
 

  

Abstract— In this paper, we evaluate the performance of 

parallelism in Python and C++. Parallel programming can be 

achieved in Python through the multiprocessing module 

and in C++ by means of OpenMP directives. For the 

performance comparison, we use implementations, in parallel 

and sequential, of three algorithms: frequency (count the 

occurrences) of an integer in an unsorted array, matrix 

transposition, and matrix addition. Our goals are i) to show the 

performance of the algorithms in their parallel and sequential 

implementations, in Python with multiprocessing and in 

C++ with OpenMP and ii) to show the importance of selecting 

the programming language and libraries when programming 

in parallel. Our experiments showed that, in general, C++ 

outperformed Python. Additional experiments with the naïve 

matrix multiplication algorithm confirmed this conclusion. 

 
Index Terms—Parallel computing, performance, Python, 

C++, algorithms. 

 

I. INTRODUCTION 

HE processing of massive amount of data, ranging from 

terabytes to petabytes [1], [2] in current applications 

represents a challenge for organizations [3], [4]. For 

example, UPS (United Parcel Service) uses massive amount 

of data and analytics in a number of key projects to improve 

its performance [5], [6] and thereby stay competitive. 

However, as more data are generated, the time required to 

process them can increase to a limit not acceptable to end 

users.  

There are several approaches to deal with this problem, 

from hardware upgrades, e.g., of processors and networks, 

to software changes, e.g., redesign of algorithms and 

database queries, operating systems, programming 

languages, libraries, development frameworks, and 

programming paradigms (e.g., to resort to parallel and 

distributed programming), among others. 

In particular, parallel and distributed programming has 

become popular since 2006 with the emergence of Hadoop 

and parallel programming techniques such as MapReduce 

[7]. The decrease both in the cost of processors with shared 

memory and in the complexity of managing networks of 
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hundreds or thousands of computers have contributed to this 

boom. From a software point of view, MPI (Message 

Passing Interface), [8] and OpenMP [9], [10] have been 

equally instrumental. 

Today, parallel programming is used in languages such as 

C++, Python, Scala, and Rust, among others [11]; in 

distributed processing frameworks such as Hadoop and 

Apache Spark; and in DBMS such as Oracle [12], SQL 

Server [13], [14], and DB2 [15], among others. 

In this paper, we evaluate the performance of parallelism 

in Python and C++. Python is one of the most used 

programming languages today and through the 

multiprocessing module [16], Python allows us 

parallel programming. On the other hand, C++ is a 

programming language widely used for the development of 

general-purpose programs and scientific computing. By 

means of OpenMP, we can enable parallel programming in 

C++. 

For the performance comparison we will use 

implementations, both parallel and sequential, of three 

algorithms: frequency (count the occurrences) of an integer 

in an unsorted array, matrix transposition, and matrix 

addition. We show our experimental setup in Fig. 1 where 

we show the different implementations for each algorithm. 

In Fig. 2 we show a flowchart of the activities we followed 

for the development of our work. 

We consider the following hypothesis: in parallel 

implementations, C++ with OpenMP has lower execution 

times than Python with multiprocessing. Indeed, in 

performance analysis of sequential implementations, it has 

been reported [17] that when comparing C++ with Python, 

C++: consumes half the memory, is five to ten times faster 

for data structure initialization and filling, and requires half 

the time for indexing the data structures. Our goals are i) to 

show the performance of the algorithms in their parallel and 

sequential implementations in Python with 

multiprocessing and in C++ with OpenMP and ii) to 

show the importance of selecting the programming language 

and libraries when programming in parallel. 

The rest of the paper is organized as follows: in Section 2 

we present basic definitions about parallel programming. In 

Section 3 we analyze works where parallel programming 

languages have been compared. In Section 4 we present the 

algorithms used for the comparison and discuss aspects of 

their implementation. In Section 5 we present experiments 

and discuss the results. In Section 6 we conclude the paper 

and propose future work. 

II. DEFINITIONS 

A program is a sequence of instructions executed by a 

processor to do a specific task, e.g., calculate the sum of the 

elements of an array. 
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A process is a program in execution. The execution time 

of a program is the total time required to execute it. A 

processor can execute only one instruction at a time. 

The CPU (Central Processing Unit) is a processor and can 

have one or more cores. Each core is in turn a processor. A 

thread is a subsequence of instructions of a program 

executed at a specific time by a processor. For example, 

consider a loop that iterates over the 100 positions of an 

array (positions 0 to 99). One thread can handle iterations 

from positions 0 to 59 and another thread handles iterations 

from positions 60 to 99. 

 

 

Although a processor can only be executing a program at 

a time, with threads it is possible to simulate the execution 

of several programs at a time. To do this, a program is 

divided into threads so that when a processor alternates 

between the threads of several programs, it seems that they 

are executed at a time. This exercise is called multithreading 

[18]. 

On the other hand, the GPU (Graphics Processing Unit) is 

also a processor that is responsible for rendering images on 

a computer, which lightens the load of the CPU. Just like a 

CPU, a GPU supports multithreading. Due to its 

Fig. 2. Flowchart of the activities for the development of our work 
Fig. 1. Summary of our algorithm implementations 
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computation speed (in a computer the GPU is usually faster 

than the CPU, e.g., in a series of tests run by Buber [19], the 

Tesla k80 GPU was four to five times faster than the Intel 

Xeon Gold 6126 CPU), the GPU is often used to process 

general-purpose programs. This is called GPGPU (General 

Purpose Computing on GPU). 

A cluster is a non-empty set of interconnected computers 

(nodes) that work as if they were a single system. 

III. RELATED WORK 

Hess et al. [20] compared OpenMP and MPI in a 

distributed shared memory cluster. They used 8 NEC 120Ed 

nodes, with dual processors composed by two 1Ghz Pentium 

III and 2 GB of memory in a Myrinet network 2000 NIC 

[21]. The comparison was made with three algorithms from 

the NAS Parallel Benchmarks (NPB) [22]: EP 

(Embarrassingly Parallel), CG (Conjugate Gradient), and FT 

(Fourier Transform). In general, OpenMP was twice as fast 

as MPI on all three algorithms. 

McGinn and Shaw [23] used OpenMP and MPI to 

compare the performance of the Gaussian elimination 

algorithm (an algorithm for solving systems of linear 

equations). The algorithm was run on an IBM RS/6000 SP 

with four distributed nodes, each one with four processors. 

In OpenMP they used i) a shared memory environment (all 

threads have access to the same memory space, i.e., memory 

chunks) and ii) the schedule clause to specify the number of 

iterations that handle each thread in the loops. The number 

of variables in the system of equations was 400, 800, and 

1200. In MPI, a distributed memory environment was used 

(each processor does not have access to the memory of the 

other processors; therefore, message passing was used). The 

results favored MPI, as it was 1.82 times faster than 

OpenMP. 

Jost et al. [24] compared OpenMP and MPI in a SMP 

(Symmetric MultiProcessing) cluster. They used 16 Sun Fire 

6800 nodes with 24 UltraSPARC-III Cu processors and 24 

GB of shared memory on each node and four Sun Fire 15K 

nodes with 72 UltraSPARC-III Cu processors and 144 GB 

of shared memory on each node. The BT algorithm (Block 

Tri-diagonal solver) of the NPB was analyzed in MPI, in 

OpenMP, and in a hybrid way (i.e., using OpenMP and MPI 

in different proportions). In MPI, the comparison considered 

the interconnections between the nodes through Sun Fire 

Link (SFL) and Gigabit Ethernet (GE). Lower execution 

times with SFL were obtained. The hybrid implementation 

benefited more from the GE interconnections. In OpenMP 

the interconnections were not considered because OpenMP 

only supports shared memory. With both shared memory 

systems and interconnections, MPI had a better performance 

(although it is not clear how much), since it presented better 

scalability than the OpenMP and hybrid approaches. 

Krawezik and Cappello [25] compared MPI and several 

programming styles in OpenMP (loop level, loop level with 

large parallel sections, and single program multiple data 

(SPMD)) for the NPB algorithms: CG, MG (Multi-Grid), 

FT, and LU (Lower-Upper Gauss-Seidel solver). They used 

an IBM SP3 Night Hawk II computer with 16 Power3+ 375 

MHz and a SGI Origin 3800 computer with 128 R14000 

500MHz multiprocessors. The results showed that OpenMP 

(in SPMD style) became 15% better than MPI in some 

algorithms and 140% better than the other OpenMP styles. 

Drosinos and Koziris [26] proposed two MPI-OpenMP 

hybrid models to parallelize nested loops by means of tiling 

(a technique for partitioning a loop: loop tiling is also called 

loop blocking [27]) and then compared them with MPI. 

They used a Pentium III dual-SMP cluster of four nodes 

each with two Pentium III of 800 MHz and 256 KB of 

cache. The results did not show a clear winner. 

Hochstein and Basili [28] compared OpenMP and MPI in 

an experiment with a group of eleven computer science 

students. Each student solved the sharks and fish problem 

[29] (a dynamics population problem containing a predator 

(shark) and a prey (fish) species) in OpenMP and MPI. 

Although each student had a computer, in the end the 

solutions were run on a dual-processor quad-core 2GHz 

Intel Xeon (but only one of the processors was used). The 

OpenMP solution represented an average time saving of 

43% compared to MPI. 

Wu and Taylor [30] compared the performance of MPI 

and the hybrid implementations (MPI and OpenMP) of the 

SP (Scalar Pentadiagonal solver) and BT algorithms of the 

NPB in large-scale multicore clusters: BlueGene/P, 

JaguarPF Cray XT5, and Jaguar XT4. The results showed 

that for the SP algorithm, the hybrid implementation 

performed up to 20% better than the MPI implementation; 

however, as the number of cores increased, MPI was 15% 

better. For the BT algorithm, the hybrid approach was 3% 

better and as the number of cores increased, MPI became 

1% better. 

Krpic, Martinovic, and Crnkovic [31] compared OpenMP 

and MPI using the naïve matrix multiplication (NMM) 

algorithm [32]. Matrices ranged from 2000 × 2000 to 5000 

× 5000 with increments of 500. Three platforms were used 

for the experiments: a single core Intel P4 @ 2.4GHz, a dual 

core AMD Athlon @ 3.13GHz, and two Quad-core Intel 

Xeon E5430 @ 2.66 GHz. For the first computer the 

performance was similar. For the second computer OpenMP 

was better (using both one and two cores) for 3000 × 3000 

matrices and of higher order and was even 50% faster than 

MPI. For the third computer, OpenMP was better for 2000 × 

2000 matrices and of higher order becoming even twice as 

fast as MPI with 5000 × 5000 matrices. 

Saravanan et al. [33] analyzed the performance of 

OpenMP in a multi-core CPU. They used a computer with 

an Intel Core i3 Dual core @ 2.13 GHz, 4 GB RAM, 

Windows 7, and Ubuntu 9.04. The NMM algorithm and an 

optimized matrix multiplication algorithm were evaluated 

(Strassen’s Algorithm [34]), both in sequential and parallel 

implementations. Matrices ranged from 500 × 500 to 3000 × 

3000 with increments of 500. For both algorithms, the 

execution time for the parallel implementation was lower. 

The NMM algorithm, in both implementations, was slower 

than Strassen's. For example, for matrices of 500 × 500 it 

was four times slower. 

Reyes et al. [35] compared accULL [36], PGI Accelerator 

[37], and hiCUDA [38]. They evaluated four algorithms: i) 

lower-upper decomposition (an algorithm which factors a 

matrix as the product of a lower triangular matrix and an 

upper triangular matrix), ii) HotSpot (an algorithm to 

estimate the temperature of a processor), iii) Needleman-

Wunsch (an algorithm to align DNA sequences), and iv) 
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NMM. They used a computer with an NVIDIA Tesla 2050 

with 4GB memory and an Intel Core i7 930 of 2.80GHz. 

hiCUDA's performance was superior in all algorithms, even 

reaching 20 times better. 

Lopes, Zeve, and dos Anjos [39] compared C, CUDA, 

OpenACC, and OpenMP. They used a computer running on 

Ubuntu 12.04, AMD Athlon(tm) II X2 270, and an NVIDIA 

GeForce GTX 650. They compared three algorithms: 

Mandelbrot set [40] (a fractal), N-Queens (a chess problem 

where N chess queens must be placed on an N×N 

chessboard so that no two queens attack each other), and 

NMM. The algorithms were implemented sequentially in C 

and in parallel in CUDA, OpenACC, and OpenMP. Each 

algorithm was executed ten times and the average execution 

time was obtained. For the NMM and Mandelbrot set 

algorithms, the execution time was similar in CUDA and 

OpenACC; in C it was 18 times slower, and in OpenMP it 

was 10 times slower. For the N-Queens algorithm, the 

execution time was similar in C, OpenACC, and OpenMP; 

and in CUDA was 32 times slower. 

Xu, Chandrasekaran, and Chapman [41] used OpenMP to 

execute parallel programs on a CPU. They created threads, 

each one associated with a GPU which executes the code in 

OpenACC. For the experiments, they used an Intel Xeon 

and two Nvidia Tesla C2075. The algorithms evaluated 

were: S3D (a numerical simulation algorithm), NMM, and 

2D heat conduction (an algorithm to calculate heat 

conduction in two dimensions). For the S3D and 2D heat 

conduction algorithms for grids with sizes of 4096, the 

performance with two GPUs was twice as good as with one 

GPU. For the NMM algorithm, the performance with two 

GPUs was slightly lower (it is not detailed by how much) 

than with one GPU for 1000 ×1000 matrices. However, for 

5000 × 5000 matrices and of higher order, the performance 

with two GPUs was twice as good. 

Kang et al. [42] compared OpenMP, MPI, and 

MapReduce on Hadoop. They evaluated two algorithms: all-

pairs-shortest-path (find the shortest path between all pairs 

of vertices of a graph) and data-join (find Wikipedia pages 

in English associated with keywords written in English that 

appear in Wikipedia in Korean). For all-pairs-shortest-path 

they used graphs with 10, 100, and 1000 vertices. For data-

join they used an XML file from Wikipedia in English with 

4664819 articles of 4 GB and an XML file from Wikipedia 

in Korean with 529997 articles of 1.35 GB. They used five 

computers, each with an Intel Core i7-4770 3.40 GHz and 

16GB RAM, with CentOS-6.4 Linux 64 bits. The execution 

time for all-pairs-shortest-path was twice as fast in OpenMP 

than in MPI on a single computer for all three cases and also 

for the case of 10 and 100 vertices for MPI in a cluster, 

made up of all five computers. With 1000 vertices, OpenMP 

was 36 times faster than MPI in the cluster. OpenMP was 

1000 times faster than MapReduce in all cases. For data-

join, MapReduce was 232 times faster than OpenMP and 

337 times faster than MPI. 

Kathavate and Srinath [43] analyzed the performance of 

parallelism in OpenMP. They implemented the NMM 

algorithm sequentially and in parallel. They used a computer 

with an Intel Pentium G630 dual-core and another with an 

Intel i7 dual-core. In both, each core can execute two 

threads. The parallelization with two threads showed an 

improvement of 46% compared to the sequential approach 

and the parallelization with four threads improved by 61%. 

Holm, Brodtkorb, and Sætra [44] compared the 

performance, energetic efficiency, and usability of PyCUDA 

and PyOpenCL. They evaluated the algorithms for the 

shallow-water equations [45] with three numerical 

techniques (linear finite difference, nonlinear finite 

difference, and high-resolution finite volume). They used 

seven GPUs: Tesla M2090, K20, K80, P100, V100, 

GeForce GTX 780, and 840M. The two languages were 

similar in terms of performance and usability. Regarding 

energy efficiency, for the V100 and 840M GPUs, PyCUDA 

had a 30% better performance. For the other GPUs the 

power consumption was similar. 

No works were found that compare the parallel 

performance of OpenMP and Python. This comparison is 

important because: a) Python is today one of the most used 

languages for data science applications, artificial 

intelligence, and machine learning [46] and b) few works 

analyze the performance of Python [47]–[49] and even 

fewer analyze its performance in terms of parallelism. For 

example, Wagner et al. [50] analyzed the parallel 

performance of Python considering the GPAW software 

(Grid-Based Projector Augmented Wave, a software to 

simulate electronic structures) and concluded that there is 

room for improvement with regard to C and Fortran. 

For its part, OpenMP is an API for C/C++ and Fortran 

that allows algorithms to be parallelized using the CPU 

cores. This API also allows the programmer to parallelize 

regions (sections) of a program's code by means of 

preprocessing directives. The API has been developed since 

1997 and is widely used in scientific computing [51]–[53]. 

Also, as of version 4.0, OpenMP supports GPGPU 

computing [54]. 

In Python, with the multiprocessing module we 

can generate subprocesses; which, unlike threads, use 

different memory heaps (the portion of memory available to 

a program) [55]. This module was added to the Python 

standard libraries in 2006 and was created to bypass the GIL 

(Global Interpreter Lock) [56], which is a form of mutual 

exclusion that prevents that multiple threads execute the 

same Python instructions at a time. 

IV. ALGORITHMS 

For our experiments we evaluated three algorithms: i) 

frequency of an integer in an unsorted array, ii) matrix 

transposition (of a square matrix), and iii) matrix addition 

(of square matrices). Next, we present the pseudocodes of 

these algorithms. 

Pseudocode of frequency of an integer in an unsorted 

array:  

 
ALGORITHM  

Frequency_integer_in_unsorted array(A, value) 

Input:  

A: unsorted array of size n. 

value: integer to be searched in A. 

Output:  

frequency: frequency of value in A. 

BEGIN 

1. frequency = 0; 
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2. FOR i = 0 TO n - 1 DO [IN PARALLEL] 

3.   IF Ai = value THEN 

4.     frequency = frequency + 1; 

5.   END IF 

6. END FOR    

END ALGORITHM 

 

The complexity of this algorithm is O(n). The IN 

PARALLEL clause indicates that the instruction to which 

it is associated will be executed in parallel. 

Pseudocode of matrix transposition:  

 
ALGORITHM  

Matrix_transposition(A) 

Input:  

A: n × n matrix. 

Output:  

AT: n × n matrix. 

BEGIN 

1. FOR i = 0 TO n - 1 DO [IN PARALLEL] 

2.   FOR j = 0 TO n - 1 DO 

3.     ATji = Aij; 

4.   END FOR 

5. END FOR 

END ALGORITHM 

  

The complexity of this algorithm is O(n2). 

Pseudocode of matrix addition:  

 
ALGORITHM  

Matrix_addition(A, B) 

Input:  

A: n × n matrix. 

B: n × n matrix. 

Output:  

C: n × n matrix. 

BEGIN 

1. FOR i = 0 TO n - 1 DO [IN PARALLEL] 

2.   FOR j = 0 TO n - 1 DO  

3.     Cij = Aij + Bij; 

4.   END FOR 

5. END FOR 

END ALGORITHM 

 

Although the result of the matrix addition could be stored 

in one of the two input matrices (e.g., A = A + B), we used a 

third matrix C to work with independent memory regions. 

The complexity of this algorithm is also O(n2). 

V. EXPERIMENTS 

The algorithms were run on two computers, the first had 

an Intel (R) Core™ i7-9750H with 6 cores, an NVIDIA 

GeForce RTX 2060 @4.14 GHz, and 21 GB RAM; the 

second had an AMD Ryzen 5 3500U with 4 cores, a Radeon 

Vega Mobile Gfx @2.10 GHz, and 10 GB RAM. 

We compared the execution time of the three algorithms 

as follows. First in Python, where we used these modules: 

multiprocessing, functools with its partial() 

function which facilitates the management of functions, 

itertools to iterate over data structures, e.g., arrays and 

matrices, random to generate random numbers, and numpy  

TABLE I.  
DATA SAMPLE SIZES 

 

 

 

 

 

 

 

 

 

 

 

to operate on matrices. 

The algorithms were then run in C++ with OpenMP, 

Vector [57], and Armadillo [58]. Vector is a 

specialized sub-library for managing dynamic arrays and is 

part of the official C++ Container library [59]. 

Armadillo is a specialized library for linear algebra 

operations. Thus, we compared the results in C++ using 

different libraries. 

The data to fill the arrays and matrices were random 

integers in the interval [0, 100]. The algorithms were 

evaluated with the values (size) shown in Table I. 

Next, we describe our implementations. 

In Python: 

• Frequency of an integer in an unsorted array:  

A sequential implementation with functools and 

random.  

A parallel implementation with 

multiprocessing, functools, and random. 

• Matrix transposition: 

Two sequential implementations: the first with 

itertools and numpy with explicit loops [60], 

i.e., the transposition was programmed using loops 

that iterate over the elements of the matrix and the 

second with numpy’s native function 

transpose().  

A parallel implementation with 

multiprocessing, itertools, and numpy. 

• Matrix addition:  

Two sequential implementations: the first with 

itertools and numpy (both with explicit loops) 

and the second with numpy’s native operator “+” to 

add objects of type matrix.  

A parallel implementation with 

multiprocessing, itertools, and numpy 

with explicit loops. 

In C++: 

• Frequency of an integer in an unsorted array:  

Two sequential implementations: the first with 

Vector and the second with Armadillo.  

Two parallel implementations: the first with Vector 

and OpenMP and the second with Armadillo and 

OpenMP.  

All four implementations with explicit loops. 

• Matrix transposition: 

Three sequential implementations: the first with 

Vector, the second with Armadillo (both with 

explicit loops), and the third with Armadillo’s 

Frequency of an integer in an unsorted array 

35.000.000 50.000.000 57.500.000 65.000.000 

Matrix transposition 

1125 × 

1125 

2250 × 

2250 

3375 × 

3375 

4000 × 

4000 

Matrix addition 

1063× 

1063 

2125 × 

2125 

3188 × 

3188 

4250 × 

4250 
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native function t(), which computes the matrix 

transposition.  

Two parallel implementations: the first with Vector 

and OpenMP and the second with Armadillo and 

OpenMP (both with explicit loops). 

• Matrix addition:  

Three sequential implementations: the first with 

Vector, the second with Armadillo (both with 

explicit loops), and the third with Armadillo’s 

native operator “+”, which adds objects of type 

matrix.  

Two parallel implementations: the first with Vector 

and OpenMP and the second with Armadillo and 

OpenMP (both with explicit loops). 

Each of the implementations was executed ten times and 

the execution times were averaged, this average time was 

used for the analysis. 

A. Results of the first computer 

Figures 3-8 correspond to the results of the first computer. 

 

1) Analysis of the results 

The sample sizes allowed us to observe the performance 

of the algorithms and their scalability according to the 

gradual increase in the size of the samples. 

• Frequency of an integer in an unsorted array 

The almost linear growth of all implementations stands 

out. That is, as the data increases, the slope of the curve 

grows smoothly (with a tendency to a line), unlike the other 

two algorithms (matrix transposition and matrix addition) 

where the trends suggest polynomial or exponentially 

increasing forms. 

In Python the execution time was between 4 and 7 sec in 

its sequential implementation, when parallelizing we 

obtained an average improvement of 605 ms considering the 

four samples. 

Regarding C++, in the sequential implementations, in 

Armadillo the execution time was 0 ms (see explanation 

 
Fig. 3. Frequency of an integer in an unsorted array in Python (first 
computer) 

 
Fig. 4. Matrix transposition in Python (first computer) 

 

 
Fig. 5. Matrix addition in Python (first computer) 

 
Fig. 6. Frequency of an integer in an unsorted array in C++ (first computer) 

 
Fig. 7. Matrix transposition in C++ (first computer) 

 
Fig. 8. Matrix addition in C++ (first computer) 
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in subsection C), while in Vector it was 14 ms for the 

smallest sample and 28 ms for the largest. As for the two 

parallel implementations they had a similar performance: 

Armadillo was on average 1.56 ms better than Vector 

considering the four samples. 

In conclusion, the parallel implementations reduced the 

times with respect to the sequential implementations (except 

the sequential implementation with Armadillo) by an 

average of 15% in both languages. C++ was up to 362 times 

better than Python. 

• Matrix transposition 

The sequential matrix transposition algorithm in Python 

using numpy's native function transpose()had an 

execution time of 0 ms. Except for this implementation, the 

parallel implementation using multiprocessing had the 

lowest time in Python (except for the smallest sample, 

possibly due to the parallelization costs for thread fork/join 

operations). 

For its part, in C++ in the sequential implementations, 

Armadillo was the best thanks to its native function t(): 

it had execution times up to 64.39 ms lower than Vector. 

In the parallel implementations, Armadillo had the best 

execution times for the smallest and largest sample, while in 

the intermediate-sized samples Vector was on average 4.5 

ms better than Armadillo. 

In conclusion, the fastest implementation was Python's 

sequential using the native function transpose(). Except 

for this implementation, the parallel implementations in the 

two languages were better than the sequential ones, and C++ 

was up to 221 times better than Python. 

• Matrix addition 

The algorithm of the sequential matrix addition in Python 

using the native operator “+” had the lowest time. This is 

due to internal optimizations in the numpy library. On the 

other hand, the time of the parallel implementations with 

respect to the sequential ones improved as the size of the 

samples increased. 

For its part, in C++ in the sequential implementations, 

Armadillo was the best thanks to the native operator “+”: 

it had execution times up to 4 ms lower than Vector. In 

the parallel implementations, Vector was on average 10 

ms better than Armadillo. For the smaller samples, the 

parallel implementations had higher execution times than 

the sequential ones, possibly due to the parallelization costs 

for thread fork/join operations. 

In conclusion, the fastest implementation was Python's 

sequential using the native “+” operator. Except for this 

implementation, parallel implementations in both languages 

were better than sequential ones for the largest samples, and 

C++ was up to 600 times better than Python. 

 

2) Conclusions regarding the first computer 

In general, the results showed that OpenMP was faster 

than Python in the parallel implementations. However, 

Python was the winner when using native functions and 

operators (transpose() and “+”) for matrix transposition 

and matrix addition. 

 

B. Results of the second computer 

Figures 9-14 correspond to the results of the second 

computer. 

 

1) Analysis of the results 

Again, the sample sizes allowed us to observe the 

performance of the algorithms and their scalability 

according to the gradual increase in the size of the samples. 

• Frequency of an integer in an unsorted array 

Similarly to the first computer, the almost linear growth 

of all implementations stands out. 

In Python the execution time was between 3 and 6 sec for 

its sequential implementation, when parallelizing the 

execution times worsened on average by 4140.5 ms 

considering the four samples. 

Regarding C++, in the sequential implementations, in 

Armadillo the execution time was 0 ms (just like in the 

first computer), while in Vector it was 10 ms for the 

smallest sample and 22 ms for the largest. As for the two 

parallel implementations, Vector was on average 10 ms 

faster than Armadillo considering the four sample sizes. 

In conclusion, we observed a different behavior from the 

first computer. In Python, the parallel implementations 

increased the execution times with respect to the sequential 

ones by an average of 47.6%. This possibly occurred due to 

the decrease in the number of threads to parallelize 

operations, since the first computer has 12 threads and the 

second one 8. 

• Matrix transposition 

As in the first computer, the sequential implementation in 

Python using numpy's native transpose()function again 

had an execution time of 0 ms. In the other implementations, 

both the sequential and the parallel, Python had similar 

execution times (the differences were on average 250 ms, 

considering the four samples). 

For its part, in C++ in the sequential implementations, 

Armadillo was the best; thanks to its native function 

t(): it had execution times up to 38 ms less than Vector. 

In the parallel implementations, Armadillo had the best 

execution times for the two smaller samples, while for the 

two larger samples, Vector was on average 20.8 ms better 

than Armadillo. 

In conclusion, the fastest implementation was Python's 

sequential using its native function transpose(). Except 

for this implementation, the parallel implementations in both 

languages were better than the sequential ones (especially 

for larger arrays) and C++ was up to 380 times better than 

Python. 

• Matrix addition 

Similarly to the first computer, the sequential matrix 

addition algorithm in Python using the native operator “+” 

had the lowest execution time. On the other hand, the 

execution time of the parallel implementations with respect 

to the sequential ones improved as the size of the samples 

increased. 

For its part, C++ in the sequential implementations, 

Armadillo was the best thanks to the operator “+”: it had 

execution times up to 16 ms better than Vector. In the 

parallel implementations, Vector was on average 753 ms 
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better than Armadillo. Unlike the first computer, all the 

parallel implementations were better than the sequential 

ones. 

In conclusion, the fastest implementation was the parallel 

one in C++ using OpenMP and Vector. Parallel 

implementations were found to outperform sequential ones 

for larger samples. Furthermore, unlike the other two 

algorithms, C++ and Python obtained similar results in their 

best implementation, differing on average by 0.51 ms. 

 

2) Conclusion regarding the second computer 

In general, the results are consistent with those of the first 

computer, except as indicated. 

 

C. Problems 

When conducting our experiments, we faced some 

problems. Mainly, these were related to sizes, memory 

space, parallelization, and the native functions or operators 

of the libraries. 

The problems in Python mainly occurred in the matrix 

algorithms: 

• Matrix transposition: 

numpy's transpose()function cannot be 

parallelized as it is an internal function of the library. 

Indeed, when trying to parallelize it using the 

map()method of the Pool class of 

multiprocessing, which acts similarly to 

OpenMP's IN PARALLEL clause, we obtained 

incorrect results. In addition, in its sequential 

implementation transpose()already had 

execution times of 0 ms because this function does 

not physically transpose the data. 

• Matrix addition:  

The numpy operator "+" cannot be parallelized 

since it is an internal operator of the library. Indeed, 

 
Fig. 9. Frequency of an integer in an unsorted array in Python (second 

computer) 

 
Fig. 10. Matrix transposition in Python (second computer) 

 

 
Fig. 11. Matrix addition in Python (second computer) 

 
Fig. 12. Frequency of an integer in an unsorted array in C++ (second 
computer) 

 
Fig. 13. Matrix transposition in C++ (second computer) 

 
Fig. 14. Matrix addition in C++ (second computer) 
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when trying to parallelize it using the map() 

method of the Pool class of multiprocessing, 

we obtained incorrect results. 

For its part in C++: 

• Frequency of an integer in an unsorted array: 

The sequential implementation (Armadillo with 

explicit loop) had an abnormal behavior: execution 

times of 0 ms (the differences were perceived only at 

the level of microseconds). This behavior may be 

due to the efficiency of the library in traversing and 

indexing data structures. 

• Matrix transposition: 

The t() function cannot be parallelized as it is an 

internal function of Armadillo. Indeed, when 

trying to parallelize it using the IN PARALLEL 

clause, we obtained incorrect results. 

• Matrix addition: 

The operator “+” cannot be parallelized since it is an 

internal operator of Armadillo. Indeed, when 

trying to parallelize it using the IN PARALLEL 

clause, we obtained incorrect results. 

In addition, when trying to work with larger data 

structures, Python programs generated errors due to lack of 

memory (RAM). This suggests that C++ manages memory 

better since it supported larger data samples. Table II shows 

the maximum limits found for the algorithms in C++. The 

limits found for the algorithms in Python were those used as 

the largest size in the experiments (see Table II). The 

complete results of our experiments can be seen in Tables 

AI and AII in the appendix. We also show in tables III and 

IV some additional experiments with the matrix 

multiplication algorithm, that confirm our previous 

conclusions about the performance of both languages and of 

both computers. 

TABLE II 
MAXIMUM DATA SAMPLE SIZES IN C++ 

 

 

 

 

 

 

VI. CONCLUSIONS AND FUTURE WORK 

Computer 1 had better results on average for all 

algorithms. The results of both computers were consistent 

considering their differences in terms of resources. 

From the previous analysis, the importance of selecting 

specialized modules, libraries, and APIs for certain 

algorithms is clear since these aspects decisively influence 

the execution times of the algorithms because they used to 

include native functions or operators that are more efficient 

than explicit implementations. 

In summary, despite the different implementations and 

except for the cases where the native functions or operators 

had a better performance, we observed that C++ with 

OpenMP outperformed Python with its 

multiprocessing module. 

In the future, we intend to create a visual tool along with a 

chatbot [61] in which analysts can enter an algorithm written 

in both languages, its parameters, and a data sample. Then, 

the tool will show execution statistics, and if possible, it will 

generate larger random data samples from the initial one and 

present a visual comparison of their performance results. We 

also plan to evaluate both languages with optimization 

algorithms for customers load schedule [62]. 

 

 
TABLE III.  

RESULTS MATRIX MULTIPLICATION (FIRST COMPUTER) 

Language Implementation Time (ms) 

 Size: 1000 × 

1000 

2000 × 

2000 

4000 × 

4000 

Python Sequential (itertools with explicit loops) 1200 5200 21000 

Sequential (operator matmul) 0 0 0 

Parallel (itertools with explicit loops) 1350 4900 17500 

C++ Sequential (itertools with explicit loops) 5 8 32 

Sequential (operator matmul) 4 9 27 

Parallel (itertools with explicit loops) 11 14 26 

 

TABLE IV.  

RESULTS MATRIX MULTIPLICATION (SECOND COMPUTER) 

Language Implementation Time (ms) 

 Size: 1000 × 

1000 

2000 × 

2000 

4000 × 

4000 

Python Sequential (itertools with explicit loops) 1800 7500 32000 

Sequential (operator matmul) 0 0 0 

Parallel (itertools with explicit loops) 2000 7200 25500 

C++ Sequential (itertools with explicit loops) 7 11 39 

Sequential (operator matmul) 5 12 34 

Parallel (itertools with explicit loops) 16 19 33 

 

Sequential Parallel 

Frequency of an integer in an unsorted array 

100000000 90000000 

Matrix transposition 

10000 × 10000 10000 × 10000 

Matrix addition 

10000 × 10000 10000 × 10000 
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APPENDIX 

TABLE AI.  

COMPLETE RESULTS (FIRST COMPUTER) 

Language Algorithm Implementation Time (ms) 

Python 

Frequency of an integer in an 
unsorted array 

Size 35.000.000 50.000.000 57.500.000 65.000.000 

Sequential (explicit loop) 4065 6058 6618 7446 

Parallel (explicit loop) 3769 5221 5927 6850 

Matrix transposition 

Size 

1125 × 
1125 

2250 × 
2250 

3375 × 
3375 

4000 × 
4000 

Sequential (itertools with explicit loops) 808 3085 7233 12569 

Sequential (function transpose()) 0 0 0 0 

Parallel (itertools with explicit loops) 935 2545 5976 9603 

Matrix addition 

Size 

1063 × 
1063 

2125 × 
2125 

3188 × 
3188 

4250 × 
4250 

Sequential (itertools with explicit loops) 903 3656 7864 14748 

Sequential (operator “+”) 1 3 7 12 

Parallel (itertools with explicit loops) 1112 3262 6689 13287 

C++ 

Frequency of an integer in an 
unsorted array 

Size 35000000 50000000 57500000 65000000 

Sequential (Vector with explicit loop) 14 19 26 27 

Sequential (Armadillo with explicit loop) 0 0 0 0 

Parallel (Vector and OpenMP with explicit 
loop) 13 16 17 18 

Parallel (Armadillo and OpenMP with explicit 

loop) 10 14 16 18 

 

Matrix transposition 

Size 

1125 × 
1125 

2250 × 
2250 

3375 × 
3375 

4000 × 
4000 

Sequential (Vector with explicit loops) 4 34 86 145 

Sequential (Armadillo with explicit loops) 7 37 94 163 

Sequential (Armadillo with function t()) 2 11 40 80 

Parallel (Vector and OpenMP with explicit 
loops) 9 17 28 49 

Parallel (Armadillo and OpenMP with explicit 

loops) 9 19 33 43 

Matrix addition 

Size 

1063 × 
1063 

2125 × 
2125 

3188 × 
3188 

4250 × 
4250 

Sequential (Vector with explicit loops) 2 6 13 22 

Sequential (Armadillo with explicit loops) 6 37 79 148 

Sequential (Armadillo with operator “+”) 1 4 11 18 

Parallel (Vector and OpenMP with explicit 
loops) 7 10 12 17 

Parallel (Armadillo and OpenMP with explicit 

loops) 9 17 25 38 
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TABLE AII.  

COMPLETE RESULTS (SECOND COMPUTER) 

Language Algorithm Implementation Time (ms) 

Python 

Frequency of an integer in an 

unsorted array 

Size 35000000 50000000 57500000 65000000 

Sequential (explicit loop) 3070 4413 5068 5708 

Parallel (explicit loop) 5819 8644 9688 10670 

Matrix transposition 

Size 

1125 × 
1125 

2250 × 
2250 

3375 × 
3375 

4000 × 
4000 

Sequential (itertools with explicit loops) 877 3470 7842 13918 

Sequential (function transpose()) 0 0 0 0 

Parallel (itertools with explicit loops) 1205 3388 7915 13371 

Matrix addition 

Size 

1063 × 
1063 

2125 × 
2125 

3188 × 
3188 

4250 × 
4250 

Sequential (itertools with explicit loops) 1358 3927 8415 15013 

Sequential (operator “+”) 2 3 10 16 

Parallel (itertools with explicit loops) 810 3217 7116 12681 

C++ 

Frequency of an integer in an 
unsorted array 

Size 35.000.000 50.000.000 57.500.000 65.000.000 

Sequential (Vector with explicit loop) 10 16 19 22 

Sequential(Armadillo with explicit loop) 0 0 0 0 

Parallel (Vector and OpenMP with explicit 

loop) 9 13 14 15 

Parallel (Armadillo and OpenMP with explicit 

loop) 19 24 28 25 

Matrix transposition 

Size 

1125 × 
1125 

2250 × 
2250 

3375 × 
3375 

4000 × 
4000 

Sequential (Vector with explicit loops) 7 35 78 148 

Sequential (Armadillo with explicit loops) 5 50 130 383 

Sequential (Armadillo with function t()) 2 15 55 110 

Parallel (Vector and OpenMP with explicit 

loops) 4 20 40 71 

Parallel (Armadillo and OpenMP with explicit 

loops) 4 17 43 109 

Matrix addition 

Size 

1063 × 
1063 

2125 × 
2125 

3188 × 
3188 

4250 × 
4250 

Sequential (Vector with explicit loops) 2 12 32 58 

Sequential (Armadillo with explicit loops) 4 39 115 313 

Sequential (Armadillo with operator “+”) 2 11 24 42 

Parallel (Vector and OpenMP with explicit 

loops) 2 4 10 16 

Parallel (Armadillo and OpenMP with explicit 

loops) 3 17 45 91 
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