
 

  

Abstract—As a non-destructive examination tool, ground 

penetrating radar (GPR) is essential for locating subsurface 

items and illuminating the underground environment. 

Unfortunately, there is still work to be done in the practical 

application of automatic detection of subsurface objects in the 

radargram. The most frequent targets for their detection are 

those that resemble cylinders. A buried cylinder is known to 

produce a hyperbolic signature in GPR images. For the purpose 

of recognizing subsurface cylinders using GPR data, a novel 

approach is proposed. The approach makes use of both the 

strengths of the ResNet model and the characteristics of the 

hyperbolic curve. Specifically, by introducing priori knowledge 

and inception modules into the ResNet framework, the 

suggested method obtains a significant improvement in terms of 

object recognition at a very low computation cost. At the same 

time, a hyperparameter optimization strategy is also provided 

for model training. The evaluations by comparison with other 

modules demonstrate the effectiveness of the proposed method. 

 
Index Terms—ground penetrating radar, attentional 

mechanism, neural network, pattern recognition 

 

I. INTRODUCTION 

HE ground penetrating radar (GPR) is one of the most 

popular instruments for inspecting objects close to the 

surface. As a very effective and non-destructive method, GPR 

inspection is applicable to a variety of fields, including 

geological survey [1], civil engineering [2], military target 

detection [3], and so on. With the expansion of its application 

field, it is urgent to increase the accuracy and automation of 

target detection [4]. 

In general, the whole process of target detection in the GPR 

image can be divided into three stages: region selection,  
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feature extraction, and object recognization [5]. Among them, 

feature extraction is the crucial, critical step. Hyperbolas in 

the GPR image are typically signatures generated by 

landmines, cables, pipes, rebars, or tree roots [6]. As a result, 

our research focuses on the detection of hyperbolas. 

Despite significant research efforts over the past two 

decades, there are still no reliable algorithms for feature 

extraction from GPR data [7]. This is partly due to the fact 

that GPR data can be distorted by such environmental factors 

as soil moisture, rough surface scattering, and subsurface 

heterogeneity [8]. Additionally, as soil depth increases, an 

object's GPR signal becomes progressively weaker and, in 

some cases, completely obscured by background noise, 

making the recognizer susceptible to error. Especially for 

GPRs with unshielded antennas, energy can go into the air 

besides the ground. Consequently, reflections from anything 

above ground, such as walls, cars, fences, or overhead cables, 

can act as a source of interference. 

To alleviate this problem, machine learning techniques 

were employed for GPR inspection. However, for neural 

networks with shallow architecture, feature extraction is a 

challenging task [7], while, deep learning techniques (DL) [7, 

9-11] naturally incorporate low-, medium-, and high-level 

features and hence gain more and more attention. 

Undoubtedly, DL methods provide a universal and brilliant 

solution for classification and regression tasks, especially 

when used on large datasets [12-14]. However, the inadequate 

supply of training data degrades the performance of these 

conventional approaches [15]. At the same time, for GPR 

image, large sample sets are expensive and time-consuming. 

Furthermore, the desirable performance of DL methods 

usually tends to be achieved at the cost of computational 

complexity [16]. They are therefore frequently inappropriate 

for real-time tasks.  

On the other hand, a universal model such as a neural 

network tends to be somewhat unsuccessful for a specific task 

according to “no free lunch” theorems [17]. In order to detect 

the subsurface cylinder in this instance, an exclusive neural 

network is created, especially for limited data sets.  

With these considerations in mind, a smart and lightweight 

approach is being explored for the recognition of subsurface 

cylinders from GPR data. The method leverages the 

advantages of the ResNet model and the features of 

cylindrical objects. Specifically, the primary contributions of 

this paper can be summarized as follows: 

(1) selecting and expressing a subsurface cylinder feature; 

(2) creating a neural network frame with an attention 
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mechanism for the hyperbola recognition task;  

(3) exploring the impact of hyperparameters on neural 

network training; 

(4) conducting extensive experiments to evaluate the 

method's efficacy. 

The remainder of the paper is structured as follows. Section 

II reviews related work. Section III introduces our framework 

of hyperbola recognition, while Section IV describes the 

proposed model based on the ResNet network. Section V 

shows the experimental results. Finally, Section VI states the 

conclusions. 

 

II. RELATED WORK  

When an electromagnetic wave is radiated from a 

transmitting antenna and hits a buried object such as a pipe, 

the wave is reflected to the surface and captured by a 

receiving antenna. The time-history of a single pulse’s 

movement from the transmit antenna to the receive antenna is 

called a “trace” [18]. A single trace, that is, recording data 

collected at a single point, is referred to as an A-scan imaging. 

In contrast, when a downward-looking GPR antenna is moved 

along a straight path on the top of the surface, the trace 

acquired at different spatial positions is known as a B-scan 

imaging [19]. A cylinder-like object perpendicular to the 

measured line is typically depicted in the B-scan image as a 

hyperbola pattern [20]. In this sense, the hyperbolic pattern is 

the typical feature used to detect cylindrical targets [21].  

To detect cylindrical targets, the hyperbolic signatures on 

the B-scan image are frequently formulated as a geometric 

model [22]. A hyperbola can then be fitted easily with GPR 

data. In order to recognize hyperbola and determine the 

location of the targets as well as the relative permittivity of the 

medium, Al-Nuaimy et al. [23] presented a coarse-to-fine 

fitting method. A probabilistic model was given by Chen and 

Cohn [24] to fit hyperbola. Another fitting method based on 

the Hough transform was offered by Maas and Christian [25]. 

To improve the efficacy of hyperbola detection, Borgioli et al. 

[26] enhanced the Hough transform by introducing a 

weighting factor. 

In addition, Delbo et al. [27] suggested a pattern 

recognition approach based on fuzzy clustering to detect 

hyperbolic signatures. Based on support vector machine 

(SVM), Pasolli et al. [28] proposed a novel system of pattern 

recognition to classify cylindrical objects. By adopting SVM, 

the accuracy of rebar detection can reach 91.5%-92.45% [29]. 

On the other hand, Sagnard and Tarel [30] devised a 

template-matching algorithm to detect hyperbola in 

ground-penetrating radargrams.  

However, cylinder-like objects are not always strictly 

hyperbolic in radar images because of the heterogeneity of the 

medium and reciprocal interactions of radar waves. The 

hyperbola pattern has too many variations for accurate 

recognition in natural situations. 

To alleviate this problem, recent studies have employed 

deep learning frameworks for hyperbola detection. Deep 

learning allows computational models with multiple 

processing layers to automatically learn the representation of 

abstract features [31]. Xiang et al. [32] adopted AlexNet to 

detect rebars from small patches of GPR images. By means of 

Faster R-CNN, Lei et al. [33] achieved an accuracy of 92.13% 

after 3000 iterations. Ozkaya and Seyfi [34] explored a 

multilevel deep dictionary learning algorithm with the 

classification accuracy of 94.4%. The classification method 

of Ishitsuka et al. [35] obtained the accuracy of 94.5%-97.9% 

by using a convolutional neural network (CNN).  

In conclusion, despite considerable effort over the past two 

decades, hyperbolic detection in radargrams is still an open 

problem. The researchers have drawn on this end from 

various areas, reliable hyperbolic detection has proved an 

elusive goal. There is still substantial room for improvement. 

III. PROPOSED METHOD 

A B-scan image is a 2D (depth, down-track) image that 

represents a vertical slice of the ground. When a subterranean 

cylinder is perpendicular to the slice, its profile in the 

radargram is a hyperbolic curve. In this section, we will 

introduce our methodology and framework for hyperbola 

detection in the B-scan image. 

 

A. Methodology of Hyperbola Detection 

Due to the fact that the curvature of hyperbola varies 

continuously and regularly, and edge points as well as their 

curvature are the key features of target detection, along with 

original data, edge points and edge direction are fed into the 

neural network to estimate parameters of the model and to 

detect hyperbola.  

Owing to the brilliant performance at the ILSVRC (2015) 

competition and wide success in many application fields [36], 

the ResNet model is employed as the basic network structure 

for hyperbola detection. Indeed, the ResNet model was 

initially investigated for RGB images [37], which completely 

differ from GPR images in the physical property sense. 

Unlike RGB images, where one channel is similar to the 

others, every channel of input data is distinct from each other 

for GPR images. Each input channel has a separately 

contribution to recognition tasks. For this reason, it is 

necessary to assess the weight for each channel individually.  

In order to improve performance, we included an 

attentional mechanism to the ResNet framework, which was 

inspired by a neuroscience model of the primate visual cortex. 

In other words, the paper suggests an integrated method 

combining domain knowledge, attention mechanism, and 

ResNet neural network for hyperbola detection in the B-scan 

image. The modified ResNet framework will be described in 

detail in Section IV.  

 

B. Hyperbola Detection Process 

 Based on the properties of the hyperbola curve and deep 

learning, this paper provides a hyperbola detector that goes 

through the following four steps.  

 

Step 1: Edge Strength Estimation 

To save computational cost, a fixed-size window is used 

here. Given an image I, the edge strength can be estimated in a 

2×2 window by the magnitude of S as follows [38].  
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where * denotes convolution, and 

 

 
In practice, we may move the 2×2 block across a picture 

from top to bottom and from left to right to get the edge 

strength of every pixel. Zero padding is utilized in this 

instance to ensure that the output is the same size as the input. 

 

Step 2: Edge Direction Estimation 

In a similar way, the edge direction at each pixel can be 

computed by  

 
It is worth noting that computational costs can be reduced 

by merely sharing the Gy*I and Gx*I results in Steps 1 and 2 at 

very low memory space costs. 

 

Step 3: Training the Proposed Model 

In the model training process, transfer learning is utilized to 

get the optimal model parameters. Additionally, the Ray Tune 

framework [39], which is the hyperparameter library building 

on top of the Ray distributed computing framework, is used to 

carry out hyperparameter optimization. Specifically, the 

ResNet-based network model is pre-trained on the ImageNet 

data set beforehand so that the weights produced can be used 

as the initial estimation of the model parameters [40]. The 

model, which is described in detail in Section IV, is then 

retrained on the GPR data using the self-adaptive gradient 

descent algorithm [41].  

Although data augmentation might help the network model 

perform better, most of augmentation techniques are not 

appropriate for the GPR data. Fortunately, vertical flips are 

still effective. However, a horizontal flip is invalid since the 

outcome has a different physical meaning than the original 

image.  

 

Step 4: Hyperbola Recognition 

To introduce the hyperbolic curve features into the ResNet 

model, GPR data are pre-processed by the operators 

mentioned in Step 1 and 2. Combined them with the raw GPR 

data, the input data is constructed with three channels. Then, 

the 3-channel data is fed into the network model. By explicitly 

modelling independence between channels, channel-wise 

feature responses can be adaptively recalibrated, which can 

speed up the learning process and considerably increase the 

network's capacity for representation [42]. 

In the prediction phrase, we may determine the likelihood 

that the image contains a hyperbola after forward propagation 

computing. The prediction result is the case if it is more than 

0.5.  

 

IV. IMPROVED RESNET MODEL 

Prior to providing a full explanation of the model, it is 

helpful to know the attributes of the ResNet model. The model 

typically has stacked convolutional layers followed by one or 

more fully connected layers. At the ILSVRC (2015) 

classification competition, the ResNet model outperformed 

all the others [37]. The following provides an explanation for 

why this model is superior: 

1) The vanishing gradient problem is addressed using 

residual modules, which prevent the model from 

exponentially expanding into distinct sub-networks [43]; 

2) Overfitting is avoided by using a shortcut connection, 

which gives the user the option of arming the network with 

trainable weights or not; 

3) Immunity to noise is enhanced with the use of pooling 

operations, so that the output is steady even if the input is 

fluctuant. 

Though the ResNet model works well on RGB images, it 

still needs to be modified for GPR data due to their different 

characteristics. In addition, the ResNet model does not permit 

input data sizes smaller than 112 [37]. Unfortunately, GPR 

images are usually small in size.  

On the other hand, each channel has unique qualities from 

the others. For example, a GPR image channel is continuous 

in intensity. On the contrary, edge strength and edge direction 

channels are discontinuous. Furthermore, each channel 

contributes differently to the recognition task. In this regard, a 

channel-wise CNN should be employed. The three channels 

are not, however, totally independent of one another. 

Based on the above considerations, the first convolution 

layer is substituted with the inception module proposed by 

Szegedy et al. [44], which can be used as a drop-in 

replacement for the original block. In order to reduce model 

complexity and widen the scope of applications, this module 

 

1*1 Conv

3*3 Conv

1*1 Conv

5*5 Conv
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Fig. 1.  ResNet-based attention network. Here, Conv, Max and FC indicate 

convolution, max pooling and full connection, respectively. 
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doesn’t get inserted into the other building blocks of the 

ResNet model, and downsampling operations are removed. 

Furthermore, a full connection layer with the Softmax 

function is used for the purpose of hyperbola detection. 

Admittedly, the deeper a model network is, the better its 

performance is. However, the 18-layer ResNet can still obtain 

comparable accuracy. Furthermore, it converges more 

quickly than deeper networks [37]. This makes it possible to 

use the model in a real-time system. As a result, the full model 

is constructed using both the inception module and the 

18-layer ResNet-based framework, as illustrated in Fig. 1. 

Notice that every ResNet block consists of two convolution 

layers, and each inception module includes six convolution 

operators and a max-pooling layer. 

For training and testing data, the weighted binary 

cross-entropy [45] is employed as a loss function. In the 

training process, the mini-batch gradient descent with 

momentum is applied to optimise the cross-entropy loss of the 

Softmax classifier [46]. Moreover, a vertical flip is performed 

for each image in the training set. 

 

V. EXPERIMENTAL RESULTS 

In this section, we present our evaluation methodology and 

results from the real GPR data. The performance of the 

attention network built on ResNet is evaluated and compared 

with other models.  

To ensure extensibility, the Python language is used to 

implement the algorithm proposed here. The libraries 

PyTorch [47] and Ray Tune [39] are employed in the 

programming process. To save training time, we opted for a 

straightforward and practical hyperparameter optimization 

technique, Asynchronous Successive Halving Algorithm [48], 

which is suitable for massive parallelism and takes advantage 

of early stopping.  

To test our model, we used the dataset DECKGPRH1.0, 

which was cropped by Asadi et al. [49] from GPR field data of 

a real bridge deck. The dataset contains 16,876 B-scan images. 

In the dataset, there are 8436 negative samples and 8440 

positive samples. Here, half of them are used for testing and 

half for training. 

We conducted all of our experiments using the Ray 

Framework on a Linux PC with one Nvidia 3080Ti GPU and 

16 CPUs running at a maximum frequency of 3.9 GHz. 

Fig. 2 illustrates a sample of the 3-channel pre-processed 

dataset, i.e., the GPR data and the corresponding results after 

executing the operators described in Step 1 and 2. Here, every 

channel of input data is a 48×48 matrix. All the positive 

samples are placed in one folder and the negative samples in 

the other. In this way, it is easy to judge whether there is a 

hyperbola in the radargram according to the corresponding 

folder. 

For a fair comparison, we defined the exact same 

configuration spaces for each method. With uniformly 

sampling the hyperparameters, each method picked up 20 

samples in the hyperparameter spaces. In the training process, 

the learning rate is treated as an exponential random variable 

with a range of 0 to 0.5. Momentum ranges from 0.1 to 0.9 

and follows a random distribution. There is a total of 20 trials, 

and their hyperparameters are listed in Table I. 

Figure 3 depicts the results at various levels of momentum 

and learning rate. Yellow points in the image indicate high 

accuracy. It is clear that high accuracy results are obtained at a 

low learning rate, whereas momentum is not clearly related to 

the results. 

In our experiments, we investigated alternative techniques 

on the canonical ResNet model. For instance, we attempted to 

use maximum pooling rather than average pooling. 

Unfortunately, it produces poorer results than simple 

averaging. 

Due to the early-stopping technique in the Ray Tune 

architecture, most trial runs are terminated after one epoch, 

i.e., a full pass over the data set, which includes 132 batches. 

That means that the parameters should be updated 132 times 

per epoch. For all of the samples in the hyperparameter space, 

the values of the corresponding loss function are displayed in 

    

(a) (b)

(c)

 
 

Fig. 2.  The 3-channel input data: (a) GPR data; (b) edge strength; 

(c) edge direction. 

  

TABLE I 

SAMPLES IN THE HYPERPARAMETER SPACES FOR ALL ALGORITHMS 

Number Learning rate Momentum 

1 5.86207e-09 0.835338 

2 0.4045427 0.889455 

3 4.8015e-05 0.734375 

4 0.4821682 0.674546 

5 5.35385e-09 0.496728 

6 4.28036e-06 0.756512 

7 0.1922548 0.484825 

8 0.0117198 0.809185 

9 2.06086e-07 0.536543 

10 6.96564e-10 0.546641 

11 4.77752e-08 0.457425 

12 2.7343e-09 0.534873 

13 3.23298e-05 0.874085 

14 0.03530775 0.527668 

15 2.53252e-10 0.875159 

16 0.1180631 0.626482 

17 1.1586e-08 0.645687 

18 9.3285e-07 0.242596 

19 6.16827e-05 0.562090 

20 5.03267e-06 0.358555 
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Fig. 4. Every epoch's accuracy is shown in Fig. 5. Every trial 

is depicted with a different color. Note that the total number of 

trials is 20 and some points are overlapping in the image. 

To evaluate performance, the model proposed here is tested 

and compared to state-of-the-art models using the GPR data. 

Considering the fact that some models, such as VGG [50] and 

ResNet [37], share the same style of samples, while others, 

such as the RCNN [51] family, work with different label 

styles, experimental comparison is limited to the models 

which can run on the same data.   

As a result, we compare our model to LeNet [52], AlexNet 

[53], VGG [50], and ResNet [37] under identical conditions 

in terms of the mean processing time per iteration and 

recognition accuracy (the percentage of the images with 

correct classification, i.e., the number of the correctly 

classified images divided by the total number of the testing 

images). 

To compare all methods fairly, we selected the parameters 

that produced the best result in 20 trials for each model. 

Because learning rate has a significant impact on trained 

model accuracy, the learning rate schedule used here is the 

conventional annealing method with warmup, i.e., a strategy 

of using lower learning rates at the start of training to 

overcome early optimization difficulties [54]. 

The results of the comparative test are tabulated in Table II. 

Here, accuracy is determined by the best result in 20 trials. 

The time in Table II represents the average processing time 

per iteration with a batch size of 64. It is readily seen that the 

proposed model is better than the others in terms of 

recognition accuracy. The processing time is slightly longer 

than the others, but it is very close. In the experiments, VGG 

and ResNet consist of 11 and 18 layers, respectively. And, the 

proposed model here is also based on the 18-layer ResNet 

network. 

 

VI. CONCLUSION 

In this work, we investigated the ResNet architecture and 

hyperbola characteristics. Based on the findings, a 

light-weight model is proposed to recognize hyperbola in 

GPR data. By adopting the integration of prior knowledge and 

the inception module, the proposed network model achieves 

high accuracy in the comparative experiment relative to four 

state-of-the-art models at very low computational costs. In 

addition, hyperparameter optimization strategy and 

experience are discussed in this paper.  

In conclusion, a light-weight model is presented 

exclusively for hyperbola recognition in GPR images. Its 

performance outperforms that of the canonical models. The 

proposed network model has a wide range of applications in a 

real-time system for a variety of purposes, such as the 

detection of pipelines in the soil and rebars in the concrete 

structure. The successful application of the inception 

architecture can serve as a reference for deep learning 

researchers and practitioners. 
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Fig. 3.  Accuracy of the results at various levels of momentums and 

learning rates. 
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Fig. 4.  The loss values of the epochs for all parameter configures. 
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Fig. 5.  The accuracy values of the epochs for all parameter 

configures. 

TABLE II 

COMPARISON OF PERFORMANCE BETWEEN THE PROPOSED MODEL AND SOME 

STATE-OF-THE-ART MODELS 

Model Accuracy Time(s)  

LeNet 0.897 6.61 

AlexNet 0.814 6.78 

VGG 0.905 6.74 

ResNet 0.963 6.83 

Proposed model 0.991 6.97 

Note: Accuracy in this table means the percentage of the images with 

correct classification; Time is the mean running time per iteration. 
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