

Abstract— In this paper, we evaluate the performance of

parallelism in Python and C++. Parallel programming can be

achieved in Python through the multiprocessing module

and in C++ by means of OpenMP directives. For the

performance comparison, we use implementations, in parallel

and sequential, of three algorithms: frequency (count the

occurrences) of an integer in an unsorted array, matrix

transposition, and matrix addition. Our goals are i) to show the

performance of the algorithms in their parallel and sequential

implementations, in Python with multiprocessing and in

C++ with OpenMP and ii) to show the importance of selecting

the programming language and libraries when programming

in parallel. Our experiments showed that, in general, C++

outperformed Python. Additional experiments with the naïve

matrix multiplication algorithm confirmed this conclusion.

Index Terms—Parallel computing, performance, Python,

C++, algorithms.

I. INTRODUCTION

HE processing of massive amount of data, ranging from

terabytes to petabytes [1], [2] in current applications

represents a challenge for organizations [3], [4]. For

example, UPS (United Parcel Service) uses massive amount

of data and analytics in a number of key projects to improve

its performance [5], [6] and thereby stay competitive.

However, as more data are generated, the time required to

process them can increase to a limit not acceptable to end

users.

There are several approaches to deal with this problem,

from hardware upgrades, e.g., of processors and networks,

to software changes, e.g., redesign of algorithms and

database queries, operating systems, programming

languages, libraries, development frameworks, and

programming paradigms (e.g., to resort to parallel and

distributed programming), among others.

In particular, parallel and distributed programming has

become popular since 2006 with the emergence of Hadoop

and parallel programming techniques such as MapReduce

[7]. The decrease both in the cost of processors with shared

memory and in the complexity of managing networks of

Manuscript received August 2, 2022; revised February 26, 2023.
Francisco Javier Moreno Arboleda is an associate professor at the

Departamento de Ciencias de la Computación y de la Decisión,

Universidad Nacional de Colombia, Sede Medellín, Colombia (phone: 604-
425-5376; e-mail: fjmoreno@unal.edu.co).

Mateo Rincón Arias is a computer science engineer from Departamento de

Ciencias de la Computación y de la Decisión, Universidad Nacional de

Colombia, Sede Medellín, Antioquia, Colombia (e-mail:

marinconar@unal.edu.co).

Jesús Antonio Hernández Riveros is an associate professor at
Departamento de Energía Eléctrica y Automática, Universidad Nacional de

Colombia, Sede Medellín, Antioquia, Colombia (e-mail:

jahernan@unal.edu.co).

hundreds or thousands of computers have contributed to this

boom. From a software point of view, MPI (Message

Passing Interface), [8] and OpenMP [9], [10] have been

equally instrumental.

Today, parallel programming is used in languages such as

C++, Python, Scala, and Rust, among others [11]; in

distributed processing frameworks such as Hadoop and

Apache Spark; and in DBMS such as Oracle [12], SQL

Server [13], [14], and DB2 [15], among others.

In this paper, we evaluate the performance of parallelism

in Python and C++. Python is one of the most used

programming languages today and through the

multiprocessing module [16], Python allows us

parallel programming. On the other hand, C++ is a

programming language widely used for the development of

general-purpose programs and scientific computing. By

means of OpenMP, we can enable parallel programming in

C++.

For the performance comparison we will use

implementations, both parallel and sequential, of three

algorithms: frequency (count the occurrences) of an integer

in an unsorted array, matrix transposition, and matrix

addition. We show our experimental setup in Fig. 1 where

we show the different implementations for each algorithm.

In Fig. 2 we show a flowchart of the activities we followed

for the development of our work.

We consider the following hypothesis: in parallel

implementations, C++ with OpenMP has lower execution

times than Python with multiprocessing. Indeed, in

performance analysis of sequential implementations, it has

been reported [17] that when comparing C++ with Python,

C++: consumes half the memory, is five to ten times faster

for data structure initialization and filling, and requires half

the time for indexing the data structures. Our goals are i) to

show the performance of the algorithms in their parallel and

sequential implementations in Python with

multiprocessing and in C++ with OpenMP and ii) to

show the importance of selecting the programming language

and libraries when programming in parallel.

The rest of the paper is organized as follows: in Section 2

we present basic definitions about parallel programming. In

Section 3 we analyze works where parallel programming

languages have been compared. In Section 4 we present the

algorithms used for the comparison and discuss aspects of

their implementation. In Section 5 we present experiments

and discuss the results. In Section 6 we conclude the paper

and propose future work.

II. DEFINITIONS

A program is a sequence of instructions executed by a

processor to do a specific task, e.g., calculate the sum of the

elements of an array.

Performance of Parallelism in Python and C++

Francisco Javier Moreno Arboleda, Mateo Rincón Arias, Jesús Antonio Hernández Riveros

T

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

mailto:fjmoreno@unal.edu.co

A process is a program in execution. The execution time

of a program is the total time required to execute it. A

processor can execute only one instruction at a time.

The CPU (Central Processing Unit) is a processor and can

have one or more cores. Each core is in turn a processor. A

thread is a subsequence of instructions of a program

executed at a specific time by a processor. For example,

consider a loop that iterates over the 100 positions of an

array (positions 0 to 99). One thread can handle iterations

from positions 0 to 59 and another thread handles iterations

from positions 60 to 99.

Although a processor can only be executing a program at

a time, with threads it is possible to simulate the execution

of several programs at a time. To do this, a program is

divided into threads so that when a processor alternates

between the threads of several programs, it seems that they

are executed at a time. This exercise is called multithreading

[18].

On the other hand, the GPU (Graphics Processing Unit) is

also a processor that is responsible for rendering images on

a computer, which lightens the load of the CPU. Just like a

CPU, a GPU supports multithreading. Due to its

Fig. 2. Flowchart of the activities for the development of our work
Fig. 1. Summary of our algorithm implementations

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

computation speed (in a computer the GPU is usually faster

than the CPU, e.g., in a series of tests run by Buber [19], the

Tesla k80 GPU was four to five times faster than the Intel

Xeon Gold 6126 CPU), the GPU is often used to process

general-purpose programs. This is called GPGPU (General

Purpose Computing on GPU).

A cluster is a non-empty set of interconnected computers

(nodes) that work as if they were a single system.

III. RELATED WORK

Hess et al. [20] compared OpenMP and MPI in a

distributed shared memory cluster. They used 8 NEC 120Ed

nodes, with dual processors composed by two 1Ghz Pentium

III and 2 GB of memory in a Myrinet network 2000 NIC

[21]. The comparison was made with three algorithms from

the NAS Parallel Benchmarks (NPB) [22]: EP

(Embarrassingly Parallel), CG (Conjugate Gradient), and FT

(Fourier Transform). In general, OpenMP was twice as fast

as MPI on all three algorithms.

McGinn and Shaw [23] used OpenMP and MPI to

compare the performance of the Gaussian elimination

algorithm (an algorithm for solving systems of linear

equations). The algorithm was run on an IBM RS/6000 SP

with four distributed nodes, each one with four processors.

In OpenMP they used i) a shared memory environment (all

threads have access to the same memory space, i.e., memory

chunks) and ii) the schedule clause to specify the number of

iterations that handle each thread in the loops. The number

of variables in the system of equations was 400, 800, and

1200. In MPI, a distributed memory environment was used

(each processor does not have access to the memory of the

other processors; therefore, message passing was used). The

results favored MPI, as it was 1.82 times faster than

OpenMP.

Jost et al. [24] compared OpenMP and MPI in a SMP

(Symmetric MultiProcessing) cluster. They used 16 Sun Fire

6800 nodes with 24 UltraSPARC-III Cu processors and 24

GB of shared memory on each node and four Sun Fire 15K

nodes with 72 UltraSPARC-III Cu processors and 144 GB

of shared memory on each node. The BT algorithm (Block

Tri-diagonal solver) of the NPB was analyzed in MPI, in

OpenMP, and in a hybrid way (i.e., using OpenMP and MPI

in different proportions). In MPI, the comparison considered

the interconnections between the nodes through Sun Fire

Link (SFL) and Gigabit Ethernet (GE). Lower execution

times with SFL were obtained. The hybrid implementation

benefited more from the GE interconnections. In OpenMP

the interconnections were not considered because OpenMP

only supports shared memory. With both shared memory

systems and interconnections, MPI had a better performance

(although it is not clear how much), since it presented better

scalability than the OpenMP and hybrid approaches.

Krawezik and Cappello [25] compared MPI and several

programming styles in OpenMP (loop level, loop level with

large parallel sections, and single program multiple data

(SPMD)) for the NPB algorithms: CG, MG (Multi-Grid),

FT, and LU (Lower-Upper Gauss-Seidel solver). They used

an IBM SP3 Night Hawk II computer with 16 Power3+ 375

MHz and a SGI Origin 3800 computer with 128 R14000

500MHz multiprocessors. The results showed that OpenMP

(in SPMD style) became 15% better than MPI in some

algorithms and 140% better than the other OpenMP styles.

Drosinos and Koziris [26] proposed two MPI-OpenMP

hybrid models to parallelize nested loops by means of tiling

(a technique for partitioning a loop: loop tiling is also called

loop blocking [27]) and then compared them with MPI.

They used a Pentium III dual-SMP cluster of four nodes

each with two Pentium III of 800 MHz and 256 KB of

cache. The results did not show a clear winner.

Hochstein and Basili [28] compared OpenMP and MPI in

an experiment with a group of eleven computer science

students. Each student solved the sharks and fish problem

[29] (a dynamics population problem containing a predator

(shark) and a prey (fish) species) in OpenMP and MPI.

Although each student had a computer, in the end the

solutions were run on a dual-processor quad-core 2GHz

Intel Xeon (but only one of the processors was used). The

OpenMP solution represented an average time saving of

43% compared to MPI.

Wu and Taylor [30] compared the performance of MPI

and the hybrid implementations (MPI and OpenMP) of the

SP (Scalar Pentadiagonal solver) and BT algorithms of the

NPB in large-scale multicore clusters: BlueGene/P,

JaguarPF Cray XT5, and Jaguar XT4. The results showed

that for the SP algorithm, the hybrid implementation

performed up to 20% better than the MPI implementation;

however, as the number of cores increased, MPI was 15%

better. For the BT algorithm, the hybrid approach was 3%

better and as the number of cores increased, MPI became

1% better.

Krpic, Martinovic, and Crnkovic [31] compared OpenMP

and MPI using the naïve matrix multiplication (NMM)

algorithm [32]. Matrices ranged from 2000 × 2000 to 5000

× 5000 with increments of 500. Three platforms were used

for the experiments: a single core Intel P4 @ 2.4GHz, a dual

core AMD Athlon @ 3.13GHz, and two Quad-core Intel

Xeon E5430 @ 2.66 GHz. For the first computer the

performance was similar. For the second computer OpenMP

was better (using both one and two cores) for 3000 × 3000

matrices and of higher order and was even 50% faster than

MPI. For the third computer, OpenMP was better for 2000 ×

2000 matrices and of higher order becoming even twice as

fast as MPI with 5000 × 5000 matrices.

Saravanan et al. [33] analyzed the performance of

OpenMP in a multi-core CPU. They used a computer with

an Intel Core i3 Dual core @ 2.13 GHz, 4 GB RAM,

Windows 7, and Ubuntu 9.04. The NMM algorithm and an

optimized matrix multiplication algorithm were evaluated

(Strassen’s Algorithm [34]), both in sequential and parallel

implementations. Matrices ranged from 500 × 500 to 3000 ×

3000 with increments of 500. For both algorithms, the

execution time for the parallel implementation was lower.

The NMM algorithm, in both implementations, was slower

than Strassen's. For example, for matrices of 500 × 500 it

was four times slower.

Reyes et al. [35] compared accULL [36], PGI Accelerator

[37], and hiCUDA [38]. They evaluated four algorithms: i)

lower-upper decomposition (an algorithm which factors a

matrix as the product of a lower triangular matrix and an

upper triangular matrix), ii) HotSpot (an algorithm to

estimate the temperature of a processor), iii) Needleman-

Wunsch (an algorithm to align DNA sequences), and iv)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

NMM. They used a computer with an NVIDIA Tesla 2050

with 4GB memory and an Intel Core i7 930 of 2.80GHz.

hiCUDA's performance was superior in all algorithms, even

reaching 20 times better.

Lopes, Zeve, and dos Anjos [39] compared C, CUDA,

OpenACC, and OpenMP. They used a computer running on

Ubuntu 12.04, AMD Athlon(tm) II X2 270, and an NVIDIA

GeForce GTX 650. They compared three algorithms:

Mandelbrot set [40] (a fractal), N-Queens (a chess problem

where N chess queens must be placed on an N×N

chessboard so that no two queens attack each other), and

NMM. The algorithms were implemented sequentially in C

and in parallel in CUDA, OpenACC, and OpenMP. Each

algorithm was executed ten times and the average execution

time was obtained. For the NMM and Mandelbrot set

algorithms, the execution time was similar in CUDA and

OpenACC; in C it was 18 times slower, and in OpenMP it

was 10 times slower. For the N-Queens algorithm, the

execution time was similar in C, OpenACC, and OpenMP;

and in CUDA was 32 times slower.

Xu, Chandrasekaran, and Chapman [41] used OpenMP to

execute parallel programs on a CPU. They created threads,

each one associated with a GPU which executes the code in

OpenACC. For the experiments, they used an Intel Xeon

and two Nvidia Tesla C2075. The algorithms evaluated

were: S3D (a numerical simulation algorithm), NMM, and

2D heat conduction (an algorithm to calculate heat

conduction in two dimensions). For the S3D and 2D heat

conduction algorithms for grids with sizes of 4096, the

performance with two GPUs was twice as good as with one

GPU. For the NMM algorithm, the performance with two

GPUs was slightly lower (it is not detailed by how much)

than with one GPU for 1000 ×1000 matrices. However, for

5000 × 5000 matrices and of higher order, the performance

with two GPUs was twice as good.

Kang et al. [42] compared OpenMP, MPI, and

MapReduce on Hadoop. They evaluated two algorithms: all-

pairs-shortest-path (find the shortest path between all pairs

of vertices of a graph) and data-join (find Wikipedia pages

in English associated with keywords written in English that

appear in Wikipedia in Korean). For all-pairs-shortest-path

they used graphs with 10, 100, and 1000 vertices. For data-

join they used an XML file from Wikipedia in English with

4664819 articles of 4 GB and an XML file from Wikipedia

in Korean with 529997 articles of 1.35 GB. They used five

computers, each with an Intel Core i7-4770 3.40 GHz and

16GB RAM, with CentOS-6.4 Linux 64 bits. The execution

time for all-pairs-shortest-path was twice as fast in OpenMP

than in MPI on a single computer for all three cases and also

for the case of 10 and 100 vertices for MPI in a cluster,

made up of all five computers. With 1000 vertices, OpenMP

was 36 times faster than MPI in the cluster. OpenMP was

1000 times faster than MapReduce in all cases. For data-

join, MapReduce was 232 times faster than OpenMP and

337 times faster than MPI.

Kathavate and Srinath [43] analyzed the performance of

parallelism in OpenMP. They implemented the NMM

algorithm sequentially and in parallel. They used a computer

with an Intel Pentium G630 dual-core and another with an

Intel i7 dual-core. In both, each core can execute two

threads. The parallelization with two threads showed an

improvement of 46% compared to the sequential approach

and the parallelization with four threads improved by 61%.

Holm, Brodtkorb, and Sætra [44] compared the

performance, energetic efficiency, and usability of PyCUDA

and PyOpenCL. They evaluated the algorithms for the

shallow-water equations [45] with three numerical

techniques (linear finite difference, nonlinear finite

difference, and high-resolution finite volume). They used

seven GPUs: Tesla M2090, K20, K80, P100, V100,

GeForce GTX 780, and 840M. The two languages were

similar in terms of performance and usability. Regarding

energy efficiency, for the V100 and 840M GPUs, PyCUDA

had a 30% better performance. For the other GPUs the

power consumption was similar.

No works were found that compare the parallel

performance of OpenMP and Python. This comparison is

important because: a) Python is today one of the most used

languages for data science applications, artificial

intelligence, and machine learning [46] and b) few works

analyze the performance of Python [47]–[49] and even

fewer analyze its performance in terms of parallelism. For

example, Wagner et al. [50] analyzed the parallel

performance of Python considering the GPAW software

(Grid-Based Projector Augmented Wave, a software to

simulate electronic structures) and concluded that there is

room for improvement with regard to C and Fortran.

For its part, OpenMP is an API for C/C++ and Fortran

that allows algorithms to be parallelized using the CPU

cores. This API also allows the programmer to parallelize

regions (sections) of a program's code by means of

preprocessing directives. The API has been developed since

1997 and is widely used in scientific computing [51]–[53].

Also, as of version 4.0, OpenMP supports GPGPU

computing [54].

In Python, with the multiprocessing module we

can generate subprocesses; which, unlike threads, use

different memory heaps (the portion of memory available to

a program) [55]. This module was added to the Python

standard libraries in 2006 and was created to bypass the GIL

(Global Interpreter Lock) [56], which is a form of mutual

exclusion that prevents that multiple threads execute the

same Python instructions at a time.

IV. ALGORITHMS

For our experiments we evaluated three algorithms: i)

frequency of an integer in an unsorted array, ii) matrix

transposition (of a square matrix), and iii) matrix addition

(of square matrices). Next, we present the pseudocodes of

these algorithms.

Pseudocode of frequency of an integer in an unsorted

array:

ALGORITHM

Frequency_integer_in_unsorted array(A, value)

Input:

A: unsorted array of size n.

value: integer to be searched in A.

Output:

frequency: frequency of value in A.

BEGIN

1. frequency = 0;

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

2. FOR i = 0 TO n - 1 DO [IN PARALLEL]

3. IF Ai = value THEN

4. frequency = frequency + 1;

5. END IF

6. END FOR

END ALGORITHM

The complexity of this algorithm is O(n). The IN

PARALLEL clause indicates that the instruction to which

it is associated will be executed in parallel.

Pseudocode of matrix transposition:

ALGORITHM

Matrix_transposition(A)

Input:

A: n × n matrix.

Output:

AT: n × n matrix.

BEGIN

1. FOR i = 0 TO n - 1 DO [IN PARALLEL]

2. FOR j = 0 TO n - 1 DO

3. ATji = Aij;

4. END FOR

5. END FOR

END ALGORITHM

The complexity of this algorithm is O(n2).

Pseudocode of matrix addition:

ALGORITHM

Matrix_addition(A, B)

Input:

A: n × n matrix.

B: n × n matrix.

Output:

C: n × n matrix.

BEGIN

1. FOR i = 0 TO n - 1 DO [IN PARALLEL]

2. FOR j = 0 TO n - 1 DO

3. Cij = Aij + Bij;

4. END FOR

5. END FOR

END ALGORITHM

Although the result of the matrix addition could be stored

in one of the two input matrices (e.g., A = A + B), we used a

third matrix C to work with independent memory regions.

The complexity of this algorithm is also O(n2).

V. EXPERIMENTS

The algorithms were run on two computers, the first had

an Intel (R) Core™ i7-9750H with 6 cores, an NVIDIA

GeForce RTX 2060 @4.14 GHz, and 21 GB RAM; the

second had an AMD Ryzen 5 3500U with 4 cores, a Radeon

Vega Mobile Gfx @2.10 GHz, and 10 GB RAM.

We compared the execution time of the three algorithms

as follows. First in Python, where we used these modules:

multiprocessing, functools with its partial()

function which facilitates the management of functions,

itertools to iterate over data structures, e.g., arrays and

matrices, random to generate random numbers, and numpy

TABLE I.
DATA SAMPLE SIZES

to operate on matrices.

The algorithms were then run in C++ with OpenMP,

Vector [57], and Armadillo [58]. Vector is a

specialized sub-library for managing dynamic arrays and is

part of the official C++ Container library [59].

Armadillo is a specialized library for linear algebra

operations. Thus, we compared the results in C++ using

different libraries.

The data to fill the arrays and matrices were random

integers in the interval [0, 100]. The algorithms were

evaluated with the values (size) shown in Table I.

Next, we describe our implementations.

In Python:

• Frequency of an integer in an unsorted array:

A sequential implementation with functools and

random.

A parallel implementation with

multiprocessing, functools, and random.

• Matrix transposition:

Two sequential implementations: the first with

itertools and numpy with explicit loops [60],

i.e., the transposition was programmed using loops

that iterate over the elements of the matrix and the

second with numpy’s native function

transpose().

A parallel implementation with

multiprocessing, itertools, and numpy.

• Matrix addition:

Two sequential implementations: the first with

itertools and numpy (both with explicit loops)

and the second with numpy’s native operator “+” to

add objects of type matrix.

A parallel implementation with

multiprocessing, itertools, and numpy

with explicit loops.

In C++:

• Frequency of an integer in an unsorted array:

Two sequential implementations: the first with

Vector and the second with Armadillo.

Two parallel implementations: the first with Vector

and OpenMP and the second with Armadillo and

OpenMP.

All four implementations with explicit loops.

• Matrix transposition:

Three sequential implementations: the first with

Vector, the second with Armadillo (both with

explicit loops), and the third with Armadillo’s

Frequency of an integer in an unsorted array

35.000.000 50.000.000 57.500.000 65.000.000

Matrix transposition

1125 ×

1125

2250 ×

2250

3375 ×

3375

4000 ×

4000

Matrix addition

1063×

1063

2125 ×

2125

3188 ×

3188

4250 ×

4250

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

native function t(), which computes the matrix

transposition.

Two parallel implementations: the first with Vector

and OpenMP and the second with Armadillo and

OpenMP (both with explicit loops).

• Matrix addition:

Three sequential implementations: the first with

Vector, the second with Armadillo (both with

explicit loops), and the third with Armadillo’s

native operator “+”, which adds objects of type

matrix.

Two parallel implementations: the first with Vector

and OpenMP and the second with Armadillo and

OpenMP (both with explicit loops).

Each of the implementations was executed ten times and

the execution times were averaged, this average time was

used for the analysis.

A. Results of the first computer

Figures 3-8 correspond to the results of the first computer.

1) Analysis of the results

The sample sizes allowed us to observe the performance

of the algorithms and their scalability according to the

gradual increase in the size of the samples.

• Frequency of an integer in an unsorted array

The almost linear growth of all implementations stands

out. That is, as the data increases, the slope of the curve

grows smoothly (with a tendency to a line), unlike the other

two algorithms (matrix transposition and matrix addition)

where the trends suggest polynomial or exponentially

increasing forms.

In Python the execution time was between 4 and 7 sec in

its sequential implementation, when parallelizing we

obtained an average improvement of 605 ms considering the

four samples.

Regarding C++, in the sequential implementations, in

Armadillo the execution time was 0 ms (see explanation

Fig. 3. Frequency of an integer in an unsorted array in Python (first
computer)

Fig. 4. Matrix transposition in Python (first computer)

Fig. 5. Matrix addition in Python (first computer)

Fig. 6. Frequency of an integer in an unsorted array in C++ (first computer)

Fig. 7. Matrix transposition in C++ (first computer)

Fig. 8. Matrix addition in C++ (first computer)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

in subsection C), while in Vector it was 14 ms for the

smallest sample and 28 ms for the largest. As for the two

parallel implementations they had a similar performance:

Armadillo was on average 1.56 ms better than Vector

considering the four samples.

In conclusion, the parallel implementations reduced the

times with respect to the sequential implementations (except

the sequential implementation with Armadillo) by an

average of 15% in both languages. C++ was up to 362 times

better than Python.

• Matrix transposition

The sequential matrix transposition algorithm in Python

using numpy's native function transpose()had an

execution time of 0 ms. Except for this implementation, the

parallel implementation using multiprocessing had the

lowest time in Python (except for the smallest sample,

possibly due to the parallelization costs for thread fork/join

operations).

For its part, in C++ in the sequential implementations,

Armadillo was the best thanks to its native function t():

it had execution times up to 64.39 ms lower than Vector.

In the parallel implementations, Armadillo had the best

execution times for the smallest and largest sample, while in

the intermediate-sized samples Vector was on average 4.5

ms better than Armadillo.

In conclusion, the fastest implementation was Python's

sequential using the native function transpose(). Except

for this implementation, the parallel implementations in the

two languages were better than the sequential ones, and C++

was up to 221 times better than Python.

• Matrix addition

The algorithm of the sequential matrix addition in Python

using the native operator “+” had the lowest time. This is

due to internal optimizations in the numpy library. On the

other hand, the time of the parallel implementations with

respect to the sequential ones improved as the size of the

samples increased.

For its part, in C++ in the sequential implementations,

Armadillo was the best thanks to the native operator “+”:

it had execution times up to 4 ms lower than Vector. In

the parallel implementations, Vector was on average 10

ms better than Armadillo. For the smaller samples, the

parallel implementations had higher execution times than

the sequential ones, possibly due to the parallelization costs

for thread fork/join operations.

In conclusion, the fastest implementation was Python's

sequential using the native “+” operator. Except for this

implementation, parallel implementations in both languages

were better than sequential ones for the largest samples, and

C++ was up to 600 times better than Python.

2) Conclusions regarding the first computer

In general, the results showed that OpenMP was faster

than Python in the parallel implementations. However,

Python was the winner when using native functions and

operators (transpose() and “+”) for matrix transposition

and matrix addition.

B. Results of the second computer

Figures 9-14 correspond to the results of the second

computer.

1) Analysis of the results

Again, the sample sizes allowed us to observe the

performance of the algorithms and their scalability

according to the gradual increase in the size of the samples.

• Frequency of an integer in an unsorted array

Similarly to the first computer, the almost linear growth

of all implementations stands out.

In Python the execution time was between 3 and 6 sec for

its sequential implementation, when parallelizing the

execution times worsened on average by 4140.5 ms

considering the four samples.

Regarding C++, in the sequential implementations, in

Armadillo the execution time was 0 ms (just like in the

first computer), while in Vector it was 10 ms for the

smallest sample and 22 ms for the largest. As for the two

parallel implementations, Vector was on average 10 ms

faster than Armadillo considering the four sample sizes.

In conclusion, we observed a different behavior from the

first computer. In Python, the parallel implementations

increased the execution times with respect to the sequential

ones by an average of 47.6%. This possibly occurred due to

the decrease in the number of threads to parallelize

operations, since the first computer has 12 threads and the

second one 8.

• Matrix transposition

As in the first computer, the sequential implementation in

Python using numpy's native transpose()function again

had an execution time of 0 ms. In the other implementations,

both the sequential and the parallel, Python had similar

execution times (the differences were on average 250 ms,

considering the four samples).

For its part, in C++ in the sequential implementations,

Armadillo was the best; thanks to its native function

t(): it had execution times up to 38 ms less than Vector.

In the parallel implementations, Armadillo had the best

execution times for the two smaller samples, while for the

two larger samples, Vector was on average 20.8 ms better

than Armadillo.

In conclusion, the fastest implementation was Python's

sequential using its native function transpose(). Except

for this implementation, the parallel implementations in both

languages were better than the sequential ones (especially

for larger arrays) and C++ was up to 380 times better than

Python.

• Matrix addition

Similarly to the first computer, the sequential matrix

addition algorithm in Python using the native operator “+”

had the lowest execution time. On the other hand, the

execution time of the parallel implementations with respect

to the sequential ones improved as the size of the samples

increased.

For its part, C++ in the sequential implementations,

Armadillo was the best thanks to the operator “+”: it had

execution times up to 16 ms better than Vector. In the

parallel implementations, Vector was on average 753 ms

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

better than Armadillo. Unlike the first computer, all the

parallel implementations were better than the sequential

ones.

In conclusion, the fastest implementation was the parallel

one in C++ using OpenMP and Vector. Parallel

implementations were found to outperform sequential ones

for larger samples. Furthermore, unlike the other two

algorithms, C++ and Python obtained similar results in their

best implementation, differing on average by 0.51 ms.

2) Conclusion regarding the second computer

In general, the results are consistent with those of the first

computer, except as indicated.

C. Problems

When conducting our experiments, we faced some

problems. Mainly, these were related to sizes, memory

space, parallelization, and the native functions or operators

of the libraries.

The problems in Python mainly occurred in the matrix

algorithms:

• Matrix transposition:

numpy's transpose()function cannot be

parallelized as it is an internal function of the library.

Indeed, when trying to parallelize it using the

map()method of the Pool class of

multiprocessing, which acts similarly to

OpenMP's IN PARALLEL clause, we obtained

incorrect results. In addition, in its sequential

implementation transpose()already had

execution times of 0 ms because this function does

not physically transpose the data.

• Matrix addition:

The numpy operator "+" cannot be parallelized

since it is an internal operator of the library. Indeed,

Fig. 9. Frequency of an integer in an unsorted array in Python (second

computer)

Fig. 10. Matrix transposition in Python (second computer)

Fig. 11. Matrix addition in Python (second computer)

Fig. 12. Frequency of an integer in an unsorted array in C++ (second
computer)

Fig. 13. Matrix transposition in C++ (second computer)

Fig. 14. Matrix addition in C++ (second computer)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

when trying to parallelize it using the map()

method of the Pool class of multiprocessing,

we obtained incorrect results.

For its part in C++:

• Frequency of an integer in an unsorted array:

The sequential implementation (Armadillo with

explicit loop) had an abnormal behavior: execution

times of 0 ms (the differences were perceived only at

the level of microseconds). This behavior may be

due to the efficiency of the library in traversing and

indexing data structures.

• Matrix transposition:

The t() function cannot be parallelized as it is an

internal function of Armadillo. Indeed, when

trying to parallelize it using the IN PARALLEL

clause, we obtained incorrect results.

• Matrix addition:

The operator “+” cannot be parallelized since it is an

internal operator of Armadillo. Indeed, when

trying to parallelize it using the IN PARALLEL

clause, we obtained incorrect results.

In addition, when trying to work with larger data

structures, Python programs generated errors due to lack of

memory (RAM). This suggests that C++ manages memory

better since it supported larger data samples. Table II shows

the maximum limits found for the algorithms in C++. The

limits found for the algorithms in Python were those used as

the largest size in the experiments (see Table II). The

complete results of our experiments can be seen in Tables

AI and AII in the appendix. We also show in tables III and

IV some additional experiments with the matrix

multiplication algorithm, that confirm our previous

conclusions about the performance of both languages and of

both computers.

TABLE II
MAXIMUM DATA SAMPLE SIZES IN C++

VI. CONCLUSIONS AND FUTURE WORK

Computer 1 had better results on average for all

algorithms. The results of both computers were consistent

considering their differences in terms of resources.

From the previous analysis, the importance of selecting

specialized modules, libraries, and APIs for certain

algorithms is clear since these aspects decisively influence

the execution times of the algorithms because they used to

include native functions or operators that are more efficient

than explicit implementations.

In summary, despite the different implementations and

except for the cases where the native functions or operators

had a better performance, we observed that C++ with

OpenMP outperformed Python with its

multiprocessing module.

In the future, we intend to create a visual tool along with a

chatbot [61] in which analysts can enter an algorithm written

in both languages, its parameters, and a data sample. Then,

the tool will show execution statistics, and if possible, it will

generate larger random data samples from the initial one and

present a visual comparison of their performance results. We

also plan to evaluate both languages with optimization

algorithms for customers load schedule [62].

TABLE III.

RESULTS MATRIX MULTIPLICATION (FIRST COMPUTER)

Language Implementation Time (ms)

 Size: 1000 ×

1000

2000 ×

2000

4000 ×

4000

Python Sequential (itertools with explicit loops) 1200 5200 21000

Sequential (operator matmul) 0 0 0

Parallel (itertools with explicit loops) 1350 4900 17500

C++ Sequential (itertools with explicit loops) 5 8 32

Sequential (operator matmul) 4 9 27

Parallel (itertools with explicit loops) 11 14 26

TABLE IV.

RESULTS MATRIX MULTIPLICATION (SECOND COMPUTER)

Language Implementation Time (ms)

 Size: 1000 ×

1000

2000 ×

2000

4000 ×

4000

Python Sequential (itertools with explicit loops) 1800 7500 32000

Sequential (operator matmul) 0 0 0

Parallel (itertools with explicit loops) 2000 7200 25500

C++ Sequential (itertools with explicit loops) 7 11 39

Sequential (operator matmul) 5 12 34

Parallel (itertools with explicit loops) 16 19 33

Sequential Parallel

Frequency of an integer in an unsorted array

100000000 90000000

Matrix transposition

10000 × 10000 10000 × 10000

Matrix addition

10000 × 10000 10000 × 10000

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

APPENDIX

TABLE AI.

COMPLETE RESULTS (FIRST COMPUTER)

Language Algorithm Implementation Time (ms)

Python

Frequency of an integer in an
unsorted array

Size 35.000.000 50.000.000 57.500.000 65.000.000

Sequential (explicit loop) 4065 6058 6618 7446

Parallel (explicit loop) 3769 5221 5927 6850

Matrix transposition

Size

1125 ×
1125

2250 ×
2250

3375 ×
3375

4000 ×
4000

Sequential (itertools with explicit loops) 808 3085 7233 12569

Sequential (function transpose()) 0 0 0 0

Parallel (itertools with explicit loops) 935 2545 5976 9603

Matrix addition

Size

1063 ×
1063

2125 ×
2125

3188 ×
3188

4250 ×
4250

Sequential (itertools with explicit loops) 903 3656 7864 14748

Sequential (operator “+”) 1 3 7 12

Parallel (itertools with explicit loops) 1112 3262 6689 13287

C++

Frequency of an integer in an
unsorted array

Size 35000000 50000000 57500000 65000000

Sequential (Vector with explicit loop) 14 19 26 27

Sequential (Armadillo with explicit loop) 0 0 0 0

Parallel (Vector and OpenMP with explicit
loop) 13 16 17 18

Parallel (Armadillo and OpenMP with explicit

loop) 10 14 16 18

Matrix transposition

Size

1125 ×
1125

2250 ×
2250

3375 ×
3375

4000 ×
4000

Sequential (Vector with explicit loops) 4 34 86 145

Sequential (Armadillo with explicit loops) 7 37 94 163

Sequential (Armadillo with function t()) 2 11 40 80

Parallel (Vector and OpenMP with explicit
loops) 9 17 28 49

Parallel (Armadillo and OpenMP with explicit

loops) 9 19 33 43

Matrix addition

Size

1063 ×
1063

2125 ×
2125

3188 ×
3188

4250 ×
4250

Sequential (Vector with explicit loops) 2 6 13 22

Sequential (Armadillo with explicit loops) 6 37 79 148

Sequential (Armadillo with operator “+”) 1 4 11 18

Parallel (Vector and OpenMP with explicit
loops) 7 10 12 17

Parallel (Armadillo and OpenMP with explicit

loops) 9 17 25 38

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

TABLE AII.

COMPLETE RESULTS (SECOND COMPUTER)

Language Algorithm Implementation Time (ms)

Python

Frequency of an integer in an

unsorted array

Size 35000000 50000000 57500000 65000000

Sequential (explicit loop) 3070 4413 5068 5708

Parallel (explicit loop) 5819 8644 9688 10670

Matrix transposition

Size

1125 ×
1125

2250 ×
2250

3375 ×
3375

4000 ×
4000

Sequential (itertools with explicit loops) 877 3470 7842 13918

Sequential (function transpose()) 0 0 0 0

Parallel (itertools with explicit loops) 1205 3388 7915 13371

Matrix addition

Size

1063 ×
1063

2125 ×
2125

3188 ×
3188

4250 ×
4250

Sequential (itertools with explicit loops) 1358 3927 8415 15013

Sequential (operator “+”) 2 3 10 16

Parallel (itertools with explicit loops) 810 3217 7116 12681

C++

Frequency of an integer in an
unsorted array

Size 35.000.000 50.000.000 57.500.000 65.000.000

Sequential (Vector with explicit loop) 10 16 19 22

Sequential(Armadillo with explicit loop) 0 0 0 0

Parallel (Vector and OpenMP with explicit

loop) 9 13 14 15

Parallel (Armadillo and OpenMP with explicit

loop) 19 24 28 25

Matrix transposition

Size

1125 ×
1125

2250 ×
2250

3375 ×
3375

4000 ×
4000

Sequential (Vector with explicit loops) 7 35 78 148

Sequential (Armadillo with explicit loops) 5 50 130 383

Sequential (Armadillo with function t()) 2 15 55 110

Parallel (Vector and OpenMP with explicit

loops) 4 20 40 71

Parallel (Armadillo and OpenMP with explicit

loops) 4 17 43 109

Matrix addition

Size

1063 ×
1063

2125 ×
2125

3188 ×
3188

4250 ×
4250

Sequential (Vector with explicit loops) 2 12 32 58

Sequential (Armadillo with explicit loops) 4 39 115 313

Sequential (Armadillo with operator “+”) 2 11 24 42

Parallel (Vector and OpenMP with explicit

loops) 2 4 10 16

Parallel (Armadillo and OpenMP with explicit

loops) 3 17 45 91

REFERENCES

[1] M. E. Lesk. (1997). How much information is there in the

world?” (Online). Available:
https://www.lesk.com/mlesk/ksg97/ksg.html

[2] M. Amani et al., “Google Earth engine cloud computing platform

for remote sensing big data applications: A comprehensive
review,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 13, pp. 5326–5350, 2020.

[3] E. O’Neill. (2022). 10 companies that are using big data. Institute
of Chartered Accountants of Scotland. (Online). Available:

https://www.icas.com/news/10-companies-using-big-data

[4] A. Popovič, R. Hackney, R. Tassabehji, and M. Castelli, “The
impact of big data analytics on firms’ high value business

performance,” Information Systems Frontiers, vol. 20, no. 2, pp.
209–222, 2018.

[5] A. Woodie. (2015). Why big data is a ‘how’ at UPS, not a ‘what’.
Datanami. Available:

https://www.datanami.com/2015/10/26/why-big-data-is-a-how-

at-ups-not-a-what
[6] M. Samuels. (2017). Big data case study: How UPS is using

analytics to improve performance, ZDNET. Available:

https://www.zdnet.com/article/big-data-case-study-how-ups-is-
using-analytics-to-improve-performance

[7] J. Dean and S. Ghemawat, “MapReduce: a flexible data

processing tool,” Communications of the ACM, vol. 53, no. 1, pp.
72–77, 2010.

[8] L. Clarke, I. Glendinning, and R. Hempel, “The MPI message

passing interface standard,” in Programming Environments for
Massively Parallel Distributed Systems, K. Decker, Ed. Basel:

Birkhäuser Basel, 1994, pp. 213–218.

[9] L. Dagum and R. Menon, “OpenMP: an industry standard API
for shared-memory programming,” IEEE Computational Science

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

and Engineering, vol. 5, no. 1, pp. 46–55, 1998.
[10] OpenMP. (2022). OpenMP. OpenMP. (Online). Available:

https://www.openmp.org

[11] F. Ciccozzi, L. Addazi, S. A. Asadollah, B. Lisper, A. N. Masud,
and S. Mubeen, “A comprehensive exploration of languages for

parallel computing,” ACM Computing Surveys, vol. 55, no. 2,

2022.
[12] S. Bellamkonda, H.-G. Li, U. Jagtap, Y. Zhu, V. Liang, and T.

Cruanes, “Adaptive and big data Scale parallel execution in

Oracle,” VLDB Endowment, vol. 6, no. 11, pp. 1102–1113, 2013.
[13] P. White. (2011). Understanding and using parallelism in SQL

Server. Redgate, Available: https://www.red-gate.com/simple-

talk/databases/sql-server/learn/understanding-and-using-
parallelism-in-sql-server

[14] S. Shankar et al., “Query optimization in Microsoft SQL Server

PDW,” ACM SIGMOD International Conference on
Management of Data, Scottsdale, Arizona, 2012, pp. 767–776.

[15] C. K. Baru et al., “DB2 parallel edition,” IBM Systems Journal,

vol. 34, no. 2, pp. 292–322, 1995.
[16] Python.org. (2022). Multiprocessing — process-based

parallelism. Python.org. (Online). Available:

https://docs.python.org/3/library/multiprocessing.html
[17] L. Prechelt, “An empirical comparison of C, C++, Java, Perl,

Python, Rexx, and Tcl,” IEEE Computer, vol. 33, no. 10, pp. 23–

29, 2000.
[18] E. Rodríguez. (2017). Núcleos e hilos en un procesador: qué son

y en qué se diferencian. El Español, (Online). Available:
https://www.elespanol.com/omicrono/tecnologia/20170707/nucle

os-hilos-procesador-diferencian/229478224_0.html

[19] E. Buber and B. Diri, “Performance analysis and CPU vs GPU
comparison for deep learning,” in 6th International Conference

on Control Engineering & Information Technology, Istambul,

2018, pp. 1–6.
[20] M. Hess, G. Jost, M. Müller, and R. Rühle, “Experiences using

OpenMP based on compiler directed software DSM on a PC

cluster,” in International Workshop on OpenMP Applications and
Tools, Toronto, 2003, pp. 211–226.

[21] N. J. Boden et al., “Myrinet: a gigabit-per-second local area

network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, 1995.
[22] NASA. (2022). NAS parallel benchmarks. NASA Advanced

Supercomputing Division. (Online). Available:

https://www.nas.nasa.gov/software/npb.html
[23] S. F. McGinn and R. E. Shaw, “Parallel Gaussian elimination

using OpenMP and MPI,” in 16th Annual International

Symposium on High Performance Computing Systems and
Applications, Moncton, 2002, pp. 169–173.

[24] G. Jost, H.-Q. Jin, F. F. Hatay, and others, “Comparing the

OpenMP, MPI, and hybrid programming paradigm on an SMP
cluster,” in European Workshop on OpenMP and Applications,

Toronto, 2003, pp. 1–10.

[25] G. Krawezik and F. Cappello, “Performance comparison of MPI
and OpenMP on shared memory multiprocessors,” Concurrency

and Computation: Practice and Experience, vol. 18, no. 1, pp.

29–61, 2006.
[26] N. Drosinos and N. Koziris, “Performance comparison of pure

MPI vs hybrid MPI-OpenMP parallelization models on SMP

clusters,” in 18th International Parallel and Distributed
Processing Symposium, Santa Fe, 2004, pp. 1–10.

[27] J. M. P. Cardoso, J. G. de Figueired Coutinho, and P. C. Diniz,

Embedded Computing for High Performance. Morgan Kaufmann,
New York, 2017, pp. 137–183.

[28] L. Hochstein and V. R. Basili, “A preliminary empirical study to

compare MPI and OpenMP,” ISI-TR-676, 2011.
[29] University of Cambridge. (2022). Population Dynamics - Part 5.

University of Cambridge - Faculty of Mathematics. (Online).

Available: https://nrich.maths.org/7274
[30] X. Wu and V. Taylor, “Performance Characteristics of Hybrid

MPI/OpenMP Implementations of NAS Parallel Benchmarks SP

and BT on Large-Scale Multicore Clusters,” The Computer
Journal, vol. 55, no. 2, pp. 154–167, 2012.

[31] Z. Krpic, G. Martinovic, and I. Crnkovic, “Green HPC: MPI vs.

OpenMP on a shared memory system,” in 35th International
Convention MIPRO, Opatija, 2012, pp. 246–250.

[32] S. Datta. (2021). Matrix multiplication algorithm time

complexity. Baeldung. (Online). Available:
https://www.baeldung.com/cs/matrix-multiplication-algorithms

[33] V. Saravanan, M. Radhakrishnan, A. S. Basavesh, and D. P.
Kothari, “A comparative study on performance benefits of multi-

core CPUs using OpenMP,” International Journal of Computer

Science Issues, vol. 9, no. 1, pp. 272–278, 2012.

[34] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and
T. Turnbull, “Strassen’s algorithm for matrix multiplication:

modeling, analysis, and implementation,” ACM/IEEE conference

on Supercomputing, Pittsburgh, 1996, pp. 6–9.
[35] R. Reyes, I. López, J. Fumero, and F. de Sande, “A comparative

study of OpenACC implementations,” Jornadas Sarteco, Elche,

2012, pp. 1–6.
[36] J. Lucas. (2013). Optimizing a stencil code with OpenACC.

WordPress. (Online). Available: https://accull.wordpress.com

[37] PGroup. (2022). PGI compilers with OpenACC directives.
PGroup Compilers & Tools. (Online). Available:

https://www.pgroup.com/resources/accel.htm

[38] T. D. Han and T. S. Abdelrahman, “hiCUDA: high-level GPGPU
programming,” IEEE Transactions on Parallel and Distributed

Systems, vol. 22, no. 1, pp. 78–90, 2011.

[39] C. L. Ledur, C. M. Zeve, and J. C. dos Anjos, “Comparative
analysis of OpenACC, OpenMP and CUDA using sequential and

parallel algorithms,” in 11th Workshop on Parallel and

Distributed Processing, Canoas, 2013, pp. 1–4.
[40] B. B. Mandelbrot, C. J. G. Evertsz, and M.C. Gutzwiller, Fractals

and Chaos: the Mandelbrot Set and Beyond, Springer, New York,

2004.
[41] R. Xu, S. Chandrasekaran, and B. Chapman, “Exploring

programming multi-GPUs using OpenMP and OpenACC-based

hybrid model,” in 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum,

Cambridge, 2013, pp. 1169–1176.
[42] S. J. Kang, S. Y. Lee, and K. M. Lee, “Performance comparison

of OpenMP, MPI, and mapReduce in practical problems,”

Advances in MultiMedia, vol. 2015, pp. 1–9, 2015.
[43] S. Kathavate and N. K. Srinath, “Efficiency of parallel algorithms

on multi core systems using OpenMP,” International Journal of

Advanced Research in Computer and Communication
Engineering, vol. 3, no. 10, pp. 8237–8241, 2014.

[44] H. H. Holm, A. R. Brodtkorb, and M. L. Sætra, “GPU computing

with Python: performance, energy efficiency and usability,”
Computation, vol. 8, no. 1, 2020.

[45] R. Sadourny, “The dynamics of finite-difference models of the

shallow-water equations,” Journal of Atmospheric Sciences, vol.
32, no. 4, pp. 680–689, 1975.

[46] M. D. Bloice and A. Holzinger, “A tutorial on machine learning

and data science tools with Python,” in Machine Learning for
Health Informatics: State-of-the-Art and Future Challenges, A.

Holzinger, Ed. New York: Springer International Publishing,

2016, pp. 435–480.
[47] G. Lanaro, Python High Performance. Packt Publishing,

Birmingham, 2017.

[48] K. Lei, Y. Ma, and Z. Tan, “Performance comparison and
evaluation of web development technologies in PHP, Python, and

Node.js,” in 2014 IEEE 17th International Conference on

Computational Science and Engineering, Chengdu, 2014, pp.
661–668.

[49] M. Gorelick and I. Ozsvald, High Performance Python: Practical

Performant Programming for Humans. O’Reilly Media, Boston,
2020.

[50] M. Wagner, G. Llort, E. Mercadal, J. Giménez, and J. Labarta,

“Performance analysis of parallel Python applications,” Procedia
Computer Science, vol. 108, pp. 2171–2179, 2017.

[51] D. Wang, C.-H. Wu, A. Ip, D. Wang, and Y. Yan, “Parallel

multi-population particle swarm optimization algorithm for the
uncapacitated facility location problem using OpenMP,” in IEEE

Congress on Evolutionary Computation, Hong Kong, 2008, pp.

1214–1218.
[52] S. Zhang, Z. Xia, R. Yuan, and X. Jiang, “Parallel computation of

a dam-break flow model using OpenMP on a multi-core

computer,” Journal of Hydrology, vol. 512, pp. 126–133, 2014.
[53] H. Kasahara, M. Obata, and K. Ishizaka, “Automatic coarse grain

task parallel processing on SMP using OpenMP,” in Languages

and Compilers for Parallel Computing, Berlin, 2001, pp. 189–
207.

[54] K. Li. (2022). OpenMP accelerator support for GPUs - OpenMP.

OpenMP. (Online). Available:
https://www.openmp.org/updates/openmp-accelerator-support-

gpus

[55] B. Noronha. (2017). Multithreading vs multiprocessing in
Python. DEV. (Online). Available:

https://dev.to/nbosco/multithreading-vs-multiprocessing-in-
python--63j

[56] Python.org. (2023). Global Interpreter Lock. Python.org.

(Online). Available:

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

https://wiki.python.org/moin/GlobalInterpreterLock
[57] cppreference. (2022). std::vector. cppreference. (Online).

Available: https://en.cppreference.com/w/cpp/container/vector

[58] C. Sanderson and R. Curtin, “Armadillo: a template-based C++
library for linear algebra,” Journal of Open Source Software, vol.

1, no. 2, p. 1–7, 2016.

[59] Containers. (2022). C++ Reference. (Online). Available:
https://www.cplusplus.com/reference/stl

[60] D. P. Clark. (2018). What’s the difference between implicit vs.

explicit programming?. CloudBess. (Online). Available:
https://www.cloudbees.com/blog/what-is-the-difference-between-

implicit-vs-explicit-programming

[61] Chinedu Wilfred Okonkwo, and Abejide Ade-Ibijola, "Python-
Bot: A Chatbot for Teaching Python Programming," Engineering

Letters, vol. 29, no.1, pp25-34, 2021

[62] Sayawu Yakubu Diaba, Mohammed Elmusrati, and Miadreza
Shafie-khah, "Evaluation of Optimization Algorithms for

Customers Load Schedule," Lecture Notes in Engineering and

Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2021, 20-

22 October, 2021, Hong Kong, pp122-127

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_27

Volume 50, Issue 2: June 2023

__

