
 

 
Abstract—In this paper, we consider image reconstruction 

methods for block compressed sensing (BCS). We model images 
to lie in the range of an untrained network for every subblock 
and combine the projected gradient descent algorithm to 
improve the performance. This proposed method is named 
BCS_PGDNET. Meanwhile, sufficient condition is provided for 
algorithmic convergence. We compare with the following  
algorithm: OMP, COSAMP, IRLS, BCS_SPL_DDWT, BCS_  
FOCUSS, BCS_SPL_DCT. Experimental simulations show that 
BCS_PGDNET method have better recovery performance than 
main-stream CS methods and BCS methods with relative 
higher PSNR and SSIM, and tradeoffs between block size and 
the improved reconstruction performance are discussed. This is 
generation of compressed sensing (CS) with untrained network 
priors. 
 

Index Terms—block compressed sensing, untrained network, 
projection gradient descent, priors 

 

I. INTRODUCTION 
ith the development of the Internet and the advent of 
the era with big data, signal acquisition and trans- 

mission have received wide attention from scholars [1-4]. 
The traditional sampling method needs to satisfy the 
Shannon's sampling theory, and the original signal can be 
reconstructed when the signal sampling frequency is greater 
than two times of the highest frequency. However, due to the 
limitation of hardware facilities, it is difficult to sample and 
transmit for high-frequency signals. At the same time, for 
low-frequency signals, there is more redundant information 
with the large amount of sampled data. Reconstruction 
process leads to an increase in computational difficulty. To 
deal with the drawback, Donoho [1] proposes the CS theory. 
That is, when the signal is sparse, signal could be recon- 
structed from a few measurement values by a suitable  
measurement matrix in CS. In the subsequent research, CS 
achievements about sparse signal processing, reconstruction 
algorithms and measurement matrix design. CS is widely 
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used in semantic segmentation [2], computational ghost  
imaging [3], depth determination of monocular camera [4],  
pattern recognition [5] and other fields. However, the class- 
ical CS reconstruction methods and the signal sampling with 
huge measurement matrix still impose a large computational 
consumption on the hardware devices. In order to reduce the 
computational burden. Lu [6] adopts block compressed 
sensing (BCS), which divides the image into several blocks 
with the same size. This method solves the problem of 
real-time transmission of large scale images and greatly 
reduces the computational complexity. The measurement 
matrix of every block image is much smaller than the whole 
image and it is easy to be stored. Mun et al. [7] implements 
the BCS_SPL algorithm, and the original image is recon- 
structed effectively. But lots of information is lost in the 
recovery process and this algorithm leads to the degradation 
of the recovery quality. BCS_FOCUSS algorithm is reported 
by Deepthi et al. [8] and this algorithm overcomes the draw- 
back of some BCS algorithm in terms of lost information. 

In recent years, driven by deep neural networks (DNNs) 
framework, a series of signal processing methods based on 
deep learning have been proposed. DNNs can provide a 
technical way to reconstruct signal with high quality. Adler et 
al. [9] combines simple structural DNNs with block mea- 
surement matrix to reconstruct the original signal faster.  
However, the artifacts exist in the reconstructed images. In  
this paper, a projection gradient descent (PGD) reconstruc-  
tion algorithm based on untrained neural network is proposed. 
Firstly, the original signal/image is blocked. For every 
measurement signal, it is sampled by a Gaussian matrix. Then 
for the measured signal, we adopt an untrained network as 
priors and apply PGD to recover the original signal. The 
value of PSNR and SSIM for the reconstructed signal are 
compared with classical algorithms at different sampling 
rates and block size. Lastly, we discuss the effect of sampling 
rate and block size, respectively. Our contributions are as 
follows:  

We draw a connection between PGD with the deep 
untrained network prior and BCS. Furthermore, we obtain the 
sufficient condition about the range of images BS  spanned by 
the deep untrained network. Meanwhile, we give the proof of 
convergence of the proposed algorithm. 

In this paper, upper letters T indicates transpose, vectors  
are denoted by lower case bold letters such as x  and  
matrices are expressed by upper case bold letters such as A ,  
respectively. We denote the inner product between x , y  
as ,x y . 
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Fig. 1. The framework of block compressed sensing  

II. THE OVERVIEW  
CS is a new data acquisition method. That is, a sparse 

signal  can be acquired by incomplete information in CS. 

A. Compressed Sensing 
In CS model, the sampling process can be expressed as: 
 ,y x  (1)   

where NRx is the original signal, and mRy is the 
measurement values obtained by the measurement matrix 

 m NR m N  , the sampling rate is R m N . This 
problem is ill-posed. It is well-known that if   satisfies  
the restricted isometry property (RIP) condition, it is 
possible to reconstruct a sparse signal  by the following 

0l - minimization problem: 
 

0
min s.t. ,x y x  (2) 

where 
0
 indicates the number of non-zero elements of  

the signal . The RIP concept is (see Definition 1) first in-  
troduced by Candès et al. [10]. 

  
Definition 1. Assume a k -sparse vectors NRx . If there 

exists a constant 1k   and k  satisfies the following 
formula: 

 2 2 2

2 2 2
(1 ) (1 ) ,k k    Φx x x  (3) 

then m N is said to satisfy RIP condition of order k . The  

smallest constant k is called the restricted isometry con-  
stant (RIC) of order k for  . 

However, for the large scale images in realistic scenes, 
the reconstruction process needs to cost more computing 
resources. In the next part, we consider BCS to overcome 
this drawback.  

  

B. Block Compressed Sensing 
Let the gray value matrix of a grayscale image be: 

 

T

11 21 1

12 22 2

1 2 .

N

N

N N NN

x x x
x x x

I

x x x

 
 
 
 
 
 




   


 (4) 

This matrix is vectorized as: 
       T

1 2[ , , , ]N x x x x ,       (5) 

where 
1 2

T[ , , , ]
Nj j j j x x x x . 

Let 
[j][1] [n]

1

T

1 ( j 1) 1 j 1, , , , , , , , , ,
j j nl l l N l Nx x x x x x     

 
 
 
 

  
    

xx x

x , where  

the j -th subblock is written as [ ]jx  and the length of index  

set is 1 2{ , , , }nl l l   . The size of original image is N  
dimension and the same block size is jl b b  , 1 j n  ,  

where j 1

n
jN = l

 . Especially, as 1n , the block compressed  
sensing is compressed sensing. The model of BCS can be  

 
sensing is compressed sensing. The model of BCS can be 
described: 

 T

[1] [2] [ ], , , , , , ,B B B n   y x x x    (6)  

where B  is the measurement matrix, and [ ] [ ] ,j B jy x    
1 .j n  . 

  
Definition 2. Let the original signal NRx  be block 
k -sparse. Assume the following formula satisfies a constant 

1k  :  

 2 2 2

[ ] [ ] [ ]2 2 2
(1 ) (1 ) ,k j j k j    Φx x x  (7)  

then measurement matrix B  is said to satisfy the block  
restricted isometry property (Block_RIP) of order k . The 
Block_RIP concept is introduced by Junhong et al. [11].  

Then, we give the flow chart of BCS, the details are 
seen in Figure.1: 

 

 

II. PROPOSED ALGORITHM AND CONVERGENCE  

In this section, firstly, we describe sketch of the  
untrained neural network. Secondly, the BCS_PGDNET 
algorithm is presented. Finally, we give the convergence  
proof of the proposed algorithm.  

A. Untrained Neural Network Model 
Deep neural networks (DNNs) technique is widely  

applied in images reconstruction, such as denoising [12], 
inpainting [13], super-resolution [14], et al. However, 
traditional DNNs require a large datasets to train the 
model. Therefore, we explore untrained neural network as 
image priors to reconstruct image signal from the few  
measurement values. The j -th subblock [ ]jx  can be repre- 
sented by the block untrained neural network ( ; )B j jG W z , 

where jW  is the set of the weights of deep network, jz  is 
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the latent code and the set BS  captures the characteristics 
of ( ; )B j jG W z , 1 j n   [15]. In other words, subblock 

[ ]jx  is said to obey an untrained neural network prior if it 

belongs to the set [ ] [ ]: { | ( ; )}B j j B j jS G  Wx x z . The j -th 

subblock [ ]jx  has a decoder prior and it is denoted by 

( ; )B j jG W z . The network has a piece-wise linear 
activation function of Re Lu max{0, }x . If the true 
weights jW  is obtained for block signal [ ]jx  from 

[ ]arg min ( ; )
j

j j B j jG 
W

W Wx z , then we need large 

datasets to train. However, for an untrained neural network, 
jW  is obtained without by training in advance and 

learning for any large datasets. Then we consider the 
neural network model: 

1 1 1
[ ] ( ) ,L L L L L L

j j j j j jU    W W Wx z z  (8) 
where ( )   is the activate function operator ReLu , L   
is the number of layers for the neural network, and U  re-  
presents the upsampling operator. 

 
Definition 3. Suppose that the original signal NRx  and 

[j][1] [n]

1

T

1 ( 1) 1 1, , , , , , , , , ,
j j nl j l j l N l Nx x x x x x     

 
 
 
 

  
    

xx x

x is block 

k -sparse. Let B  be Gaussian matrix with elements 
(0,1/ )N n . For every [ ] ,1j BS j n  x , if there exists a 

constant 1k  , the following formula satisfies:  
 2 2 2

[ ] [ ] [ ]2 2 2
(1 ) (1 ) ,k j B j k j    x x x  (9) 

then the matrix B  satisfies block set-restricted eigenvalue 
condition with parameter k (Block_SB_REC).  
 

B. Reconstruction algorithm based on an untrained neural 
network 
From formula (6), we obtain the measurement signal  

[ ] , 1j j n y , from Gaussian matrix B . Next, we set an  

initial [ ]

0 0( ; )
j jB jG Wx z , then set learning rate   and the 

number of iterations T, respectively. Every [ ] , 1j j n x   

is reconstructed separately by BCS_PGDNET algorithm.  
For fixed [ ] , 1j j n x , the algorithm is shown below: 

 
Algorithm: BCS_PGDNET 

[ ]

[ ] [ ]

[ ] [ ]

[ ]

0 0
[ ]

T
[ ]

1

Step1 Input : , , ( ; ), ,

Step 2 for 0,1, , do
Step3 ( )

Step 4 ( )

Step 5 arg min ( ; )

Step 6 ( ; )
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

W

W
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W



：
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：

：

：

：

y x z
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v z
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
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[ ] [ ]
ˆStep7 Output :

j j

T： x x  

Finally, we obtain the output T
[1] [2] [ ] [ ]ˆ ˆ ˆ ˆ ˆ[ , , , , , ] .j n  x x x x x  

 

C. Convergence of the proposed algorithm 
In this part, to validate the convergence of the algorithm, 

the following proof is given. Firstly, we give the error 
function at t -time iteration for the j -th subblock [ ]jx : 

[ ] [ ]

2

[ ] 2
( ) .

j j

t t
B j BE  x y x  (10) 

For tx  at the t-time iteration, then we have: 

[ ]1
( ) ( ).

j

nt t
Bj

E E


x x  (11) 

Combining equation (10), we get:   

 

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

1

2 2
1 1

[ ] [ ]2 2

2
1 1

2 2

1
[ ]

( ) ( )

2 , 2 ,

2 , 2 ,

2 ,

j j

j j j j
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t t
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t t t t
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B B B B B B

t t
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E E
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 





     
 

     
 

 

x x

x x y x y x

x x x x x x

y x x
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     



 
 
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2
1 1
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1
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    (12) 

Next, according to the BCS_PGDNET algorithm, we have: 
 

[ ] [ ]

T
[ ]( ).

j B j

t t t
j B j  v x x y   (13) 

Subsequently, 
j

tW  of the proposed algorithm lies in the  

range of the decoder ( ; )
j

t
B jG W z , ( ; )

j

t
B jG W z is the closest to 

j

tv , and 
j

tW  satisfies: 

 ( ; ) ( ; ) .
j j

t t t
B j j B j jG G  W Wz v z v  (14) 

Denote 
[ ]

1( ; )
j j

t t
B jG W z x  and 

[ ]
( ; ) .

j jB jG W z x  There-  

fore, we obtain the following formula: 

 
[ ] [ ]

2 2
1

2 2
,

j j

t t t
j j

   x v x v  (15) 

Substitution of formula (13) into the formula (15) gives: 

  
 

[ ] [ ] [ ]

[ ] [ ] [ ]

2
1 T

[ ]
2

2
T

[ ]
2
.

j j B j

j j B j

t t t
B j

t t
B j





   

   

x x x y

x x x y

 

 

 (16) 

Combining the same internal terms of formula (16), we 
obtain: 

    
     

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

T21 1
[ ]2

T2

2

2

2 .

j j j j j

j j j j j j

t t t t t
B j B

t t t
B B





     

   

x x x x y x

x x x x x x

 

 

(17) 

Substituting formula (12) and (17), and formula (17) is 
divided by  of both sides, we have: 

 [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

22
1 1 1

2 2

2

2

1 ( ) ( )

1 2 ( ).

j j j j j j

j j j

t t t t t t
B B B

t t
B

E E

E





   
     

 
 

   
 

x x x x x x

x x x


 (18)   
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(A) ORIGINAL                      (B) COSAMP                               (C) OMP                                 (D) IRLS 

(E) BCS_SPL_DDWT           (F) BCS_SPL_DCT                   (G) BCS_FOCUSS                (H) BCS_PGDNET 
Fig. 2. Reconstructed results from different algorithms at sampling rate 0.3 for Lena image 
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Therefore, we obtain: 
  

 
(19) 

 
According to Definition 3, since 

1 2[ ] [ ],j j BSx x , we have: 

 
 1 2 1 2

1 2

22

[ ] [ ] [ ] [ ]2 2
2

[ ] [ ] 2

(1 )

(1 ) .

k j j B j j

k j j





   
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x x x x

x x


 (20) 

Combining the left side of formula (20) and formula (19), we  
obtain: 

 1 [ ] [ ]

22

[ ] [ ]2 2
(1 ) .

j j

t t
k j B j   x x x x  (21) 

Similarly, we obtain: 

  [ ] 2 [ ]

2 2

[ ] [ ] 22
(1 ) .

j j

t t
B j k j   x x x x  (22) 

If    1 1
1 1 2 1k k       and  1

1 1k   , where 
1k and 

2k are constants.  

Substitution of formula (21) and formula (22) into equation 
(19), we have the following formula:

  
[ ] [ ]

1( ) ( ).
j j

t t
B BE E x x  (23) 

For reconstructed image x̂ , we obtain: 
1

1
( ) ( ), 0 1.n t t

j
E E 


   x x           (24) 

Therefore, the proposed algorithm is convergent. 
 

III. EXPERIMENT AND ANALYSIS 
This section will verify the effect of different sampling  

rates and block sizes on the reconstruction effect. 

A. Evaluation Criteria and Experimental Environment 
For BCS_PGDNET method, the experiment simulation is 

based on Intel-i5-10300H (CPU) processor and graphics card  
NIDIA GeForce GTX1650 in Windows 10 operating system.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The code runs on the Pytorch platform. Among the classical  
CS methods and BCS algorithms runs on the Matlab 2015a  
environment, 64-bit operating system.  

To verify the effectiveness of the proposed method, the 
sampling rate is set at 0.1, 0.15, 0.2, 0.25 and 0.3 to perform 
the experiments, respectively. Meanwhile, we compare 
conventional CS methods and classical BCS methods. 
Among the classical CS methods include OMP [16], 
COSAMP [17] and IRLS [18], the BCS algorithms include  
BCS_SPL_DDWT [7], BCS_SPL_DCT [7] and BCS_ 
FOCUSS [8].  

We test the performance of BCS_PGDNET algorithm on  
different images. The performance is evaluated by peak  
signal to noise ratio (PSNR) and structural similarity (SSIM) 
value.  
  

B. Simulation results and discussion 
When the ground-truth x  is reconstructed through the 

BCS algorithms, the block size has an impact on the 
experimental results. As the block size is larger, the running 
time is significantly longer. On the contrary, as the block size 
is smaller, the running time is shorter, but there exists 
obviously block effect. Therefore, we choose the block size 
of 16 × 16 by overall consideration to perform the 
experiments. 

To explore the effectiveness of the BCS reconstruction 
algorithm, Lena image is selected for the experiments with 
sampling rate at 0.3. The results are shown in Figure 2. We 
find classical CS algorithms does not perform well with 
artifacts. To explore the effect of different sampling rates on 
the reconstruction results, we plot TABLE I. From TABLE I, 
the SSIM and PSNR value of BCS algorithms are generally 
better than CS algorithms, greater than approximately 0.3 and 
10dB, respectively. Meanwhile, it can be seen from Figure 3  
that the PSNR shows an increasing trend when the sampling 
rate increases. From Figure 4, the results of BCS_PGDNET 
has the relatively high SSIM value, and the proposed 
algorithms is competitive for other methods. 
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Fig. 3. Comparison in PSNR between seven algorithms  
 

Fig. 4. Comparison in SSIM between seven algorithms  

(A) ORIGINAL            (B) BCS_SPL_DCT     (C) BCS_SPL_DDWT     (D) BCS_FOCUSS         (E) BCS_PGDNET 

(A) ORIGINAL            (B) BCS_SPL_DCT     (C) BCS_SPL_DDWT     (D) BCS_FOCUSS         (E) BCS_PGDNET 

(A) ORIGINAL           (B) BCS_SPL_DCT     (C) BCS_SPL_DDWT     (D) BCS_FOCUSS         (E)BCS_PGDNET 

 

 

 
 

 
To further verify the effectiveness of BCS_PGDNET 

algorithm, we set the sampling rate 0.1, 0.15, 0.2, 0.25 and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 
  
 
0.3, respectively. Then, we choose different images, such as 
Cameraman (512×512), Barbara(512×512), Fishstar(512× 
512) and Ship(512×512) to progress experiments.  

 
 

  
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Methods 0.1 0.15 0.2 0.25 0.3 

COSAMP 10.85 | 0.1871 11.75 | 0.2082 12.54 | 0.2196 15.08 | 0.2297 17.32 | 0.2301 
OMP 13.93 | 0.2042 14.70 | 0.2139 16.67 | 0.2387 18.51 | 0.2601 20.17 | 0.3551 
IRLS 17.01 | 0.2495 19.36 | 0.3292 21.54 | 0.4074 22.71 | 0.4624 24.04 | 0.5156 

BCS_SPL_DCT 27.23 | 0.4468 29.01 | 0.5206 30.15 | 0.5856 31.05 | 0.6323 32.18 | 0.6710 
BCS_SPL_DDWT 27.72 | 0.4873 29.68 | 0.5654 30.82 | 0.6236 31.96 | 0.6715 32.80 | 0.7078 
BCS_FOCUSS 28.07 | 0.5236 29.54 | 0.6836 31.26 | 0.6958 32.55 | 0.7135 33.07 | 0.7587 
BCS_PGDNET 27.35 | 0.6535 29.92 | 0.6743 31.81 | 0.7989 32.41 | 0.8423 33.71 | 0.8654 

TABLE I COMPARISON IN PSNR AND SSIM BASED ON DIFFERENT ALGORITHMS FOR LENA IMAGE 

Fig. 5. Reconstructed results from different algorithms at sampling rate 0.3 for Barbara image 
 

Fig. 6. Reconstructed results from different algorithms at sampling rate 0.3 for Fishstar image 

Fig. 7. Reconstructed results from different algorithms at sampling rate 0.3 for Ship image 
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We test different images for different texture structure on 

the simulations. From Figure. 5 to Figure. 8, the BCS 
algorithms are effective to reconstruct the original image, 
where the left is the original image and the right are the 
reconstructed images for different algorisms. Meanwhile, 
we plot the data tables for different images. From TABLE II 
to TABLE V, it can be seen that when the sampling rate 
increases, both the PSNR and SSIM of the reconstructed 
results both show an increasing trend. For the Barabara and 
Fishstar images with complex texture, we can clearly find 
that the proposed method has a relatively high SSIM value in 
TABLE II and TABLE III. But for the Ship and Cameraman 
images without complex texture structure, BCS_PGDNET 
method is generally better than other algorithms even though 
the sampling rate is 0.1 with lower measurements. In general, 
the proposed BCS_PGDNET method is largely superior to 
other BCS methods with the increase of sampling rate. 
 

C. Tradeoffs between reconstruction quality and block 
size 

 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
In this part, we discuss the effect of different block size on 

the quality for reconstruction results. The sampling rate is set 
at 0.3. For the Peppers(512×512) and Mandrill(256×256) 
images are chosen to progress experiments at different block 
size, respectively. The reconstruction results are shown as 
follows. 
 

 
 
 

Methods 0.1 0.15 0.2 0.25 0.3 
BCS_SPL_DCT 22.71 | 0.4082 23.37 | 0.4814 24.08 | 0.5364 24.75 | 0.5948 25.41 | 0.6423 
BCS_SPL_DDWT 22.73 | 0.4404 23.22 | 0.5068 23.90 | 0.5598 24.74 | 0.6192 25.40 | 0.6636 
BCS_FOCUSS 22.96 | 0.4620 23.79 | 0.5428 24.94 | 0.6085 25.94 | 0.6693 26.79 | 0.7099 
BCS_PGDNET 23.35 | 0.5135 24.92 | 0.5403 25.81 | 0.6119 26.41 | 0.6723 27.71 | 0.7154 

Methods 0.1 0.15 0.2 0.25 0.3 
BCS_SPL_DCT 21.75 | 0.4436 23.05 | 0.5286 24.20 | 0.5898 25.03 | 0.6357 26.11 | 0.6850 
BCS_SPL_DDWT 22.72 | 0.5158 23.95 | 0.5962 25.15 | 0.6573 25.97 | 0.7014 27.17 | 0.7489 
BCS_FOCUSS 22.43 | 0.5236 23.85 | 0.6120 25.12 | 0.6742 26.24 | 0.7198 27.27 | 0.7657 
BCS_PGDNET 22.35 | 0.6535 23.92 | 0.6743 25.51 | 0.7829 26.11 | 0.7523 28.25 | 0.7954 

Methods 0.1 0.15 0.2 0.25 0.3 
BCS_SPL_DCT 24.29 | 0.3650 25.57 | 0.4452 26.80 | 0.5226 27.76 | 0.5787 28.87 | 0.6299 
BCS_SPL_DDWT 25.05 | 0.3975 26.43 | 0.4750 27.50 | 0.5426 28.44 | 0.5992 29.43 | 0.6475 
BCS_FOCUSS 24.67 | 0.4117 26.20 | 0.4920 27.54 | 0.5628 28.30 | 0.6111 29.67 | 0.6546 
BCS_PGDNET 25.35 | 0.4535 26.32 | 0.4743 28.81 | 0.5789 30.41 | 0.6023 31.71 | 0.6654 

Methods 0.1 0.15 0.2 0.25 0.3 
BCS_SPL_DCT 26.22 | 0.3624 27.43 | 0.4425 29.51 | 0.5225 30.96 | 0.5876 32.13 | 0.6383 
BCS_SPL_DDWT 26.53 | 0.4266 27.80 | 0.5165 29.76 | 0.6029 31.41 | 0.6732 33.17 | 0.7278 
BCS_FOCUSS 26.10 | 0.4955 28.52 | 0.5861 30.63 | 0.6658 32.97 | 0.7329 34.23 | 0.7842 
BCS_PGDNET 27.27 | 0.5235 28.92 | 0.5743 31.81 | 0.6989 32.01 | 0.7403 34.71 | 0.7954 

Fig. 8. Reconstructed results from different algorithms at sampling rate 0.3 for Cameraman image 

TABLE II COMPARISON IN PSNR AND SSIM BASED ON DIFFERENT ALGORITHMS FOR BARBARA IMAGE 

TABLE III COMPARISON IN PSNR AND SSIM BASED ON DIFFERENT ALGORITHMS FOR FISHSTAR IMAGE  

TABLE V COMPARISON IN PSNR AND SSIM BASED ON DIFFERENT ALGORITHMS FOR CAMERAMAN IMAGE 

TABLE IV COMPARISON IN PSNR AND SSIM BASED ON DIFFERENT ALGORITHMS FOR SHIP IMAGE  

Size is 8×8 
 

Size is 16×16 
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From TABLE VI to TABLE VII, for the Peppers image, 

the reconstruction results has become worse as the block size 
decreases. The reason is that for the images with simple 
texture, the smaller the block size and the larger the number 
of blocks, the results with more block effect. For the Mandrill 
image, the PSNR value does not change significantly as the 
block size becomes smaller. Therefore, we select the 
appropriate block size and sampling rate to reconstruct 
different images by repeated experiments. 
 

IV. CONCLUSIONS 
In this paper, we combine an untrained neural network  

as prior information with projected gradient descent  
method for iterative reconstruction. By comparing diff-  
erent reconstruction algorithms with various images,  
we find that BCS_PGDNET algorithm has better recon-  
struction results. In the future work, we will investigate  
the effect of different block shapes on the reconstruction  
results. 
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 8×8 16×16 32×32 64×64 

BCS_PGDNET 28.25 29.45 30.16 31.28 

 8×8 16×16 32×32 64×64 

BCS_PGDNET 21.84 22.79 22.06 22.38 

Size is 32×32 
 

Size is 64×64 
 Fig. 9. Reconstructed results from different block size for Peppers image 

Size is 16×16 
 

Size is 8×8 
 

Size is 32×32 
 

Size is 64×64 
 Fig. 10. Reconstructed results from different block size for Mandrill image 

TABLE VI PSNR OF DIFFERENT BLOCK SIZE FOR PEPPERS IMAGE 

TABLE VII PSNR OF DIFFERENT BLOCK SIZE FOR MANDRILL IMAGE 
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