

pixel value of the i-th row and j-th column, and   represents 

the mean value. 

The structural similarity index (SSIM) is utilized to 

measure the similarity between the dehazed image and 

original image. A higher SSIM represents a smaller image 

distortion. It is defined as follows. 
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1 2

2 2
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yy xx
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C C
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Where 
x  and y  are the mean values of x and y , 

respectively; 
2

x  and 
2

y  are the variances of x and y , 

respectively; xy  represents the covariance of x and y; 1C  

and 2C  are constants that maintain stability. 

A. Analysis of dehazing results 

To verify the dehazing effect of the adaptive transmittance, 

two mine haze images are selected to compare the dark 

channel prior (DCP) algorithm [12] with the proposed 

algorithm. The comparison of the dehazing effect is shown in 

Fig.6. 

Fig. 6 (b1) and (b2) show the dehazed image by DCP 

algorithm is overall dark, and the details are not clear. As seen 

from (c1) and (c2), the initial transmittance is optimized 

adaptively to suppress the generation of white halo blocks 

and make the edge details clearer. At the same time, the value 

of initial transmittance is reduced, and the overall image 

brightness is enhanced. Through I component equalization in 

HSI space, (d1) and (d2) are clearer than their corresponding 

reconstructed enhanced images (c1) and (c2). It is also can be 

seen from the corresponding gray histogram that the overall 

gray value of the original image is reduced, and the haze is 

suppressed effectively. Compared with the DCP algorithm, 

the proposed algorithm stretches the distribution range of the 

gray histogram and improves image contrast to some extent. 

Table 1 presents that the time consumption of the proposed 

algorithm is shorter than that of the DCP algorithm. The 

proposed algorithm can complete the dehazing of the whole 

image by processing the low- frequency part. Compared with 

the DCP algorithm, both the dehazing effect and efficiency 

are improved by the adaptive transmittance optimization 

effectively. 

TABLE I 
COMPARISON OF THE RUNNING TIME BETWEEN THE TWO DEHAZING 

ALGORITHMS 

Image 

Running time/s 

DCP algorithm Proposed algorithm 

Haze1 2.54 1.79 
Haze2 2.60 1.83 

B. Analysis of denoising results 

Two mine roadway images will be employed to verify the 

denoising performance of the hierarchical threshold function 

in the high-frequency part. The noise variance estimation   

and IE are employed for the evaluation of the denoising effect. 

o  and ieo  represent   and IE of the original image, 

respectively; 
.REf   and 

.RE ie
f  represent   and IE 

processed by the proposed algorithm, respectively. 

Fig. 7 shows the mine image processed by the proposed 

algorithm can retain the image edge information effectively 

while the image noise is suppressed. Table 2 presents that 

with the gradual increase of o , the image noise processed 

by the proposed algorithm is stable in the range of 0.1-0.21, 

and the value of 
.RE ie

f  is basically unchanged. It is indicated 

that the proposed algorithm has a stable noise suppression 

effect and can maintain the edge details of the mine image 

effectively. 
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(a1) Haze image 1 and gray histogram (a2) Haze image 2 and gray histogram 

 
 

 
 

(b1) DCP image 1 and gray histogram (b2) DCP image 2 and gray histogram 

 
 

 
 

(c1) 
RE

f  image 1 and gray histogram (c2) 
RE

f  image 2 and gray histogram 

 
 

 
 

(d1) The proposed method and gray histogram (d2) The proposed method and gray histogram 

Fig. 6. Comparison of the dehazing effect 

 

    

(a) roadway1   (b) 
RE

f  (c) roadway2 (d) 
RE

f  

Fig. 7. Reconstructed enhanced images of roadway images 

TABLE II 

STATISTICS OF DENOISING EFFECT OF THE PROPOSED ALGORITHM 

Image o  ieo  .REf   
.RE ie

f  

roadway1 

11.36 7.08 0.10 6.31 
15.89 7.13 0.14 6.32 

19.24 7.15 0.17 6.33 

21.98 7.16 0.20 6.33 
     

roadway2 

13.50 7.73 0.12 7.42 

17.35 7.72 0.16 7.43 
20.36 7.71 0.18 7.44 

22.98 7.71 0.21 7.45 
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To verify the denoising effect of the hierarchical threshold 

function, the two mine roadway images are added gaussian 

white noise with a mean value of 0 and a variance of 0.01. 

Meanwhile, the low-frequency coefficients are kept 

uniformly unchanged to ensure the accurate comparison of 

experimental results. The high-frequency coefficients are 

adopted by the soft threshold, hard threshold, literature [21], 

literature [22] and the proposed method, respectively.  

 

 

Fig. 8. Comparison of denoising indexes 

Compared with the threshold function above, Fig. 8 shows 

hierarchical threshold function has a larger value of PSNR , 

which has a better denoising effect. It is divided into three 

segments to estimate the wavelet coefficients, which can 

retain more high-frequency details and has an ideal denoising 

effect. 

C. Analysis of comprehensive performance 

To verify the overall enhancement performance of the 

proposed algorithm, the haze, dust and low illumination 

images are selected to compare and analyze the Contrast 

Limited Adaptive Histogram Equalization (CLAHE), 

Multiscale Retinex (MSR), MSRCR [25], DCP and the 

proposed algorithm. Fig. 9 presents the visual enhancement 

effect of each algorithm. 

In Fig.9 (a), the original image is dark and has a poor 

visual effect and unclear image details. From Fig.9 (b) and (c), 

the images processed by CLAHE algorithm and MSR 

algorithm have higher brightness, but the overall image is 

white with severe color distortion. Besides, the haze image 

presents that both two algorithms have a halo phenomenon of 

different degrees. Fig.9 (d) shows the MSRCR algorithm has 

excellent color fidelity, and color deviation is eliminated 

basically. However, the enhanced details in the dark area are 

not obvious, and there is still a small amount of haze 

diffusion. Fig. 9 (e) shows that DCP algorithm can suppress 

the haze and dust of the mine test images. However, the 

overall brightness and contrast are low, and the enhanced 

image is not clear. From Fig.9 (f), the proposed approach can 

enhance the contrast and brightness significantly without 

color distortion, and the haze can be suppressed effectively to 

avoid halo artifacts. 

To objectively compare the overall enhancement effect of 

the five algorithms, Standard deviation (SD), Information 

entropy (IE), and Structural similarity index (SSIM) are 

selected as the quality evaluation indicators. The objective 

quality evaluation comparison of five algorithms is shown in 

Fig. 10. 

In Fig. 10, the IE of the CLAHE and MSR algorithms are 

larger, but the SD and SSIM are lower than that of the 

proposed algorithm. The two algorithms overexpose the 

brightness of mine images, so the enhanced images contain 

more information. However, the gray level of images is 

compressed, and image contrast is reduced. In addition, the 

enhanced image has serious color distortion. The color 

distortion is eliminated by MSRCR. But the SD and SSIM of 

the MSRCR are lower in the haze and dust images. The 

algorithm does not enhance the details of dark areas, and 

there is a halo in bright areas. The haze and dust in the image 

can be suppressed effectively by DCP. However, the SD and 

IE values of DCP algorithm are low. The enhanced image is 

overall dark, which has a low image contrast and unclear 

image details. The proposed algorithm can suppress the halo 

artifact phenomenon and have high color fidelity. The overall 

objective evaluation indicators have been improved 

significantly, and the proposed algorithm achieves the highest 

value of SD and SSIM, outperforming the other four 

algorithms. 

Combined with Fig. 9 and Fig. 10, we can see that the 

proposed algorithm avoids halo artifacts of the image by the 

adaptive transmittance optimization and reduces the overall 

transmittance value, which improves the image contrast and 

the overall dehazing effect. The wavelet coefficients are 

estimated in three segments by the hierarchical threshold 

function, which retains more image details and has a higher 

value of SSIM. The proposed algorithm has a better 

enhancement effect both on haze-dust and low-illumination 

image. 

V. CONCLUSION  

Aiming at the problems of halo blocks and detail loss 

existing in the enhanced mine images, an enhancement 

approach of the mine image based on adaptive transmittance 

and hierarchical threshold function is proposed. Firstly, in the 

low-frequency part, the position at the edge of field depth is 

determined adaptively, and the transmittance is optimized 

precisely. Then, the optimized transmittance is smoothed by 

guided filtering, which can retain the edge details and 

eliminate the white halo block. Next, the hierarchical 

threshold function is applied in the high-frequency part to 

estimate the wavelet coefficients, which can improve the 

denoising effect and retain more image details. Experimental 

results on several mine images show that the proposed 

approach can suppress the noise and haze and enhance the 

image details. Meanwhile, our proposed method  has a better 

image contrast and is more suitable for mine image 

enhancement. 

 
 

 

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_15

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

Haze 

      

Dust 

      

Low- 

light1 

      

Low- 

light2 

      

 (a) RAW (b) CLAHE (c) MSR (d) MSRCR (e) DCP (f) Proposed 

Fig. 9. Comparison of enhancement effects by different algorithms. 

        

(a) SD                                                                                                           (b) IE

 

 (c) SSIM                                                                                                     

Fig. 10. Comparison of objective evaluation index 

REFERENCES 

[1] Jiping Sun, “New technology and development of mine 

informatization and automation,” Coal Science and Technology, vol. 
44, no. 1, pp. 19-23+83, 2016. 

[2] Guofa Wang, Guorui Zhao, and Huaiwei Ren, “Analysis on key 

technologies of intelligent mining,” Journal of China Coal Society, vol. 

44, no. 1, pp. 34-41, 2019. 

[3] H F Yao, H Y Wang, and Y C Li, “Three-dimensional spatial and 
temporal distributions of dust in roadway tunneling,” International 

Journal of Mining Science and Technology, vol. 7, no. 1, pp. 88-96, 
2020. 

[4] M. Abdullah-Al-Wadud, M. Kabir, M. Dewan, and O. Chae, “A 

dynamic histograme equalization for image contrast enhancement,” 
IEEE Trans. on Consumer Electronics, vol. 53, no. 2, pp. 593–600, 

2007. 
[5] Dippel, M. Stahl, R. Wiemker, and T. Blaffert, “Multiscale contrast 

enhancement for radiographies: Laplacian Pyramid versus fast wavelet 

transform,” IEEE Trans Med Imaging, vol. 21, no. 4, pp. 43–53, 2002. 
[6] J Xu, Y K Hou, and D W Ren, “STAR: A Structure and Texture Aware 

Retinex Model,” IEEE Transactions on Image Processing, vol. 29, pp. 
5022–5037, 2020. 

[7] Sim Kok Swee, Lim Choon Chen, and Tan Sin Ching, "Contrast 

Enhancement in Endoscopic Images Using Fusion Exposure 

Histogram Equalization," Engineering Letters, vol. 28, no. 3, pp. 

715-723, 2020. 
[8] Liya Zhang, Bonan Hao, Qingyong Meng, Liang Wen, and Wenzhen 

Wu, “Method of image enhancement in coal mine based on improved 

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_15

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

retinex fusion algorithm in HSV space,” Journal of China Coal Society, 
vol. 45, no. 1, pp. 532–540, 2020. 

[9] Shoufeng Tang, Ke Shi, Guangming Tong, Jingcan shi, and Huashuo 

Li, “A mine low illumination image enhancement algorithm,” Industry 

and Mine Automation, vol. 47, no. 10, pp. 32–36, 2021.  

[10] C Y Li, J C Guo, and F Porikli, “LightenNet: a convolutional neural 
network for weakly illuminated image enhancement,” Pattern 

Recognition Letters, vol. 104, pp. 15–22, 2018. 
[11] C Wei, W Wang, and W Yang, “Deep retinex decomposition for 

low-light enhancement,” arXiv:1808.04560, 2018. 

[12] K M HE, J SUN, and X O TANG, “Single image haze removal using 
dark channel prior,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 33, no. 12 pp. 2341-2353, 2011. 
[13] K M HE, J SUN, and X O TANG, “Guided image filtering,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 

6 pp. 1397-1409, 2013. 
[14] Yingjie Mei, Yuan Ning, and Jinjun Chen, “Block-adjusted image 

enhancement algorithm combining dark channel prior with MSRCR,”  
Acta Photonica Sinica, vol. 48, no. 7 pp. 124-135, 2019. 

[15] Yong Chen, and Chentao Lu, “Single image dehazing based on super 

pixel segmentation combined with dark-bright channels,” Laser and 

Optoelectronics Progress, vol. 57, no. 16 pp. 239-247, 2020. 

[16] Xinyu Zhao, and Fuzhen Huang, “Image enhancement based on 
dual-channel prior and illumination map guided filtering,” Laser and 

Optoelectronics Progress, vol. 58, no. 8 pp. 53-62, 2021. 

[17] B L Cai, X M Xu, and K Jia, “DehazeNet: An end-to-end system for 
single image haze removal,” IEEE Transactions on Image Processing, 

vol. 25, no. 11 pp. 5187-5198, 2016. 
[18] B Y Li, X L Peng, and Z Y Wang, “AOD-Net: all-in-One dehazing 

network,” IEEE International Conference on Computer Vision, Venice: 

IEEE, pp. 4780-4788, 2017. 

[19] D CHEN， M HE， and Q FAN, “Gated context aggregation network 

for image dehazing and deraining,” IEEE Winter Conference on 
Applications of Computer Vision (WACV). IEEE, pp. 1375-1383, 2019. 

[20] Zijian Tian, Manli Wang, and Jun Wu, “Mine image enhancement 
algorithm based on dual domain decomposition,” Acta Photonica 

Sinica, vol. 48, no. 5 pp. 107-119, 2019. 

[21] X F Zhou, W W Zhu, and Q G Guo, “The denoising of ultrasonic signal 
based on asymptotic semi-soft thresholding function,” Journal of 

Detection & Control, vol. 33, no. 2 pp. 35-39, 2011. 
[22] Wenliang Jia, Yu Chen, and Qiang Chen, “Image denoising algorithm 

based on improved wavelet threshold,” Microelectronics&Computer, 

vol. 37, no. 10 pp. 24-29, 2020. 
[23] Weiqiang Fan, and Yi Liu, “Fuzzy enhancement algorithm of coal 

mine degradation image based on adaptive wavelet transform,” 
Journal of China Coal Society, vol. 45, no. 12 pp. 4248-4260, 2020. 

[24] Sreekala Kannoth, Sateesh Kumar H C, and Raja K B, "Denoising of 

Low Light Images using Patch Priors and Wavelets," Engineering 
Letters, vol. 29, no.3, pp. 1248-1263, 2021. 

[25] D J Jobson, Z Rahman, and WoodellG A, “A Multiscale Retinex for 
Bridging the Gap Between Color Images and the Human Observation 

of Scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7 pp.  

965-976, 1997. 

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_15

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 




