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Linearization Criteria for a System of Two
Second-Order Ordinary Differential Equations Via
Generalized Linearizing Transformation

Supakit Tammakun, and Supaporn Suksern

Abstract—The generalized linearizing transformation is com-
monly used in the literature to study the linearization prob-
lem of single second-order ordinary differential equations.
Necessary and sufficient conditions have been discovered for
the linearization of such equations. However, the use of the
generalized linearizing transformation to solve the linearization
problem of a system of two second-order ordinary differential
equations has not been explored. This paper aims to address
this gap by applying the generalized linearizing transformation
to a system of two second-order ordinary differential equations
and solving the linearization problem.

Index Terms—linearization problem, linearizing transforma-
tion, Sundman transformation, system of nonlinear ODEs.

I. INTRODUCTION

OLLABORATING with scientists, engineers, and re-

searchers from different fields, mathematicians create
mathematical models to explain and forecast a wide range
of real-world problems and physical phenomena, such as
radioactive decay, Newton’s law of cooling, chemical reac-
tions, germ propagation, weather forecasting, electrical cir-
cuits, and economic issues. They use differential equations,
including nonlinear ordinary differential equations, to model
such phenomena. Nonetheless, solving these equations accu-
rately is difficult. Therefore, mathematicians are continuously
conducting research to overcome this challenge.

Linearization is an important research area for solving
nonlinear ordinary differential equations. This applies to
second, third, or higher-order equations. The key strategy
involves converting the nonlinear equation into a linear one
through an invertible transformation that enables any solution
of one equation to be transformed into a solution of the
other. Furthermore, several methods are commonly used to
solve linearization problems, such as point transformation,
fiber-preserving transformation, tangent transformation, con-
tact transformation, generalized Sundman transformation and
generalized linearizing transformation. Once the equation is
linearized, the solution can be found using standard tech-
niques for linear differential equations.

Historically, mathematicians have commonly used trans-
formations to solve linearization problems for single second-
order ordinary differential equations, but they are not fre-
quently used for systems of two second-order ordinary dif-
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ferential equations. Sakka and Meleshko [1] have discovered
a criterion for linearizing such systems under fiber-preserving
transformations, and Moyo and Meleshko [2] have explored
the use of generalized Sundman transformations for this
problem. However, there is currently no research extending
the use of generalized linearizing transformations to a system
of ordinary differential equations, specifically for a system of
two second-order ordinary differential equations. Therefore,
the goal of this research is to use generalized linearizing
transformations to determine the criteria for linearizing such
a system.

A. Historical Review

For more than a century, mathematicians have been inter-
ested in solving the problem of linearizing ordinary differen-
tial equations. Esteemed mathematicians such as S. Lie and
E. Cartan have dedicated their efforts to this problem. Lie
[3] was the first to investigate the linearization problem of
a single second-order ordinary differential equation by using
the point transformation. Later, Liouville [4] and Tress [5]
studied the similar problem by using relative invariants. Lie
also pointed out that all second-order ordinary differential
equations can be transformed into a linear equation through
contact transformations without any restrictions.

To solve the linearization problem of second-order or-
dinary differential equations, there are multiple techniques
available. One such method is using differential geometry,
which is employed by Cartan [6]. Another transformation
that can be used is the generalized Sundman transformation,
which is an interesting approach that has not yet been
mentioned. Duarte, Moreira, and Santos [7] use the Laguerre
form in conjunction with the generalized Sundman transfor-
mation to solve the equivalence problem. However, Nakpim
and Meleshko [8] have demonstrated through examples that
only Laguerre form is not adequate for the linearization
problem via generalized Sundman transformations. They
suggest using the general form of a linear equation instead
of the Laguerre form as the standard linear equation for the
linearization problem. The generalized linearizing transfor-
mation is the other transformation which is used to solve the
linearization problem in [9]-[10].

Although the above focuses on single second-order differ-
ential equations, the next part of the discussion will describe
research on solving the linearization problem for a system
of second-order ordinary differential equations.

In the field of differential equations, various researchers
have developed tools to linearize systems of differential equa-
tions. For the system of two second-order differential equa-
tions, Wafo and Mahomed [11] employed a four-dimensional
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Lie algebra to linearize such system. Aminova and Aminov
[12] discovered linearizing criteria by examining equivalent
differential systems. Mahomed and Qadir [13] developed
a linearization criterion that is specifically applicable to a
particular class of systems: second-order quadratically semi-
linear ordinary differential equations. Sookmee [14] made
important contributions to the field of differential equations
by discovering first- and second-order relative invariants via
point transformations. Building on this work, Sookmee and
Meleshko [15] developed a novel approach to linearizing sys-
tems of ordinary differential equations known as sequential
linearization. This technique was successfully applied to such
system, and the authors provide examples of systems that
cannot be linearized using point transformations, but can be
linearized using the new method. Neut, Petitot, and Dridi
[16] used Cartan’s method to establish the conditions for a
system to be reduced to the simplest form. Bagderina [17]
defined the criteria for mapping a system to a linear system
of general form, providing the conditions for linearization
by point transformation in terms of system coefficients.
Sookmee and Meleshko [1] contributed to this field by
identifying the required form of a linearizable system with
point transformations. In addition to this, they established
the criteria for a system to be transformed into a linear
system with constant coefficients of general form via fiber-
preserving transformations. Moyo and Meleshko [2] made
significant contributions to the linearization of such systems
by extending the application of the generalized Sundman
transformation. Their work has helped to expand our un-
derstanding of how the generalized Sundman transformation
can be applied in the linearization of differential equations.

This paper aims to apply the generalized linearizing trans-
formation to solve the linearization of a system of two
second-order ordinary differential equations, which has not
been done before.

II. FORMULATION OF THE LINEARIZATION THEOREMS

A. Obtaining Necessary Condition of Linearization

In order to linearize a system of two second-order ordinary
differential equations, it is necessary to first express the
system in its general form

a’ = [tz y, 2y, y” :g(tvxvyvx/’y/)v ey
which can then be transformed into a linear system

’ /

=0, v =0, 2)
using a generalized linearizing transformation
u=F (t,z,y), v=F(zy), 3)
I’ = [Gl (t7 €, y) y/ + G2 (t7 T, y)] dt,

with G; # 0. This process leads to a theorem that outlines
the necessary conditions for linearizing the system.

Theorem 2.1: Any system of two second-order ordinary
differential equations (1) obtained from a linear system (2)
by a generalized linearizing transformation (3) has to be the
form

2 =\a” + )\256/23/ + )\3y'2x' + M’y + /\513’2
A6y 4 Az’ + Asy' + Ao,

Y =Py’ + Bar’y + By a’ + Par'y + Bra?
+ Boy’” + Brz’ + Bsy’ + Bo, “4)

where
M =(A"Y)(G1F1poFoy — G1F1:Fagy), (5)
A2 =(AN(2F 4y F2, G1 — 2F1, FayyGh
+ F1,F2yG1y — F1y FouG1a), (6)
A3 =(A (= F1.Foyy Gy + Fi1.F2y Gy
+ FlyyFo.G1 — FlngzGly), 7

M =(ATN(2F 14y Fo. Gy — 2F14 Foyy Gy + F1iFoy Gy
+ 2F 15y F91 G — 2F 15y FoyGo — 2F1 5 Fory G
+ FioFoy Gy + FioEoyGay — FiyFo Gy
+ 2Fy ForyGo — F1yFou Giy — FryFo,Goy),  (8)
As =(ATY)(2F110 Fou G1 — F11F230Gh + Fiun ForGh
— FioaFoyGo — 2F13 Fo G 4 F1.FoyGoy
+ F1yFopaGo — FiyFo,Gay), &)
Ao =(A™N) (= F11Foyy G + F11 oy Gy + Fiyy Fo Gy
— FlyyFoyGo — F1yFo: Gy + FlyFnyGg),
At =(AY)(2F1 4 Fo G — 2F14, Foy G + Fiy For Gy
— 2F 14 Fo1 G 4 F1iFoyGoy — Fio Fou G
+ FiFoyGop + 2F1y Fo1, Gy — F1y Fo1Goy
— 1, F5,Gay),
As =(AN(2F14y Foy Gy — 2F 14y Foy Go
— 2F 14 Fo1y G + F10Foy Gy + Fii FoyGoy
+ 2F 1y ForyGo — F1yF5. Gy — FryFoGay),
o =(A™N(F144 Foy Gy — Fip4 FoyGo — F14Fo Gy
+ Py FoyGop + FiyFoyGo — FiyFo Gay),
B =(A7N) (= FiuFayyGr + Frp Foy Gy
+ Fiyy FouGh — F1yFo, Ghy),
Bo =(A")(G1FraaFay — G1FipFayy),
Bs =(A™1)(2F1 4y For Gy — 21, FayyGh
+ FigFoyGiy — F1yF2,.G1g),
Ba =(ATY)(2F11: Fou G1 — F11F2,G1y
+ 2F 12y Fop Go — 2F 15 F54, G + F1 Fo Gy
— 2F 1, F0yGo + F1. FoyGoy — FryFoy Gy ),
Bs =(A" ) (GoFipuFoy — GoFiy Fayy),
Be =(A™H)(2F 14y F2. Gy — Fi1 F5, Gy,
— 2F1,FoyG1 + F1oFoi Gy — FroFoyyGo
+ FiaFoy Gy + FiaFoyGay + Fiyy For G
— F1yF5, Gy — FiyF5,Gay),
Br =(A™N)(2F 14 Fou Ga — F11F2,Ga,
— 2F 1, F51, Gy + F1,F5Gay),
Bs =(A™Y)(2F11y Fou Go + Fiy Fo, G1 — Fiy Fo, Gy
— F14F5,Goy — 2F 13 Fo1y Gy — Fi Fou G
+ Fi:F5:Gr1t + Fi3Fo:Goy + Fi, Foy Goy
— F1yF5,Goy),
By =(A™N)(Fi14F20Ga — FiyFoyGoy — Fi,FouGo
+ Fi. 5 Gay),

(10)

(1)

12)
(13)

(14)
15)

(16)

a7
(18)

19)

(20)

2n

(22)
where

A = F14Fo, Gy — F1o.Foy Gy + Fip FoyGo — Fiy oy Go # 0.
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Proof. By utilizing a generalized linearizing transformation
(3), the initial first-order derivatives undergo a transformation
as follows. Differentiating (3) with respect to ¢, we find

7 DtFl

" T D [Ghy + Galdt
Py Ao Fip -y Fy
B G1y' + Go
:Hl(taxayvx/ay/)7

o - DiFy

Dy f[Gly' + Gz]dt
 Fy 2 Foy +y' By
- G1y' + Go
=Hy(t,x,y,2",y).

The second-order derivatives after the transformation are
expressed as

p D, H,
" TD, Gy + Galdt
=[2"F1.(G1y’ + G2) + ¥ (—F1:G1 — F1.G12'

+ F1yG2) + 2F11, G112’y + 2F11,Gox!
+ 2F1tyG1y/2 + 2F14,Goy’ + FiuGry
+ F11:G2 — FruGuy' — Fi1.Gr.a2'y’
- FItGlyy/Q — F14:Got — F13Goa
— PuGayy + 2P, Gha'y’™ + 2F1,, Goa'y/
+ FionGi2'?y + FreeGoa'” — Fi,Gua'y'
— FlzGla:f/zy/ - FlmGlyxly/Q — F1,Go2’
— PGt — Fi,Goya'y' + Flnyly/S
+ FiyyGoy'® = FiyGuy’® — Fu,Graa'y”
- FlyGlnyS — F1,Goy' — F1y G2y
— Py Gayy”] /(G + 3G Gy
+3G1G3y + G3),

p D Ho
Y TD, [[Gry + GaJdt

=[2" Fou (G1y' + G2) + ' (= F2,G1 — F5, G2/
+ Fy,Go) + 2F51, G’y + 2Fp,Gox!
+ 2F2tyG1y/2 + 2F5,Goy' + FonGry/
+ For Gy — FoyGryy' — Foy G’y
- thGu/y/z — F5 Gt — Fo Gy
— Fy Gyt + 2FpuyGr2'y'” + 2P,y G’y
+ Fszlflzyl + Foup G’ — FouGrz'y
— FpuGrpzy — Fsz1ny'y/2 — Fp, Gy’
— FyuGop”” — Fo,Goya'y' + FnyGlz/3
+ FnyGQZ/2 - FQyGlty/Q - F2yG1x$/y/2
- F2yG1yyl3 — oy Gory' — FoyGoga'y'
— Py Gayy] /(G + 3G3Gay”

+3G1G2y + G3), (23)
where D; = % + x’% + y’a% + x”a?c, + 9" 32, is a total

derivative. After replacing the obtained expression into the

linear system (2), one obtains the following system

2 Fi.(Giy + Ga) + ' (= F1:G4

— F1,G12" + F14G2) 4 2F14,G12'y

+ 2F110Gat’ + 2F11Gry'® + 211 Gay'

+ F1u Gy’ + FiuGa — Fi, Gy

— F11Gra'y' — FltGlyy,2 — PGy

— F11Gopa’ — F11Goyy' + 2F1xyG1I/y/2

+ 2F1,,Gox'y' + FronGha"*y + Fip,Goa'
— F1,Gua'y — FraGray — Fl:leyxly/Q
— F1,Goa’ — Fy,Gopa'” — Fi,Goya'y

+ Flnylyls + Flnyzylz - FlyGlty/2

— F1yG1x$/yI2 — FlyGlyy/S — F1yGoy/’

— FiyGopa'y' — FryGayy'> =0, (24)

2" Fo(Gry' + Ga) + 4" (—Far Gy

— F5, G112 + FyGo) + 2F5, G2’y

+ 2P, Go’ + 2Fy1,G1y'” + 2Fay, Goy’

+ FouGry' + Fou Gy — Fo Gy

— FoGipa'y’ — F2tGlyy/2 — F Gy

— F5 Gy’ — FuGaoyy' + 2F2wyG1x/y/2

+ 2F0,,Gox'y' + FopnGr3"*y + FopyGoa'”
- szGux/y/ - F21G11x12y/ - Fsz1y~T/yI2
— Fpu Gy’ — FppGopa!'® — Fp,Goy'y’

+ FayyGry* + Fayy Goy'® — Fo Guy”

— FayGroa'y” = FayGryy'”® — FoyGory/

— FyyGay'y — Fay Gy = 0. 25)

From equation (24), one has Fi,(G1y’ + G2) # 0, then
equation (24) can be rewritten as

" =[y"2' Fi,G1 +y" (FuuG1 — F1,G2)
+ ilZﬂl(—FlmGl + Fi1,G1y)
+ 2% (= Fiu2Ga2 + F1,Ga,)
+ x/y/2(_2Fla:yGl + F1,G1y + F1,G1y)
+ 2"y (—2F14,G1 + F14G 1z — 2F13, G
+ Fi1,G1t + Fi.Gay + F1,Gay)
+ 2/ (=2F14, G2 + F11Gop + F1.G2t)
+ 4 (~FiyyGh + F,Ghy)
+ y/Q(_QFltyGl + F1,G1y — FiyyGo
+ F1yG1y + F1yGay) + y' (—2F14,Go
— FiuG1 + F1:Gh + F1:Gay
+ F14,Go) — F1uGs + F1:Gay]

/[F1z(Gry" + Ga)]. (26)
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Substituting equation (26) into equation (25), one gets the
equation

Y (F11FouG1 — FiFo Gy + FipFyGo

— F1,F5,Go) + $'2ylG1(*F1mF2m + FipFogy)
+ 22 Go(—Frou Foy + FiyFayy)

+ x/y/2(_2FImyF2mG1 + 2F 1. F5,y Gy

— F1oFoyGhg + FiyFoyGig) + 'y (—2F 141, F2u Gy
+ F14FouGiy — 2F 10y Foy Go + 2F 1. Fo, Gy

— F1.F5Gg + 2F1, FopyGo — Fi,F5yGo,

+ FiyFo,Goy) + @' (=2F 14, Fo, Go + Fi1Fo, Goy
+ 2F13F215Go — F13F2:Goy) + y’3(F1zF2ny1

— F1,F5yG1y — FiyyFor G + FiyFoy Guy)

+ y/Q(*2F1tyF2xG1 + F11Fop Gy + 21, Fo Gy
— F12F0: Gy + Fip FoyyGo — Fi Foy Gy

— F1oFoyGoy — Fryy Fo,Go + F1y Fo, Gy

+ FiyFouGay) + y' (—2F 14y Foy Go — F1iuFap Gy

+ F14 Foe Gy + FieFopGoy + 2F1 Fy G

+ F1oFou Gy — FioFo Gy — Fi,F5Goy

— F1oFoyGop + FiyF,Gor) — Fi4F2,Go

+ F14FouGop + FioFoy Go — Fi, FoyGoy = 0. (27)

From equation (27), one has Fy;F»,G1 — Fi,.F»Gy +
F1.F5,Gy — F1yFo, Gy # 0, then equation (27), can be
rewritten as

y" =[2"*y 1 (FroaFaw — FioFaua)
+ 2% Go(FrpaFoy — FioFayy)
+ 'y (2F1ay FayG1 — 2F13 Fyyy G
+ Fi,F5y Gy — FiyF,G1y)
+ 2"y (2F 140 F2u Gy — F11F2, Gy
+ 2F 14y Foe Go — 2F 1, Fo1, G1 + F1.F51 G,
— 2F1, FoyyGa + F1.FoyGay — F1yFo,Goy)
+ 2/ (2F140 F22. G — F1iFoy Gog — 2F13, Fp0Go
+ FipFoGag) + y’B(—F1mF2ny1
+ F1o Foy Gy + Fuyy o, G1 — Fi1yF5,.G1y)
+ y,2(2F1tyF2mGl — F1:F5, Gy
— 2F 13 Fo1yG1 + Fi2Fo1 Gy — Fio FoyyGo
+ FioFoy Gy + FraFoyGoy + Fiyy FouGo
— F1yF2,Gry — FiyFoyGaoy) + Y (2F 14y Fop Go
+ FiyFoo G — F1 o, Gy — F14 o, Goy
— 2P FoyGo — F1.Fo G 4 Fi, Fo Gy
+ FipFotGoy + Fip FoyGay — FiyFo, Got)
+ Fi44 P2, Go — F1iFo.Gop — F1.F54:Go
+ F1oFo Goy) [ (F1e Fop G — Fi oGy

+ FipFoyGo — FiyFo,Go). (28)

Substituting equation (28) into equation (26), one gets the
equation

& =[2"° Gy (Fiza Faw — FioFaus)

+ $/2y/(2F1zyF2zG1 — 2F1.Foy Gy

+ F1oFoyGre — F1yF2,G1a)

+ 2/ (2F142 FaoG1 — F1i P0G + Fiao FaGa

— Flp0Foy Gy — 2F 1, Fot, Gi + Fi,FoyGay

+ FiyFopsGo — Fi1y o, Gy )

+ »T/ylz(—Fla:Fznyl + Fi.Fy Gy

+ Fiyy FoyG1 — FiyFo;:Gry)

+ 2"y (2F 14y Fou G1 — 2F1 Fayy Gy

+ F11FoyGia + 2F 14y Fo G — 2F 14y Foy G

— 2F 1. FoyG1 + FioFoy Gy + FipFoyGoy

— F1yFy Gy + 281y Fopy G — FryFo, Gy

— F1yF2,Gay) + 2/ (2F 14, Fo: Gy

— 2F 140 FoyGo + Fro Foo G1 — 281, F5, G

+ F14FoyGog — Fig Foy G 4 Fig FoyGoy

+ 2F1y Fo12Go — F1yF5.Goy — FiyFo,Goy)

+ ylz(_FItF2ny1 + F1:F5yGiy + Fiyy Fo: G4

— FlyyFoyGo — F1yF5.Gry + F1yFayy Go)

4y (2F 11y Fo1G1 — 2F 14y FoyGo — 2Fy 1 Foy Gy

+ F1 Foy Gy + F14 FoyGaoy + 2F1, Foy G

— F1y,F5Gy — F1yFo1Goy) + F11 For Gq

— P FoyGo — F11Foy G 4 Fri FoyGoy

+ FiyFouGo — F1yFo Goy) [ (F1:F2.Gh

— F1.Fo Gy + Fi,F Gy — FiyF5,Gs). (29)
Denoting A\; and 3;, (i = 1,2,...,9) as equations (5)-(22)
for equations (28) and (29), so we obtain the necessary form

(4)-

B. Obtaining Sufficient Conditions of Linearization and Lin-
earizing Transformation

To determine the sufficient conditions for linearizing sys-
tem (4), it is necessary to address the compatibility problem
of the system of equations (5)-(22). This system of equations
should be considered as an overdetermined system of partial
differential equations for the functions F}, F», G; and Go,
taking into account the given coefficients \; and /3; of system
(4). To solve this problem, a comprehensive solution will
be derived specifically for the scenario where F7, = 0 and
Fy =0.

Setting the notation K = F5,Go — F» G, we define the

derivative F5; as
Fy = (FoyGo — K) /G (30)

From equations (5), (15) and (18), one gets the conditions

A =0, B2=0, B5=0. (3D
From equation (7), one gets the derivative
Fayy = (FoyGry — KA3) /G (32)
Equation (14) provides the condition
B1 = As. (33)
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From equation (8), one gets the derivative

Ky =(=F11F5yG1,G1 — F1,F2,G1:Gy
+ Fi.F5yGoyG1 + 2F1,G1y K

+ F1,G1 K\ — 2F1,GoK)\3)/(2F1,.G1).  (34)

Comparing the mixed derivative (Fy;), = 0, one gets the
derivative

K, = (=F3yG1.G2 + F5,G2,G1 + G1.K)/G1.  (35)
From equations (9), (11), (13), (19), (21) and (22), one can

find the derivatives
Flap =(F13FoyGoy — F1.KX5) /K,
Frig =(—F11F5,G1,G2 + 2F1, F5,G2, G4
+ Fi.F5yG11Gay — F1,F5yGayGo
—2F1,. G K — 2F1,G1 K )y
+2F,G1 Ky + F1,GoK)\y) /(4G K),
Fiyy =(—FL F2yG1,G2 + F14F1, 2, G1, G2
— P14 F1oFoyGoyGo — 2F1 F1,G1 K
4+ 2F 11 P, G1 Ky + Fi1i F1.Go K \y
- 2F},G1KX)/(2F1,Gh K),
Gy =(—F11F2yG1.G1 + F1,G 1K (—f6 + \4)
+ F1,GoK)\3)/(F1.K),
K =(3F14FoyG1,G2 — F1.F2,G1,G2
+ FipFoyGoyGo + 4F1,G1: K 4 2F1,Goy K
+2F1,G1KfBs — 3F1,GaK \y)/(2F1,G1), (40)
Gat :(FltF2yG11:G§ + F1.G1:G2 K
+ F1.G2y G2 K — F1,GTK By
+ F1,G1Go K fs — Fi,G3K M)/ (F1.G1K). (41)

(36)

(37

(38)

(39)

Equation (6) becomes

Firo KXy — Fi,F5yGry = 0. (42)

The compatibility analysis depend on the value of Fj,
in equation (42) : it is separated into two cases; that is,
Fy, # 0 and Fy, = 0.

B.1. Case F5, =0
As Fy, = 0, we can replace it in the expression for Fyy,
given in equation (32), which yields the following condition

A3 =0, 43)

and this satisfied equations (F5,), = 0 and (Fsyy), = 0.
By comparing the mixed derivative (Fb,); with (Fb),, we
obtain the following condition

(44)

and this satisfied equations (Fhyy); = (Fat)yy and (K3), =
(Ky)z- The equations (6),(42),(12) and (16) leads to the
conditions

A=0, X=0, Ag=0, B3=0.

Comparing the mixed derivatives (Fizz)y =0, (Fitz)y =0,
(Fitt)y = 0 and (Fitz)e = (Fizz):t, One obtains the
conditions

Asy =0,

(45)

Ay =0, Aoy =0, A5t =A7/2.  (46)

From equation (17), one gets the derivative
Gz = _G1ﬂ4-

Comparing the mixed derivative (Gi;), =
obtains the condition

(47)

(Giy)a, one

B4y = 56@“ (48)
From equation (20), one gets the derivative
Gop = —G157. (49)
Comparing the mixed derivatives (Ky), = (K,); and
(F1tt)x = (F1tz)t, one can find the derivatives
Gayy = — G2yBs + G1(Bst — Bsy), (50)
Giu =(3G3; + 2G11Gay + 2G1,G1 s — Ggy
+ GF(—2Bst + 2Boy + 2A7 — 4dox
— 28689 + B2 +4Xshg — AD))/(2G1).  (51)

By comparing the mixed derivative (K;), with (K,);, we
obtain the following equation

GoyK By + G1K (=4 — Bry + Bse + BeB7) = 0.

The compatibility analysis depend on the value of 34 in
equation (52) : it is separated into two cases; that is, 54 # 0
and 84 = 0.

(52)

B.1.1. Case 54 # 0
Equation (52) provides the derivative
Gay = G1(Bat + Bry — Bsa — BsB7)/Ba-
By comparing the mixed derivative (Gay ), With (Gag),, We
obtain the following condition
Bate =(BatBaz + ButBi + BawBry — BawBsa
— BazBeBr + BoxBaBr — Brayba
+ BraBaBe + BswaBa — BsaBi)/ Ba-

Substituting G, from equation (53) into Ga,, in equation
(50), one gets the condition
Betz =(ButBox + BetBi + Bealry — BoaBsa
— BoxBeBr + BoyBaPr — Pryyba
+ ﬁ?yﬂ4ﬂ6 + ﬂ&cyﬂ4 - ﬁSyﬁz)/ﬁ%

and this satisfied equation (Gayy)z = (G2s)yy. Comparing
the mixed derivatives (Gay)r = (Gat)y, (Goz)t = (Got)a,
(Gitt)y = (G1y)w and (Gi)s = (G1z)ee, one obtains the
conditions
Bare =(26%, + 3B1tBry — 3BarBsz + BarBabs

— 3BatBeBr + PotBaBr — BriyBa + BriBaPs

+ B3, — 2BryBsc + BryBaBs — 2By Bebr

+ BsteBa + B3z — BseBaBs + 2Bsa P

(33)

(54)

(55)

— BoyB + B3 B6Bo — BaBsBrBs + BiB3) /B, (56)
Bre =(BatBr + BryBr — BsaBr + BoxBa — B3P

+ BafBrBs — BsB3)/Ba, (57)
Bott =(2BatBet — BarPsy + 286t Bry — 2P6t B8z

+ BetBaBs — 286t BeB7 + BeyBaBo — BryBsy

+ BatyBa + BBy — ByBaBs + Bsybe b7

— BoyyBa + BoyBaBs)/ Ba, (58)
ATtz = — 2A50 9 + A7z A7 + 2920 — 2A9 A5, (59
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and these satisfied equation (Gayy)r = (Gat)yy-

B.1.2. Case 5, =0
As B4 = 0, we can replace it in the expression for 84, given
in equation (48), which yields the following condition

Bez = 0. (60)
Equation (52) provides the condition
Bry = Bsx + Be7, (61)

and this satisfied equation (Gayy); = (G2s)yy. By compar-
ing the mixed derivative (Ga,); with (Gat),, we obtain the
following equation

GoyBr + G1(—Brt + Box + B78s) = 0.

The compatibility analysis depend on the value of 7 in
equation (62) : it is separated into two cases; that is, 57 # 0
and 87 = 0.

(62)

B.1.2.1. Case 57 # 0
Since 87 # 0, equation (62) provides the derivative

Gay = (G1(Bre — Box — P7s))/ B

By comparing the mixed derivative (Gay ), with (Gag),, wWe
obtain the following condition

Brte = (BrtBra — Braboz + Pozabr)/Br-

Substituting G'2,, from equation (63) into Gy, in equation
(50), one gets the condition

Bste = (Brt08z — Bsebox + BowyBr — BozBebr)/Br. (65)

Comparing the mixed derivatives (Gay): = (Gat)y,
(G1tt)y = (G1y)we and (Gig)s = (G1z)et, one obtains the
conditions

Brer =(282, — 3Bt Box — BreBrBs + BstB7 + Lot Br

(63)

(64)

+ By + BoxB7Bs — Boys + BeB3Be)/Br,  (66)
Bett =(2B6tPrt — 2P6tPox — BetrBs + Bey P9

— Brt By + BstyBr + By Boz — BoyyBr

+ BoyBeB7)/ B, (67)
Atte = — 2A50A0 + A7z A7 + 2A920 — 2A92 A5, (68)

and these satisfied equation (Gayy)r = (Gat)yy-

B.1.2.2. Case 57 =0
As 37 = 0, we can replace it in the expression for 37, given
in equation (61), which yields the following condition

Bz = 0. (69)
From equation (62), one gets the condition
Boz = 0. (70)

By comparing the mixed derivative (G14t), with (G1z ), we

obtain the following condition
Attz = —2X52 00 + A7e A7 + 20000 — 2X02 A5, (T1)

By comparing the mixed derivative (G144 ), With (G1y)w, we
obtain the following equation

Gayv2 + G171 =0, (72)

where

71 =PB6tt — BotBs — ﬁGyﬁ&) - BSty
+ BsyBs + Boyy — BoyBs,

Y2 = — 286t + Bsy- (73)
The relation (Bgt): = Bett provides the condition
Yot = — 2ﬁ6yﬁ9 - ﬁ8ty + ﬁSyﬁS + 269yy
— 289y B¢ + Bsy2 — 271- (74)

The compatibility analysis depend on the value of 7» in
equation (72) : it is separated into two cases; that is, 75 # 0
and vy2 = 0.

B.1.2.2.1. Case v # 0
Since 2 # 0, equation (72) provides the derivative

Gay = (=G171)/72s

and this satisfied equation (Gayy)r = (Gat)yy- By comparing
the mixed derivative (Gay),; with (Gaz),, we obtain the
following condition

(75)

Yz = (Y2271)/V2- (76)

Substituting Gg,, from equation (75) into Gay, in equation
(50), one gets the condition

Y1y = (Bsy¥a + 272571 +75)/(272). (77)

Comparing the mixed derivative (Goy); =
obtains the condition

(Gat)y, one

Y1t =(—2B6yBov1 — BstyY1 + BsyBsv1 + 2Bayym1
— 289y B671 + Boy¥s — BsBovs + 2Bs7172

= 391)/72- (78)
B.1.2.2.2. Case 2 =0

As 5 = 0, we can replace it in the expression for ~; given
in equation (74), which yields the following condition

Bsty = —2Be6yPo + PsyBs + 2Boyy — 2B0yBs — 271. (79)
From equation (72), one gets the condition

71 =0, (80)

and this satisfied equation (Gayy)r = (Gat)yy-

Theorem 2.2: Sufficient conditions for equation (4) to be
equivalent to a linear system (2) via generalized lineariz-
ing transformation (3) with the functions Fi(t,z), Fa(t),
G1(t,x,y) and Ga(t, z,y) are the equations (31), (33), (43),
(44), (45), (46) and the additional conditions are as follows.

I.If B4 # 0, then the conditions are equations (48), (54),
(55), (56), (57), (58) and (59).

II. If B4 = 0 and B7; # 0, then the conditions are
equations (60), (61), (64), (65), (66), (67) and (68).

II1.1f By =0, B7 = 0 and 5 # 0, then the conditions
are equations (60), (69), (70), (71), (74), (76), (77) and
(78).

1V. Ifﬁ4:O,,87:0and72

= 0, then the conditions
are equations (60), (69), (70), (71), (

9) and (80).
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Corollary 2.3: Provided that the sufficient conditions in
Theorem 2.2 are satisfied, the transformation (3) mapping
equation (4) to a linear system (2) is obtained by solving the
following compatible system of equations for the functions
Fi(t,z), Fa(t), G1(t,z,y) and Ga(t, x,y):

I. (30), (34), (35), (36), (37), (38), (39), (40), (41),
(47), (49), (51) and (53).

I1. (30), (34), (35), (36), (37), (38), (39), (40), (41),
(47), (49), (51) and (63).

I11. (30), (34), (35), (36), (37), (38), (39), (40), (41),
(47), (49), (51) and (75).

IV. (30), (34), (35), (36), (37), (38), (39), (40), (41),
(47), (49), (50) and (51).

B.2 Case I, # 0

On this case we focus on the special case G = 0.

As G2 = 0, we can replace it in the expression for G5; given
in equation (41), which yields the following condition

81

and this satisfied equations (G'2); = 0 and (G2), = 0. From
equation (20), one gets the condition

Br = 0.

The relations (Fizz)y = 0 and (Fitz)s = (Fizz): provide
the conditions

(82)

Asy =0, Asp = A7y /2. (33)
Equation (6) provides the derivative
Giz = (KA2)/Fyy. (84)
From equation (20), one gets the condition
By = Aa. (85)
Equation (17) becomes
F1.FyyG1K By + Fi, K*Xy = 0. (86)

The compatibility analysis depend on the value of 34 in
equation (86) : it is separated into two cases; that is, 54 # 0
and 84 = 0.

B.2.1. Case 34 # 0
Equation (86) provides the derivative

Fyy = (=K X2)/(G154).

Since F5, # 0, then Ay # 0. The relations (F,), = 0,
(Fayy)z =0 and (K;), = (K,); provide the conditions

Aow = (BaxA2)/Bas Azx = (BayA2)/Ba, Par = Psa-

87)

(88)

Substituting F5, from equation (87) into Fb,, in equation
(32), one gets the derivative

Gt =(—F11G18123 + F1.G1(2Bay A2 — 222y 84

+ 2833 — 2B4BsA2 + Barala))/(F1:)03).  (89)

Comparing the mixed derivatives (Fa,); = (Fb), and
(Fayy)t = (Fat)yy, one obtains the conditions

A2y =(BayBara — B3 + AatBada + Bids

— B3BeA2 + BaBs)3)/ B3, (90)
Xate =(B6t33 + BataBada — BsiBiA2 — 265, \2

+ 2882 Mot B1 + BswBaBsra — BsyBi

= A2 s) /i on
Equation (12) becomes

FiXy — FiiFigh + FE s = 0. 92)
Equation (92) provides the derivative

Fip = (Fiz(A\a £Vv))/(2)2), 93)

where v = A2 — 4)\y)\g. The compatibility analysis depend
on the value of Fy; in equation (93) : it is separated
into two cases; that is, Fi; = (Fi.(As + v/7))/(2)\2) and
Fip = (Fia (A — V) /(2X2).

B.2.1.1. Case Fi; = (F1.(As +/7))/(2)2)

As Fi; = (Fio(MAs + /7)) /(2)2), we can replace it in the
expression for F, given in equation (37), which yields the
following condition

Ve =(2v/VBaxAa + 2812V + 4V B3 A2 — 4V/V A2t fa
— 2V 40 Ba + VB As — 2v/VBaBsAs
— 2/ Bsdo A7 4+ 2/ V1A )5
— Biv + 2B4Asv) / Ba.

The relation (Fi;), = 0 provides the condition

vy =(2(v/VBayBirors + BayBarav — VU Bz A5 A4
— Bsa A3V + VAot Bado A + Aoy Badav
— VA Bi A2 + VB As A — VIBE B A s
+ VUB1Bs AN + BiAsv — B1BsAav
+ BafsAiv))/(BiXz).

Substituting Fi; into Fiy in equation (38), one gets the
condition

ve =(4V/VBsa Mo + ABsa dav — A/ Ag Bads
+ VUBINL — Vv Biv — 2v/vBaBs Ao
— 8v/UB1AS g + 2/ VBsdoAaAr — 2B4BsAov
+ 28402 A71) /(284 2).

Comparing the mixed derivatives (G1t), = (Gi): and
(G1z)y = (G1y), one obtains the conditions

Bow =(—2vVBaz — 2BaxAa + 8Buy s + 4X21 B
+ A4z Ba + VBT — 2V BsAs — Bida
+ 284882 + 24 2 A7 — 244 )5)/(854),
Mz =(2VVBax + 2Baza + 8Bsc A2 — 42 fa
— VUBE + 2V0BaXs + BiAs — 2B4Bs Ao
— 28427 + 28404 5)/ (4B4),

and these satisfied equations (K, ), = (K,), and (K;), =
(Ky):. By comparing the mixed derivative (Gi:), with

(94)

95)

(96)

o7

(98)
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(G1y)t, we obtain the following condition

A3t =(—4V/VBayBara — 4BayBadoa + 8B61 a3
+ 4V A3 — 16852 8102 As + 128s: A5\
+ 16X2: 81 A3 — 8Xar Badads — 8 Ba
+ 81y BiAa — 2v/VBaBsA; + 2/ VA3 A7
— 883 A3\ + 865 Bodaa + Bi AN}
— BEgv — 103488 A3\ s — 8B4 A3\

+ 28403 A7)/ (1655 A2). (99)
From equation (42), one gets the condition
Ao = (A3(Vv + M)/ (202). (100)

Comparing the mixed derivatives (Fig)y = 0, (Fiy)y =0
and (F14¢). = (F1iz)t, one obtains the conditions
— 8V Bt Bada — AV Bsa Ao s — ABsaAav
+ 8y B3y Bada + 8V Ay Bada — 8v/V A7y Bada
— VUBIAL + VuBiv + 2VvBafshada
+ 8V BiAAg — 2V BiAa a7 + 284 Bs Aav
— 28B4 M 7v = 0, (101)

VAT AL + Ay — 2¢/VAgyAe = 0, (102)
- 4\5581‘,)\3 — 4Pz AoV — 2\/;>\2tﬂ4)\4

+ 2001 Bav + AV A Bads + A4V VA7 A

— 8V A7y Bada — 8V Aoa XS + VBTV

— VUBBs A2 A1 + AV BIAI N — VI Bida ANy

+ 2VUBENS + 8V A A5 A — 2V VAN

— ﬂi)\ﬂ/ + 36468)\21/ — B4)\2/\7V =0. (103)

B.2.1.2. Case Fiy = (F1.(\ — v/7))/(2))

As Fiy = (Fiz(A1 — v/v))/(2X2), we can replace it in the
expression for Fi¢, given in equation (37), which yields the
following condition

Vo =(=2VV Bz s + 2842 — 4V Bsc A2
+ 4V A2 Bs + 2V A aa B — VB A
+ 2V B4Bs A2 + 2V Bidar7 — 2/ Bs A5
— Biv +2B4Asv)/Ba (104)

The relation (Fi;), = 0 provides the condition

vy =(2(—=v/vBayBara s + BayBarov
+ VUBss A3 A — Bsa A5y — VAo Badoa
+ A2t Badar + VU A1y BiAe — VBN
+ VB BsAads — VBaBsA3As + BiAsv
— BiBeAav + BuBsA3v))/ (B A2).

Substituting F3; into Fyy in equation (38), one gets the
condition

ve =(—4v/vBsa Ao s + 4BsaAav + 4/ st Bado
— VUBIAL + VBl + 2V/vBaBsAaha
+ 8VUBIAIAg — 2V Bi A a7 — 2B BsAov
+ 28422 271) /(284X2). (106)

(105)

Comparing the mixed derivatives (G1:), = (Giy): and
(G1z)y = (G1y), one obtains the conditions

Bow =(2v/V Bz — 2BazAa + 8BayBa + 42t Pa
+ 412 Bs — VUBE + 2v/vBiAs — BiAa

+ 28488 A2 + 2B4Xa A7 — 28404 X5)/(8B4),  (107)
Mz =(—2VVBag + 2B1a s + 8Bsa A2 — 4Xa1Ba

+ VUB; — 2VVBsAs + BiAa — 2B4Bs A2

— 20427 + 284 A4)5) / (4B4), (108)

and these satisfied equations (K, ), = (Ky), and (K;), =
(Ky):. By comparing the mixed derivative (Gi:), with
(G1y)t, we obtain the following condition

A3t =(4VVBayBara — 4BayBarars + 886t BN
— 4y B3z A3 — 1685581 M2 A3 + 12852 A3\
+ 162t 8303 — 8XatBadads — 8\t 43
+ 8Auy B3 A2 + 2V B1BsAS — 2v/vBiAG A7
— 883 A3\ + 883 Bo A2 s + BiA2A]
— BiAav — 108185 A3 As — 8B4 A3 Ao

+ 28405\ A7) /(1653 A2). (109)
From equation (42), one gets the condition
Ae = (A3(—VV + A1)/ (2)2). (110)

Comparing the mixed derivatives (Fi¢z)y = 0, (Fi)y = 0
and (Fi¢t)z = (Fiea), One obtains the conditions

— 8V B6tBars — 4V Bsz Ao Ay + 4Bss Aav

+ 8V BsyBada + 8V Ayt Bada — 8v/U A7y BaXa
— VBN, + VB + 2V BaBs Ao

+ 8V 1A A9 — 2V Bsdo ANy — 2B4Bs Ao
+ 28B4 2 70 = 0, (111)

VIATyAL — Ayt — 20/ Agyha = 0, (112)
— 4Vt A3 + ABss AoV — 2/ Aot Bay

— 20t Bav + A4 Bade + AU A7 NS

— 8VUA7yBada — 8VU g AS + VBTV

— VUBaBsAoAs + 4V B1A3Ag — VU BaraAa A7
VBN 4 8VIAZAs g — 2V/DAZA2

+ ﬂz)u;l/ - 3ﬂ4ﬂ8>\21/ + ﬂ4)\2>\7l/ =0. (113)

B.2.2. Case 5, =0
Since 4 = 0, then the equations (86) and (Fby,), = 0, one
gets the conditions

AQZOa
A3z =0

(114)
(115)

Comparing the mixed derivatives (K, ), = (Ky)z, (Kt)s =
(K3): and (G1g)y = (G1y)s, one obtains the conditions

Az =0,
ﬁ&r = 07 56:1: =0.

(116)
(117)
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By comparing the mixed derivative (Fi), with (Figy)e, we
obtain the following derivative
Giue =(3G3; + 2G1,G1Bs + GT(—2Bst + 27t

— 4o + B2+ 44X — A2))/(2GY). (118)

By comparing the mixed derivative (G1¢t), with (G1z)s, we
obtain the following condition

Atz = =255 M9 + A7z A7 + 2X900 — 29z A5, (119)
Equation (12) becomes
1, K)g — F1 KAy = 0. (120)

The compatibility analysis depend on the value of A4 in
equation (120) : it is separated into two cases; that is,
)\47503.1‘1d)\4:0.

B.2.2.1. Case \, # 0

Since A4 # 0, equation (120), one gets the derivative
Fip = (FizXs)/ 4. (121)

Equations (Fi:), = 0 and equation (42), provide the
conditions

Asy =(AayAs)/Aa,
X6 =(A3A8)/A4.

Substituting Fy; from equation (121) into Fiy, in equation
(37), one gets the derivative

Glt =Gy (2)\8x - 58>\4 + )\4)\7 - 2/\5)‘8)/)‘4'

(122)
(123)

(124)

Comparing the mixed derivatives (Giy)y = (Giy)w and
(G1t)z = (G1z)t, one obtains the conditions

Bott =(2B6t A8z + BotAaA7 — 2B6:AsAg + Bty Aa

— 288y Ase — BayAaA7 + 2By AsAs + Mgy Aa

— 24 A8z — Ar A A7 + 2 A58 — Ay Ay

+ Ary AaA7 + 295y Mg — 2)\9y)\4>\5)//\47 (125)
Asazx =(2X5: A8 — A7z Ag + 2As2A5) /2. (126)

Substituting G1; from equation (124) into G4 in equation
(118), one gets the condition

Atz =(2AatAsz — 2Aae A5 A8 + A7z Aads + 280 A X5
+ 202, + 2282 A\ 7 — g A A — 2hgp A2
+2M5 0500 — 2Ma A5 A7 s + 2A203)/(2)4).  (127)
Substituting Fy; from equation (121) into Fyy in equation
(38), one gets the condition
Ast =(Aatds + AszAs — Mg + Aadr)s

= AsA3) /A4, (128)

and this satisfied equation (Ag;)r = Agtr. By comparing
the mixed derivative (Gy;), with (Gi1y);, we obtain the
following condition

Beot = Py + Aat — Ary. (129)
The relation (Ss): = Bere provides the condition
Xozy = (A7yAgz — A7y AsAg + Aoy Aads)/Ag. (130)

By comparing the mixed derivative (K;), with (K,);, we
obtain the following equation
Fo Gy + Kpo =0, (131)

where

p1 = —2Bst + 2A7¢ — 4hox + B3 + 4Xs A9 — AZ,
po = — 2y + 47y — 2X85 + Bs Ay — A7
+ 2X5)s.

The relations (A7¢)z = Artw, (Asz)e = Aszr and (Agg): =
st provide the conditions

t1e =0, H2w = 470y, (132)
p1y =(—8BstyAa + 8BsyBsAa + 4Xart s

+ 8Age A7y — 44 B g + 241100

— 162, + 2upe Mg — 2BsAapia

+ i+ 13)/ (40a). (133)

The compatibility analysis depend on the value of p; in
equation (131) : it is separated into two cases; that is,
ul#Oandule.

B.2.2.1.1. Case p; # 0
Since 1 # 0, then the equation (131), one gets the derivative

Fyy = (—Kp2)/(Gi), (134)

and this satisfied equation (Fi4,), = 0. Because of Fy, # 0,
then po # 0. The equations (Fiy), = 0 and (Fby), = 0
provide the conditions

)\91‘/ = (/\7!/)‘8)/)\4’ A’7;cy =0, (135)

and these satisfied equation (Agy ), = Agsy. Substituting Fh,
from equation (134) into F,,, in equation (32), one gets the
condition

Bsty =(8BsyBsAafiz + AAareapio + 8Aag A7y pio
— 44t B Aapto + 6/\4tl£§ — 16)\%!/12
— 87y 15 + 22 apiz — Apzy Aajin
— 4B Aap1pi2 — 2BsAap3 + Az Ay

+ 3\ a2 + 33/ (Bhapuz). (136)

Comparing the mixed derivatives (Fby,); = (Fht)y, and
(Fsy)¢ = (Foy)y, one obtains the conditions

Mgy =(—4A3 A1 + gy Aajin — AAgp Aay pio
+ 4Aae Az Aafin — 2XaeAG 12 + 8Aay A7y 1o
+ 224y Aj 1 — 2y 13 — 8Azy Az Aapin
+ 4A7y ATz + 2p2y Aapio + 2B6\5 1
— 4B A3 ATy + 203N afu1 2 — Njfu
— A113)/ (BAapiz),

ot =(2Ag¢ i1 p2 — AXqypi1 i + 20010 Aafio

— 2B Mapa iz + Njpt + pap3)/ (2Aapm).

137)

(138)

B.2.2.1.2. Case p; =0
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As pq = 0, we can replace it in the expression for 11, given
in equation (133), which yields the following condition

Bsty =(8BsyBara + 4XartAa + 8Aap A7y — 44 By
+ 2 p2 — 16)\%, + 2p0e g — 2BgAapu2

+ 13)/ (8a), (139)
and this satisfied equation (1), = p1.. From equation
(131), one gets the condition

po = 0. (140)
The relation (uz2), = pio, provides the condition
Aty = 0, (141)
and this satisfied equation (Fi:z), = 0. From equation
(F1i)y = 0, one obtains the condition
Aoy = (A7yAs)/ A4, (142)

and this satisfied equation (Agy)s = Aggy. By comparing
the mixed derivative (Fhyy): With (Fbt)y,, we obtain the
following equation

2F2yG1/,63 + KA4,LL4 = 0, (143)

where
13 = — 24ty M + 20 day + A AT — ddgy A7y
+ A7y A — 207, T,
pa = — dX3e A g + AAg A3 + 20404 — 87y A3
+ 2B86A] — 4BsA3ha + 2X3p2 — A}
The compatibility analysis depend on the value of us in

equation (143) : it is separated into two cases; that is,
s # 0 and pg = 0.

B.2.2.1.2.1. Case u3 # 0
Since p3 # 0, then the equation (143), one gets the derivative

Foy = (=K Xypa)/(2G113).

Because of Fy, # 0, then py # 0. From equation (Fyy), =
0, one obtains the condition

(144)

Paz = (Uszfta)/ s (145)

Substituting F», from equation (144) into F,, in equation
(32), one gets the condition
Hay :(Mt)\wi — 2Xgyp3pia — 2)\77;/\4#421
+ 2p3y Aapa — 2BeAapispia + AX3p3
+ Aipzpa)/ (2Aaps3).

Comparing the mixed derivative (Fb,); = (Fh)y, one
obtains the condition

(146)

pag =(—=2X7y puajis + paedapia — BeAapizjia

+Xagi3) [ (Napss)- (147)

B.2.2.1.2.2. Case pu3 =0
Since p3 = 0, then the equation (143), one gets the condition
e (148)

B.2.2.2. Case \, =0

Since A4 = 0, then the equation (120), one gets the condition
As =0, (149)

and this satisfied equation (A4), = MA4,. Equation (42)
becomes

FroK s — Fiu Kz = 0. (150)

The compatibility analysis depend on the value of A3 in
equation (150) : it is separated into two cases; that is,
)\37é0and)\3:0.

B.2.2.2.1. Case A3 # 0
Since A3 # 0, then the equation (150), one gets the derivative
Fip = (Fiz)X6)/As. (51)

Substituting Fy; from equation (151) into Fiy, in equation
(37), one gets the derivative

Gt = G126 — PgA3 + A3A7 — 2X5)6) /A3, (152)
Comparing the mixed derivatives (G1;), = (Gig): and
(G1t)y = (G1y)¢, one obtains the conditions

Aozz =(2A5206 + 262 A5 — A72A3) /2, (153)
Aoy =(—BstA3 + BsyA3 + 2Xsy A6 — 2AayAs g
+ 206y A3A5 — A7y A3)/(2A3). (154)

Substituting G1; from equation (152) into G14 in equation
(118), one gets the condition
Aotz =(2A3: 062 — 2A3:A56 + 2X6t A3 A5 + 205,
+ 2062 A3A7 — 4X6z As A6 + A7z A3 6
— 2202 A2 + 202500 — 2X3 A5 A6\ 7

+2X203)/(2)3). (155)

By comparing the mixed derivative (G144 ), With (G1y)w, we
obtain the following condition

Bett =(2B6tN6x + BetAsAr — 286t A5 A6 + Bty Az
— 283y X6z — PBayA3A7 + 288y AsAe — AreyAs

+ AryAsA7 + 2Xoay A3 — 200y Ashs) /A, (156)
From equation (Fi;), = 0, one obtains the condition
Aoy = (AzyAe)/As. (157)
The relation (Agy )z = A6y provides the condition
Bet = By — Ary- (158)
The relation (Sg;): = Bgr: provides the condition
Aozy = (Aez A7y — Aty As e + Aoy AsAs)/As. (159)

Substituting Fy; from equation (151) into Fyy in equation
(38), one gets the condition

Xot = (Maths + Asads — A2ho + AsAeAr — AsA2) /Ag, (160)

and this satisfied equation (Ag¢)z = Agtz- By comparing the
mixed derivative (K;), with (K, );, we obtain the following
equation

FoyGrps + 4K A7y = 0, (161)

where

ps = —2Bs¢ + 2A7 — 4oz + B3 + 4Ashg — AZ.
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The compatibility analysis depend on the value of us in
equation (161) : it is separated into two cases; that is,

s # 0 and ps = 0.

B.2.2.2.1.1. Case u5 # 0
Since s # 0, then the equation (161), one gets the derivative

Fyy = (4K A7)/ (Grps), (162)

and this satisfied equation (Fi¢,), = 0. Because of Fy, # 0,
then A7, # 0.
The equation (Fb,), = 0, one obtains the condition

U5z = ()\7$yu5)/)\7y (163)

Substituting F», from equation (162) into F,, in equation
(32), one gets the condition
Hsy :(16)‘696)‘%7; + 4A7yy Aspis — 8)‘%7;58)\3
+ 8M2, A7 — 16A2, A5 A6 + A7y B6 A3 pts

— A3u2)/(4hzyAs).

Comparing the mixed derivative (Fby); = (Fa),, one gets
the condition

st =(t5 (262 A7y + 2A70y A3 + A7y B A3

(164)

+ )\7y)\3>\7 — 2)\7y>\5>\6))/(2)\7y)\3) (165)
The equation (Fy4), = 0, one obtains the condition
Aoy = (AryAe)/As. (166)

Comparing the mixed derivative (Fayy )¢ = (Fa¢)yy, One gets
the condition
Now =(4BsyAry — 2Xsei5 — 403, — BsAspis
— A3Azits + 225 65) / (2115). (167)
The relations (Aez)z = Nezzs (A6z)y = Aezy and (Ngz)t =
A6tz provides the conditions
A7zy =0,
Asty =(2Bsyy Ay Aapd — 1655;,)‘%,
+ 8ﬁ8y)\3t/\$y,u5 — 288y Asy A1y liz
+ 3285y A%, + 8Bsy A2, BsAapus
— 288y A1y BeAa iz + Azt Aayhis
— 8A3AD, s + 2A3y A2, 112
— 2Xzyy AryAspd — 1613,
- 8)\%,58)\3/% + 2)\%,66/\3,“%
= AryAduz)/ (Napes),
Aare =(—1683, A7, + 888y Asit Azy it
+ 888y A7y B Az pts + 8>\3t)\$yﬂ5
— 2X3¢Bs A3tz — 27 A3p3 — 2A7yy As il
+ 16A7, + 8A7, BsAspis — 2)7y BeAs i
+4Xos A3 — BENSHE — 4N3As Noi3

(168)

(169)

+ASNTHS + A3i5)/ (2Aap3), (170)
and these satisfied equation (Agy)z = Agazy.
B.2.2.2.1.2. Case u5 =0
Since u5 = 0, then the equation (161) provides the condition
Ary =0, (171)

and this satisfied equation (Fyy), = 0. From the equation
(F1t)y = 0, one obtains the condition

Aoy = 0, (172)

and this satisfied equation (Agy); = Agyy. Comparing the
mixed derivative (Fy, ) = (Fat)yy, One gets the equation

—F3,G1Bsy + Kpg = 0, (173)

where
Mo = —2A3t — 2X6z — BsA3 — A3A7 + 2A5X6.

The relations (A¢z)z = A6z, (A6z)y = A6zy and (Neg): =
A6tz, provides the conditions

e =0, (174)
fiey =(—Bsy A3 — 2Xa1y A3 + 2X3:\3y + Aaypie)/ Az, (175)
por =(—4A36 A3 — 4Xs3¢Bs A3 — 2Ase i — AA7e A

+ 8oz A3 — 2B2)2 — 2B Az — SA3A5 A

+2030F — 18)/(2)3). (176)

The compatibility analysis depend on the value of g, in
equation (173) : it is separated into two cases; that is,

ﬁgy 7é 0 and ﬂgy =0.

B.2.2.2.1.2.1. Case 33, # 0
Since fs, # 0, then the equation (173), one gets the
derivative

Fyy = (Kpe)/(G15sy)-

Because of Fy, # 0, then pg # 0. Substituting Fj, from
equation (177) into Fj,, in equation (32), one gets the
condition

(177)

/\Bty :(_258yy)\3,u/6 + 458y)\3t)\3y + 2ﬂ8y)\3y/146
+ 2By Be A3 his + 2X3e 1l + 2Bs A3 + 1)
/(4BsyA3)- (178)
Comparing the mixed derivative (Fby); = (Fa),, one gets
the condition
Astr =(—2X3t8sA3 — 2Age16 — 2A7\3
+ 4oz A3 — BEA] — 2BsAspe

—4A3As 0 + A3A2 — 12)/(2)3), (179)
and this satisfied equation (F,), = 0.
B.2.2.2.1.2.2. Case (g, =0
Since (s, = 0, then the equation (173) provides the
condition
we = 0. (180)

The relations (ug)y = ey and (ue): = pet, provides the
conditions

A3ty =(A3¢A3y) /A3, (181)
Azt =(—2X3:8s — 2A7e A3 + 4oz A3 — BaAs
—4X3A5)0 + A3)2)/2, (182)

and this satisfied equation (ug)z = l6z-

B.2.2.2.2. Case \5 =0
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Since A3 = 0, then the equation (150), one gets the condition
X6 =0, (183)

and this satisfied equation (\3), = A3,. Comparing the
mixed derivative (Fyyy): = (Fat)yy, one gets the condition

Bet = 0.

By comparing the mixed derivative (K;), with (K,);, we
obtain the following equation

(184)

Fo,Gip7 +4KBgy =0, (185)
where
pr = —2Bst + 2A7e — Ahog + B3 + 4Xshe — AJ.
The relation (A7¢), = A7is, provides the condition
Prz = 0. (186)

The compatibility analysis depend on the value of u7 in
equation (185) : it is separated into two cases; that is,
w7 # 0 and p7 = 0.

B.2.2.2.2.1. Case u7 # 0
Since p7 # 0, then the equation (185), one gets the derivative

Foy = (—4K Bsy)/(G1p7),

and this satisfied equation (Fh,), = 0. The equation
(F1yt)y = 0, one obtains the derivative

Fiy = (Flw/\QU)/ﬁgy

By comparing the mixed derivative (G144 ), With (G1y)w, we
obtain the following condition

G = (*Glﬂw)/@ﬂSy)a

and this satisfied equation (G1¢); = (G1z)¢- By comparing
the mixed derivative (Gi;), with (Giy), we obtain the
following condition

(187)

(188)

(189)

tryy = (Bsyytiry)/ Bsy- (190)

Substituting G1; from equation (189) into G4 in equation
(118), one gets the condition
Mty :(4ﬁ8ty,ul7y - 45;;,“7 + 468yﬂ7y58
— 42,/ (46s)

Substituting Fy; from equation (188) into Fiy, in equation
(37), one gets the condition

(191)

Aozy = (28syBs — 2Bsy A7 + 4dhayAs — pzy) /4. (192)
The equation (Fi;), = 0, one obtains the condition
)\ny = (58yy)\9y)/58y (193)

Substituting Fy; from equation (188) into Fy; in equation
(38), one gets the condition

)\Qty :(458ty)\9y - 4ﬂ§y)\g + 268y)\9yﬂ8

+ 208y Aoy Ar — Aoy iry)/ (4Psy)- (194)
The equation (Fi¢,), = 0, one obtains the condition
Aty = Bsy- (195)

Substituting F»,, from equation (187) into F,, in equation
(32), one gets the condition

Bsyy = (Bsy(2p7y — Bepir))/ 17

Comparing the mixed derivative (Fy,); = (Fa;),, one gets
the condition

ﬁ&fy = (468y/f['7t - 4681;68/-47 + M?y/.l?)/(él/,w)

(196)

197)

B.2.2.2.2.2. Case ;7 =0
Since p7 = 0, then the equation (185), one gets the condition

Bsy = 0, (198)

and this satisfied equations (u7), = p7, and (Giw)y =
(Gr1y)tt-

The equations (Fii), = 0 and (Fi4), = O provide the
conditions

(199)

Theorem 2.4: Sufficient conditions for equation (4) to be
equivalent to a linear system (2) via generalized linearizing
transformation (3) with the functions F; (¢, x), Fy(t,y) and
G1(t,z,y) are the equations (31), (33), (81), (82), (83),
(85) and the additional conditions are as follows.

I.If 64 7& 0 and Flt = (Flav()\ll + \/17))/(2)\2), then the
conditions are equations (88), (90), (91), (94), (95), (96),
(97), (98), (99), (100), (101), (102) and (103).

IT. If B4 # 0 and Fiy = (Fiz(As — v/7))/(2)2), then
the conditions are equations (88), (90), (91), (104), (105),
(106), (107), (108), (109), (110), (111), (112) and (113).

IIT.1f B4 = 0, Ay # 0 and py # 0, then the conditions are
equations (114), (115), (116), (117), (122), (123), (128),
(129), (132), (133), (135), (136), (137) and (138).

IV. If By =0, Ay # 0, u1 = 0 and ps # 0, then the
conditions are equations (114), (115), (116), (117), (122),
(123), (128), (129), (139), (140), (141), (142), (145), (146)
and (147).

V.If B4 =0, Ay # 0, 1 = 0 and pz = 0, then the
conditions are equations (114), (115), (116), (117), (122),
(123), (128), (129), (139), (140), (141), (142) and (148).

VI.If B4 =0, Ay =0, A3 # 0 and us # 0, then the
conditions are equations (114), (115), (117), (119), (149),
(157), (158), (160), (163), (164), (165), (166), (167),
(168), (169) and (170).

VII. Ifﬁ4:0, )\4:07 )\37&0, u5:03ndﬂgy7&07
then the conditions are equations (114), (115), (117), (119),
(149), (157), (158), (160), (171), (172), (174), (175),
(176), (178) and (179).

VIII.If By =0, Ag = 0, Ay # 0, 5 = 0 and B, = 0,
then the conditions are equations (114), (115), (117), (119),
(149), (157), (158), (160), (171), (172), (180), (181) and
(182).

IX. If By =0, Ay =0, A3 = 0 and pu7 # 0, then the
conditions are equations (114), (117), (149), (183), (184),
(186), (190), (191), (192), (193), (194), (195), (196) and
(197).

X. If 8, =0, \y =0, \3 =0 and u; = 0, then the
conditions are equations (114), (117), (149), (183), (184),
(198) and (199).
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Corollary 2.5: Provided that the sufficient conditions in
Theorem 2.4 are satisfied, the transformation (3) mapping
equation (4) to a linear system (2) is obtained by solving the
following compatible system of equations for the functions
Fi(t,z), Fa(t,y) and G1(t, z,y):

1. (30), (34), (35), (36), (39), (40), (84), (87), (89) and
Fiy = (Fiz(A +V/v))/(222).

I1. (30), (34), (35), (36), (39), (40), (84), (87), (89)
and Flt = (le()\4 — \/;))/(2)\2)

I11.(30), (34), (35), (36), (39), (40), (84), (121), (124)
and (134).

1V. (30), (34), (35), (36), (39), (40), (84), (121), (124)
and (144).

V. (30), (32), (34), (35), (36), (39), (40), (84), (121)
and (124).

VI. (30), (34), (35), (36), (39), (40), (84), (151), (152)
and (162).

VII. (30), (34), (35), (36), (39), (40), (84), (151), (152)
and (177).

VIII. (30), (32), (34), (35), (36), (39), (40), (84), (151)
and (152).

IX. (30), (34), (35), (36), (39), (40), (84), (187), (188)
and (189).

X. (30), (32), (34), (35), (36), (37), (38), (39), (40),
(84) and (118).

ITI. EXAMPLES

Example 3.1: Consider the system of two second-order
ordinary differential equations

a"tey — 27y t2 — 2yt + 20'zy — y'x? =0,

" 1,1242 1, 12 / (200)
ytey — 'y Tt —2'y'ty —y' Tt +y'xy = 0.

The system under consideration has coefficients that conform
to the form of (4) in Theorem 2.1, which are

M=0, do= A=0, =2 A=0,

A6 =0, Adr=—% As=4, =0, /=0,

B2=0, B3=, Ba=1 Bs=0, 56:%7
Br=0, Bs=-1, By=0, v=0.

It can be verified that these coefficients satisfy the condi-
tions outlined in Theorem 2.4. Therefore, it is possible to
linearize equation (200) by utilizing a generalized linearizing
transformation. To determine the functions Fi, F5,G7 and
G, we must solve the equations presented in Corollary 2.5,
specifically in case (I). These equations are

Fiy = Kllfﬂv Froe =0, Fiy =0,

] v Kt
Po=mgn 1m0 =7 g
Gu=%, Guu=-7 Gy =0,

Kt—ga Kx:_§7 Ky_%’ G2 =

The particular solution for the equations presented in (201)
can be obtained as follows

Fi=tr, Fo=ty, Gi=1% Gy=0,

Thus, we obtain the linearizing transformation as

K=-%
x
tyl
u=tr, v=ty, dI =-—dt. (202)
x

As a result, the system (200) is transformed by the mappings
presented in (202) into the following linear system

The solution for this linear system can be expressed as
follows

u(T)=c1T+c2, v(T)=c3T + ca, (203)

where ¢;, (i = 1,2,3,4) are arbitrary constants. After ap-
plying the transformation (202) to equation (203), we can
determine the general solution for equation (200) as follows

tr = c1d(t) +ca, ty = c3p(t) + ca,

here, the function T = ¢(¢) represents a solution to the
equation

dT ty'

dt  x°

Example 3.2: Consider the system of two second-order
ordinary differential equations
1" /2 ’
) ,xl tx —/230 t/—;— 20x =0, (204)
yry+rxyy+zrzt+y x+x=0.

The system under consideration has coefficients that conform
to the form of (4) in Theorem 2.1, which are

)\1:0, A2:07 A3:07 )\4:07 )\5:%,
As =0, )‘7:7%3 As =0, Ag=0, [1=0,
B2=0, B3=0, fa=—3, B5=0, fs=—p,
— t _ _ 1
fr=—2;> Ps=0, fo=—.

It can be verified that these coefficients satisfy the condi-
tions outlined in Theorem 2.2. Therefore, it is possible to
linearize equation (204) by utilizing a generalized linearizing
transformation. To determine the functions F}, F5, G and
G2, we must solve the equations presented in Corollary 2.3,
specifically in case (I). These equations are

_ F1:.G1 _ F1.(G1:t42Gy)
Fryp = =572, Fup = =556,
K

Flza::_ﬂ}%; Fly:O> F2t:r_

Gy>
_ _ _ 3G,
Foy = 07 F2y - 07 Gltt — 2G> (205)
G, = G1 G, = G1 Goy = G1:Gay+G1*
le = ly*ya 2t — Gl}'!é )
_ Gat _ _ 2@
GQI_T;Jv G2y_07 Kt_%v
K, =% K,=£
x y

The particular solution for the equations presented in (205)
can be obtained as follows

" :i KL=t Gi=zy, Go=tx, K=—xy.
Thus, we obtain the linearizing transformation as
t
u=—, v=t, dT = (zyy + tz)dt. (206)
x

As a result, the system (204) is transformed by the mappings
presented in (206) into the following linear system

=0.

The solution for this linear system can be expressed as
follows

uw(T)=c1T+co, v(T)=c3T + ey, (207)

where ¢;, (i = 1,2,3,4) are arbitrary constants. After ap-
plying the transformation (206) to equation (207), we can
determine the general solution for equation (204) as follows

% = Cld)(t) +e2, t= C3¢(t) + ¢4,
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here, the function T = ¢(t) represents a solution to the

equation
ar "+t
— =z x.
dt vy

IV. CONCLUSION

This paper presents a generalized linearizing transforma-
tion to convert a system of two second-order ordinary differ-
ential equations into a linear system. It outlines the necessary
conditions for the system to be linearizable in Theorem
2.1 and provides sufficient conditions in Theorems 2.2 and
2.4, which are identified by the linearizing transformation.
The paper provides illustrative examples to demonstrate the
presented theorems.
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