
A Security Framework for Improving QoS by

Detecting and Mitigating Cache Side-Channel

Attacks in Virtualized Environments

S.Mahipal and V. Ceronmani Sharmila

Abstract--Virtualization technology makes cloud resources

affordable. Virtual Machines (VMs) are widely used on top of

host machines in cloud computing environments. Adversaries

target L3 cache memory in such environments as VMs shared

L3 cache of the physical machine. Cache side-channel attacks

are possible unless there are mechanisms in place to prevent

them. The attacker compromises a VM and through which

tries to extract sensitive information from the victim's ma-

chine. In the literature, many solutions are found to resist

cache side-channel attacks. However, an important limitation

of the existing approaches is that they are not real-time in na-

ture. In this paper, we proposed a security framework for im-

proving Quality of Service (QoS) by detecting and mitigating

cache side-channel attacks in virtualized environments. Two

algorithms are proposed to realize the framework. They are

known as Softmax Function-Based Machine Learning for Side-

Channel Attack Monitoring (SFML-SCAM) and Intelligent

Noise Addition for Attack Mitigation (INA-AM). The first al-

gorithm takes care of monitoring and detecting cache side-

channel attacks and notifying administrators while the second

one is responsible to mitigate the effects of attacks. A machine

learning technique assists the SFML-SCAM in detecting at-

tacks based on the abnormality in the CPU counters in real-

time. The INA-AM algorithm, on the other hand, has a strate-

gy to add noise to the cache data to deceive the attacker and

mitigate the effects of the attack. Experiments are made with

open-source tools along with a prototype that implements the

proposed algorithms. Information leakage is evaluated for all

detection methods against stealth attacks. Experimental results

revealed that the proposed framework outperforms the state-

of-the-art.

Index Terms – Cloud computing, Virtual Machine,

Side-Channel Attacks, VM Security Framework, Side

Chanel Attack Prevention

I. INTRODUCTION

Cloud computing technology enabled a new paradigm

shift in computing, storage, and associated services. With

virtualization technology, cloud computing has become an

affordable platform for sharing computing resources. How-

ever, the QoS depends on the smooth functioning of VMs in

virtualized environments. There are many security vulnera-

bilities associated with VMs, hypervisors, and VM migra-
tion tasks. Cache side-channel attacks associated with virtu-

alization are a major concern as they can deteriorate QoS

performance in cloud environments.

Manuscript received September 11, 2021; revised February 14, 2023.

S. Mahipal is a Research Scholar at the Hindustan Institute of Technology

and Science, Chennai, 603103, India. e-mail id: srmahipal@gmail.com.

V. Ceronmani Sharmila is a professor and HOD in the IT department of

Hindustan Institute of Technology and Science, Chennai, 603103, India.

e-mail id: csharmila@hindustanuniv.ac.in.

Cache side-channel attacks extract secret information by

monitoring the cache behavior of a victim. Saeed et al. [4]
proposed a methodology to demonstrate the cross-VM net-

work channel attack. With impersonation and mirroring,

they could show the vulnerabilities in VM usage in the

cloud.VM migration is used to manage resources efficiently.

However, it is vulnerable to attacks unless secured. Tao et

al. [3] focused on VM management in edge computing envi-

ronments. They investigated VM migration issues in such

scenarios. They found that VM migration in edge computing

has vulnerabilities to security attacks. As edge computing is

evolving, it is indispensable to leverage security for VM

migration in such an environment. Cleemput et al. [21] in-
vestigated timing side-channel attacks and proposed a meth-

od known as the adaptive compiler strategy for mitigating

such attacks. It not only provides security but also reduces

system overhead. Mukhtar et al. [23] proposed a counter-

measure to prevent cache side-channel attacks. The coun-

termeasure is based on flush + prefetch. Sangeetha and Su-

mathi [24] proposed a measure that counts processor cycles

and memory utilization to detect side-channel attacks.

Chiappetta et al. [25] used hardware performance counters

to ascertain the presence of side-channel attacks. From the

literature, it is understood that there are numerous approach-

es found to detect and mitigate side-channel attacks. How-
ever, there is a need for a real-time approach that can detect

side-channel attacks as they occur and provide necessary

communication and mitigation steps. Our contributions are

as follows.

1. We have built a security framework that

takes care of the detection and mitigation of cache

side-channel attacks in virtualized environments.

2. We proposed two algorithms namely

Softmax Function-Based Machine Learning for

Side-Channel Attack Monitoring (SFML-SCAM)

and Noise Addition for Attack Mitigation (INA-

AM) to detect and mitigate VM side-channel at-

tacks respectively.

3. A prototype is used along with the usage

of open-source existing tools appropriately to

demonstrate proof of the concept.

The remainder of the paper is structured as follows. Sec-

tion 2 reviews the literature on different kinds of attacks on

VM and countermeasures. Section 3 discusses cache side-

channel attacks. Section 4 presents the proposed framework

to detect and mitigate cache side-channel attacks. Section 5

provides experimental results reflecting the performance of

the proposed algorithms. Section 6 throws light on perfor-

mance evaluation. Section 7 provides a discussion about the

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

mailto:srmahipal@gmail.com
mailto:csharmila@hindustanuniv.ac.in

performance of the proposed methodology. Section 8 con-

cludes the paper and gives scope for future work.

II. RELATED WORK

VMs usage in cloud computing throws them to different
security challenges. Saeed et al. [4] proposed a methodology

to demonstrate the cross-VM network channel attack. With

impersonation and mirroring, they could show the vulnera-

bilities in VM usage in the cloud. Bazmet al. [5] used differ-

ent performance counters and cache monitoring techniques

to detect cache side-channel attacks. However, it seems to

lack a real-time approach. Yan et al. [6] investigated the

structure of cache memory used by virtualized environments

and understood the probabilities of attacks such as side-

channel attacks like Evict+Reload and Prime+Probe. Liu et

al. [7] investigated the cache side-channel attacks and pro-
posed a secure cache architecture. It is made dynamic with a

line number mapper and other components of the hardware.

They recommend processor manufacturers come up with

security inbuilt. Liu et al. [8] considered performance opti-

mization features to defeat Last Level Cache (LLC) side-

channel attacks. Anwar et al. [9] made reviewed different

solutions to VM side-channel attacks and cross-VM side-

channel attacks. Fiore et al. [10] proposed a method using

CAT-enabled CPUs and optimization mechanisms in the

partitioning of LLC to prevent cache side-channel attacks.

VM migration is used to manage resources efficiently.

However, it is vulnerable to attacks unless secured. Mahfouz

et al. [1] proposed a method for the live migration of VM

with security. They are proposed real-time runtime monitors

that observe the migration process and its critical aspects to
protect from attacks. Their methodology involves different

phases such as the setup stage, memory transfer stage, stor-

age transfer stage, and network clean upstage. The three

categories of threats considered include control plane class,

data plane class, and migration module class. Their method-

ology is theoretical and implementation is yet to be done. Li

et al. [2] proposed energy-aware dynamic virtual machine

consolidation (EC-VMC) which is meant for limiting VM

migration and enhancing the energy efficiency of data cen-

ters for QoS improvements. Tao et al. [3] focused on VM

management in edge computing environments. They inves-

tigated VM migration issues in such scenarios. They found
that VM migration in edge computing has vulnerabilities to

security attacks. As edge computing is evolving, it is indis-

pensable to leverage security for VM migration in such an

environment.

Jiaet al. [11] proposed a secure VM allocation strategy to

avoid problems associated with VM co-residence. It has

optimization objectives such as energy efficiency, load bal-

ancing, and security. A similar kind of work is carried out in

[13], [16], and [20]. Mushtaq et al. [12] proposed a tool for

the automatic detection of side-channel attacks in virtualiza-

tion environments. The tool is named WHISPER which

could detect attacks such as meltdown, specter,

prime+probe, flush+flush, and flush+reload. Liu et al. [14]

explored side-channel attacks in IoT-enabled environments

for computation offloading where GPU virtualization is
used. Yan et al. [15] proposed a framework to defend

against cache-based side-channel attacks using a policy

known as "Secure Hierarchy-Aware Cache Replacement

Policy (SHARP)". Sangakkara et al. [17] investigated elec-

tronic side-channel attacks that are used as digital forensics

for evidence recovery. Mushtaq et al. [18] proposed a ma-

chine learning-based solution for security against side-

channel attacks. Yang et al. [19] defined an approach where

switching and migrating of multi-executor VMs is done to

mitigate side-channel attacks.

Cleemputet al. [21] investigated timing side-channel at-

tacks and proposed a method known as an adaptive compiler

strategy for mitigating such attacks. It not only provides

security but also reduces system overhead. Shin et al. [22]

proposed a technique for analyzing cache side-channel and
inferring firewall rules required to prevent attacks. Mukhtar

et al. [23] proposed a countermeasure to prevent cache side-

channel attacks. The countermeasure is based on flush +

prefetch. Sangeetha and Sumathi [24] proposed a measure

that counts processor cycles and memory utilization to de-

tect side-channel attacks. Chiappetta et al. [25] used hard-

ware performance counters to ascertain the presence of side-

channel attacks. Other important researches found in the

literature include novel denial of service (DoS) attacks [26],

libraries for secure VM placement [27], energy-aware VM

allocation [28], energy-aware adaptive cat swarm optimiza-

tion [29], and dynamic VM allocation strategy [30]. Mahipal
and Sharmila [37] explored VM security issues and coun-

termeasures. Dhavlle et al. [38] focused on lessening side

channel leakage issues. Dutta et al. [39] investigated the

cross-component covert channels. Eliyan et al. [40] studied

the security issues with DDoS attacks while Ranaweera et

al. [41] focused on privacy and security in edge computing.

From the literature, it is understood that there are numerous

approaches found to detect and mitigate side-channel at-

tacks. However, there is a need for a real-time approach that

can detect side-channel attacks as they occur and provide

necessary communication and mitigation steps.

III. CACHE SIDE CHANNEL ATTACKS

This section provides details of different categories of

side-channel attacks that are considered in this paper for

detection and mitigation while improving the state of the art.

Different kinds of side-channel attacks in virtualized envi-

ronments are explored in Yarom[31]. For convenience, they

are categorized here.

Table I: Shows different categories of cache side-channel attacks in virtu-

alized environments

Category
Side Channel Attack

Name
Target

Category 1 Flush+ReloadAttcak Aimsat L3 Cache

Category 2 Flush+ Flush Attack Aims at L3 Cache

Category 3 Prime+Probe Attack Aims at L3 Cache

As presented in Table 1, the side-channel attacks are

mapped to different categories, and Sections 3.1 through

Section 3.3 throw light on each category. The overview of

the problem context and the associated attack model is

shown in Fig 1. The physical host machines used by cloud

data centers have their main memory, and secondary

memory in the form of disks, network cards, and other phys-

ical hardware. In modern CPU architectures like Intel x86
multi-core, L1 and L2 cache are associated with each core.

Whereas the L3 cache which is known as Last Level Cache

(LLC) is shared across the cores. The Virtual Machine Mon-

itor (VMM) of the hypervisor takes care of the creation and

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

management of VMs. Each VM can have a virtual environ-

ment similar to a physical machine with Operating System

(OS) and applications run by users.

Adversaries can launch Cache side-channel attacks on

LLC due to its cache-inclusive property that leads to infor-

mation leakage through cache memory to the attacker (es-

sentially a user of an application running in VM). In cloud

computing environments usage of shared cache memory is

common as it helps in the reduplication of data and serves as

the memory that reduces memory usage. LLC memory is

monitored by the attacker to obtain sensitive information

leading to the potential risk to the victim.

Fig 1: Illustrates cache side-channel attack in the virtualization envi-

ronment

A. Side-Channel Attack Category 1

The Flush+Reload attack aims at LLC. The modus op-

erandi of the attack has three steps. The first step is known

as FLUSH where clflush is the command used by the at-

tacker to flush the specific shared cache line. The second
step is known as the IDLE step. In this step, the attacker

waits for a certain period while the victim runs different

operations that might include sensitive information. The

third step is known as RELOAD. In this step, the attacker

reloads the cache line and observes how much time it takes.

If it is taking more time, it does mean that the victim did not

use sensitive data from the shared page. If the time taken is

less, it does mean that there is a victim's data filled in the

shared page. Thus the time difference strategy is used by the

attacker to ascertain access patterns of the victim for sensi-

tive data in LLC. This kind of attack is said to be the highest

resolution of the side-channel attack which leads to the ex-
traction of secret keys of cryptographic primitives and also

captures keystroke information of the victims. As the attack

makes use of clflush, it leads to an increase in the LLC, L1,

and L2 miss when the victim tries to access the cache lines

available.

B. Side-Channel Attack Category 2

This category of attack (Flush+Flush) targets the shared
cache memory or L3 cache. Instead of using the time differ-

ence between cache misses and cache hits after giving the

clflush command by the attacker (as in category 1), the cate-

gory 2 attack makes use of the time difference between two

clflush commands. Since clflush commands work faster than

general memory access instruction it does not lead to LLC,

L1, and L2 cache miss or hit. Hence the category 2 attack is

faster and stealthy. However, it is not easy to notice the time

difference between two clflush commands. As investigated

in Yarom[31], the category 2 attack exhibits less accuracy.

This attack has three steps namely FLUSH, IDLE, and
FLUSH. The first two steps are similar to that of category 1

while the third step differs. In the last FLUSH step, the at-

tacker estimates the time taken by the clflush command. If

the time is more, it indicates that the victim has used sensi-

tive data or a probing cache line. On the other hand, if the

time taken is less it does mean that the victim did not use the

probing cache line.

C. Side-Channel Attack Category 3

The category 3 attack is known as the Prime + Probe at-

tack. It targets the LLC cache as it has memory shared be-

tween cores. There is no need for the attacker to prepare

shared memory as LLC has shared memory. It is, therefore,

the attack that is more used by the attacker. It is character-

ized by a lower resolution when compared with category 1

and category 2 attacks. To share the cache, set, an attacker

makes an eviction set that helps in sharing a cache set be-

tween the attacker and the victim. The attacker probes all the

lines of the eviction set to know where sensitive data is ac-

cessed by the victim. This attack has three steps namely
PRIME, IDLE, and PROBE. In the first step, an attacker

fills sets with data. In the second step, the attacker waits a

certain period while the victim runs certain commands that

may be sensitive. In the third step, the probe operation cach-

es the sets with the data that has been prepared. The attacker

measures probing time. If the time is more or if there is a

change in the eviction set, it does mean that the cache set is

used by the victim while evicting some cache lines associat-

ed with cache sets.

IV. THE PROPOSED FRAMEWORK

The proposed framework for VM security has two phases

namely a) Monitoring and b) Mitigation. In the first phase,

the framework uses the prime and probe technique to ana-

lyze CPU counters data to identify an attack. In the second

phase, noise is added to the cache data to deceive the attack-

er and mitigate the effects of the attack. In the meanwhile, it

alerts the administrator about the attack for making further

decisions. The proposed solution has two algorithms imple-

mented. They are known as Softmax Function-Based Ma-
chine Learning for Side-Channel Attack Monitoring

(SFML-SCAM) and Intelligent Noise Addition for Attack

Mitigation (INA-AM). The first algorithm takes care of

monitoring and detecting cache side-channel attacks and

notifying the administrator while the second one is respon-

sible to mitigate the effect of an attack. Figure 1 shows the

overview of the proposed security framework. In the moni-

Application

OS

Application

OS

VMM/Hypervisor

Core1

L1 Cache

L2 Cache

Core2

L1 Cache

L2 Cache

Shared Last-Level Cache (LLC or L3)

Main Memory

Disks Network Cards

VM1 VM2

Physical Hardware

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

toring phase, we used the prime and probe techniques as part

of the methodology to detect side cache channel attacks.

PAPI (Performance Application Programming Interface)

library is used to obtain information about CPU counters

and the data is saved. CSV file from time to time. Moham-

mad-Mahdi [34] tool is used to make different kinds of side-

channel attacks. Such scenarios are captured using PAPI and

the dataset is generated and saved.

Fig 2: Proposed security framework for improving QoS by detecting and

mitigating cache side-channel attacks in virtualized environments

For identification of the attack, a machine learning ap-

proach known as multi-label classification is used. Unlike

binary classification which supports only two classes, it

supports three or more class labels. The supervised machine
learning approach used for the detection of attacks is known

as the softmax classification model. It makes use of linear

regression and the resultant values are subjected to normali-

zation probabilities. Softmax classifier uses both exponen-

tiation and normalization as expressed in Eq. 1.

𝑃𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2, … … . . , 𝑘.(1)

There are different probabilities used in the softmax clas-

sification. The probabilities of the given label when added,

the sum should not exceed 1. The probability, denoted as pi,

is computed and issued in the classification model. The

more in probability, the higher the possibility to belong to a

particular class. One hot encoding is used to make one input
true for two or more inputs the largest probable value is 1.

The softmax function also involves cross-entropy loss that

helps in reducing the error between predicted and actual

values. The underlying machine-learning model is shown in

Figure 3.

The softmax classification model learns from the data and

detects different cache side-channel attacks. It not only de-

tects the presence of a side-channel attack but also classifies

Table II: TensorFlow configuration details

TensorFlow Parame-

ter

Value

Learning rate 0.1

Number of epochs 100

Batch size 100

Fig3:Softmax based prediction model for attack detection

the attacks. Attack categories discussed earlier are known as

category 1, category 2, and category 3. These class labels

denote specific attacks and they are denoted as A1, A2, and
A3 respectively while the normal situation is labeled as A0.

The ML model used is a single-layer perception (neural

network model) which has no hidden layers. The dataset

used for experiments is associated with input units. The pre-

dicted labels are denoted by the output unit. The perfor-

mance counters associated with the processor are recorded

at runtime using the PAPI library and the data is generated

in the form of. CSV file that is reused for the detection of

attacks. The detection process works faster to have real-time

performance in this paper, unlike the existing methods. The

classifier is trained with several thousands of training sam-

ples to gain the required prediction knowledge. After train-
ing, the model is equipped with intelligence to predict dif-

ferent kinds of attacks. Tensor Flow, a framework from

Google, is used for realizing softmax classification as part of

our empirical study. Table 2 shows the parameters used to

configure Tensor Flow.

The detection model is implemented using the Python da-

ta science platform. The algorithm proposed for the detec-

tion of cache side-channel attacks is known as Softmax

Function-Based Machine Learning for Side-Channel Attack

Monitoring (SFML-SCAM).

A. Attack Detection Algorithm

SFML-SCAM algorithm provides the procedure followed

to detect cache side-channel attacks in real-time. It takes.

CSV file as input where performance counters data is avail-

able. This data is used to detect different kinds of attacks.

The data is subjected to softmax classification.

Algorithm 1:Softmax Function-Based Machine Learning

for Side-Channel Attack Monitoring (SFML-SCAM)

Input: Training Data D, Test Data T

Output: Detection Results R

1. Start

2. Initialize training data features vector

F1

3. Initialize test data features vector F2

4. F1Extract Features(D)

5. F2Extract Features(T)

S

o

ft

m

a

x

X1

X2

X
3

X
4

X
5

Y

1

Softmax Func-

tion-based Ma-

chine Learning

Analyze CPU

counters Data

(PAPI)

Identify the

Attack

Add Noise to

the Cache

Deceive the

Attacker

Mitigate Attack

Effects

Monitoring

Mitigation

Output Layer L2 Input Layer L1

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

6. modelTrain Classifier(F1, Softmax

Classifier)

7. RPredict(model, F2)

8. For each result r in R

9. IF r=A1 Then

10. Attack category 1 is detected

11. Else If r=A2 Then

12. Attack category 2 is detected

13. Else If r=A3 Then
14. Attack category 3 is detected

15. End If

16. End For

17. Notify the presence of an attack

18. Return R

19. End

Algorithm 1:Softmax Function-Based Machine Learning for Side-

Channel Attack Monitoring

As presented in Algorithm 1, it takes training data and

testing data as inputs and produces attack detection results.

For extracting features from the data, it initialized two vec-

tors known as F1 and F2 as in Step 2 and Step 3 respective-

ly. In Step 3 and Step 4, it populate features of training and

testing datasets into F1 and F2 vectors respectively. In Step

5, a model is trained using a Softmax classifier based on the

features extracted from the training set. In Step 5, test set
features are extracted. A model is fit in Step 6 to have a pre-

diction system with the required intelligence. Then in Step

6, prediction is carried out on F2 which has training data

features. The prediction results are saved to the vector R.

Then from Step 8 through Step 16, an iterative process is

carried out to identify the presence of an attack and know

which kind of attack is in each instance of the results vector

R. Thus it finds different classes of attacks namely A1, A2,

and A3. Finally, the algorithm returns the detection results

besides notifying the administrator about the presence of the

attack.

B. Attack Mitigation Algorithm

An algorithm known as Intelligent Noise Addition for At-

tack Mitigation (INA-AM) is defined to mitigate the effect

of different kinds of side-channel attacks. As presented in

Algorithm 2, it is evident that it takes cache hits and cache

Algorithm: Intelligent Noise Addition for Attack Mitiga-

tion (INA-AM)

Input: Cache Hits H, Cache Misses M

Output: Noise Cache Hits H’, Noise Cache Misses M’

1. Start

2. Initialize noisy cache hits vector H’

3. Initialize noisy cache misses vector M’
4. hcountCountCacheHits(H)

5. mcountCountCacheMisses(M)

6. noisefunc-

tionComputeNoiseFunction(H, M)

7. For each cache hit h in H

8. IF the noise function recommends

noise to h Then

9. Add noise to h

10. Add h to H’

11. End If

12. End For

13. For each cache miss m in M

14. IF the noise function recommends

noise to m Then

15. Add noise to m

16. Add h to M’

17. End If

18. End For

19. Output H’
20. Output M’

21. End

Algorithm 2: Intelligent Noise Addition for Attack Mitigation algo-

rithm

misses vectors as inputs and returns the noisy cache hits and

noisy cache misses to confuse the attacker to mitigate the

effect of cache side-channel attacks. It initializes two vectors

named H’ and M’ for holding noisy cache hits and noisy

cache misses in Step 2 and Step 3 respectively. As the ad-

versary depends on the observation of low latency of cache

hits and high latency of cache misses, it is essential to have

an intelligent noise function to confuse the attacker. The

count of cache hits and cache misses are computed in Step 4

and Step 5. Step 6 computes the noise function which guides

in adding noise as needed. Based on the noise function an

iterative process from Step 7 through Step 12 is used to add
noise to cache hits. In the same fashion, another iterative

process from Step 13 through Step 18 is used to add noise to

cache misses. Finally, the algorithm outputs the noisy hits

and misses vectors to ensure that the attacks will not be suc-

cessful.

V. EXPERIMENTAL RESULTS

Different configurations of VMs are used in the experi-
mental study. The CPU code names are mapped to simpli-

fied configuration names for convenience. The original

name of the configuration mapped name is presented in Ta-

ble 3. Experiments are made with open-source tools along

with a prototype that implements the proposed algorithms.

Experimental results revealed that the proposed framework

outperforms the state-of-the-art. Observations are made in

terms of detection rate (%), time (seconds), and CPU usage

(%).

Table III: Mapping original CPU code names to configuration names for

convenience

Original CPU Code Name Configuration Name

Intel Xeon E5-2620 v4 2.10 GHz (Broad well) Configuration 1

Intel Xeon E3-1275v6 3.80 GHz (Kaby Lake) Configuration 2

Intel Core i5-7400 3.00Ghz (Kaby Lake) Configuration 3

Intel Core i7-7700 3.60GHz(Kaby Lake) Configuration 4

Intel Core i7-9700 3.60 GHz (Coffee Lake) Configuration 5

Intel Core i5-5250U 1.6GHz (Broad well) Configuration 6

Results are observed on normal mode and stress model

where the stressing tool is used to incur stress on compo-

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

nents like I/O, memory, and CPU. Experiments are also

made in virtualized and non-virtualized environments.

A.Attack Detection Rate

Attack detection rate is compared between virtualized and
non-virtualized environments. Experiments are made with

the six configurations.

Table IV: Detection rate performance for two environments in normal and

stress modes

CPU

Configu-

ration

Attack Detection Rate (%)

VM Env

(Normal)

VM Env

(Stress)

Non VM Env

(Normal)

Non VM

Env

(Stress)

1 0.984984 0.925925 1 0.95095

2 0.971971 0.919919 0.9981 0.941941

3 0.962962 0.929929 0.9961 0.942942

4 0.987987 0.923923 0.992099 0.943943

5 0.945945 0.929929 0.9951 0.956956

6 0.97097 0.928928 1 0.954954

As presented in Table 4, the attack detection rate is pre-

sented in virtualized and non-virtualized environments using

normal and stress models against different CPU configura-

tions.

As presented in Figure 4, the CPU configurations are pro-

vided in the horizontal axis while the vertical axis shows the

detection rate (%). A higher detection rate indicates better

performance for the proposed method. The highest perfor-

mance is 1 indicating 100% detection rate. It is observed

that different CPU configurations have exhibited varying

detection rates. As performance monitors are associated
with CPU monitors, it is bound to vary for each configura-

tion. There are differences in detection rates in virtualized

and non-virtualized environments. In the same fashion, there

are performance differences between normal and stress

modes against all six configurations.

B. Execution Time

Execution time is compared between virtualized and non-

virtualized environments. Experiments are made with the six

configurations for normal and stress modes.

Table V: Execution time performance for two environments in normal and

stress modes

CPU Con-

figuration

Time (seconds)

VM Env

(Normal)

VM Env

(Stress)

Non VM Env

(Normal)

Non VM

Env

(Stress)

1 1.9019 2.1042 1.5015 1.8018

2 1.9019 2.2044 1.6016 1.9019

3 1.8018 2.3046 1.6016 1.9019

4 1.9019 2.2044 1.7017 1.9019

5 1.7017 2.4048 1.5015 1.8018

6 1.8018 2.2044 1.5015 1.8018

As presented in Table 5, the execution time is presented in

virtualized and non-virtualized environments using normal

and stress models against different CPU configurations. As

presented in Figure 5, the CPU configurations are provided

on the horizontal axis while the vertical axis shows the exe-

cution time (seconds). Lower execution time indicates better

performance for the proposed method. It is observed that

different CPU configurations have exhibited varying execu-
tion times. As performance monitors are associated with

CPU monitors, it is bound to vary for each configuration.

There are differences in execution time in virtualized and

non-virtualized environments. In the same fashion, there are

performance differences between normal and stress modes

against all six configurations.

Fig4: Detection rate comparison for virtualized and non-virtualized envi-

ronments using normal and stress modes

Fig 5: Execution time comparison for virtualized and non-virtualized envi-

ronments using normal and stress modes

0
.9

8
4

9
8

4

0
.9

7
1

9
7

1

0
.9

6
2

9
6

2 0
.9

8
7

9
8

7

0
.9

4
5

9
4

5 0
.9

7
0

9
7

0
.9

2
5

9
2

5

0
.9

1
9

9
1

9

0
.9

2
9

9
2

9

0
.9

2
3

9
2

3

0
.9

2
9

9
2

9

0
.9

2
8

9
2

8

1 0
.9

9
8

0
9

9
8

0
.9

9
6

0
9

9
6

0
.9

9
2

0
9

9
2

0
.9

9
5

0
9

9
5

1

0
.9

5
0

9
5

0
.9

4
1

9
4

1

0
.9

4
2

9
4

2

0
.9

4
3

9
4

3

0
.9

5
6

9
5

6

0
.9

5
4

9
5

4

1 2 3 4 5 6

D
E

T
E

C
T

IO
N

 R
A

T
E

 9
%

)

CPU CONFIGURATIONS

D E T E C T I O N R AT E C O M P AR I S O N

VM Env (Normal) VM Env (Stress)

Non VM Env (Normal) Non VM Env (Stress)

1
.9

0
1

9

1
.9

0
1

9

1
.8

0
1

8

1
.9

0
1

9

1
.7

0
1

7

1
.8

0
1

8

2
.1

0
4

2

2
.2

0
4

4

2
.3

0
4

6

2
.2

0
4

4

2
.4

0
4

8

2
.2

0
4

4

1
.5

0
1

5

1
.6

0
1

6

1
.6

0
1

6

1
.7

0
1

7

1
.5

0
1

5

1
.5

0
1

5

1
.8

0
1

8

1
.9

0
1

9

1
.9

0
1

9

1
.9

0
1

9

1
.8

0
1

8

1
.8

0
1

8

1 2 3 4 5 6

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
E

C
O

N
D

S
)

CPU CONFIGURATIONS

E X E C U T I O N T I M E C O M P AR I S O N

VM Env (Normal) VM Env (Stress)

Non VM Env (Normal) Non VM Env (Stress)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

C. CPU Usage

CPU usage is compared between virtualized and non-

virtualized environments. Experiments are made with the six

configurations for normal and stress modes.

Table VI: CPU usage performance for two environments in normal and

stress modes

CPU

Configu-

ration

CPU Usage (%)

VM Env

(Normal)

VM Env

(Stress)

Non VM Env

(Normal)

Non VM

Env

(Stress)

1 0.61 0.91 0.71 0.91

2 0.83 0.91 0.71 0.9

3 0.72 0.81 0.61 0.82

4 0.82 1.11 0.71 0.91

5 0.91 1.11 0.72 0.89

6 0.91 0.81 0.63 0.92

As presented in Table 6, the CPU usage is presented in

virtualized and non-virtualized environments using normal

and stress models against different CPU configurations.

As presented in Figure 6, the CPU configurations are pro-

vided on the horizontal axis while the vertical axis shows

the CPU usage (%). Lower CPU usage indicates better per-

formance for the proposed method. It is observed that dif-

ferent CPU configurations have exhibited varying usage of

CPU. As performance monitors are associated with CPU
monitors, it is bound to vary for each configuration. There

are differences in CPU usage in virtualized and non-

virtualized environments. In the same fashion, there are per-

formance differences between normal and stress modes

against all six configurations.

VI. PERFORMANCE EVALUATION

Fig 6: CPU usage comparison for virtualized and non-virtualized environ-

ments using normal and stress modes

The performance of the proposed attack detection method

is compared with many state-of-the-art methods found in the

literature. The existing models include the Unsupervised

Deep Learning (UDL) method [33], Intel Cache Monitoring

Technology (ICM) and Hardware Performance Counters

(HPC) tools [34], the Method of AES encryption [35], and

the HPC method [36]. The comparison is made in terms of

the tool used to generate required data, used performance
counter for the experimental study, cache side-channel at-

tacks detected by the models, and the ability to detect stealth

attacks.

Table VII: Performance comparison among different side-channel attack

detection models (the proposed model is highlighted)

Attack

Detection

Method

The tool

used to

Gener-

ate the

Dataset

Used Performance

Counter for Empiri-

cal Study

Cache

Side-

Channel

Attacks

Detected

Ability

to

Detect

Stealth

At-

tack?

UDL

method in

[35]

PCM

tool from

Intel

L1_INST_MISS

L1_INST_HIT

LLC_MISS

Category

1

Category

3

N

ICM and

HPC

method in

[36]

CMT

tool from

Intel

L1_MISS

LLC_MISS

Category

1

Category

3

N

Method

on AES

Encryp-

tion in

[37]

CMT

tool from

Intel

L1_MISS

LLC_MISS

Category

1

Category

3

N

HPC

method in

[38]

perf tool

in Linux
LLC_MISS

Category

1

Category

3

N

SFML-

SCAM

(Pro-

posed

Detection

Model)

PAPI

Library

in Py-

thon

Instruction Per

Cycle (IPC),

L1_MISS,

L2_MISS,

LLC_MISS and

RE-

TIRED_BRANCH

Category

1

Category

2

Catego-

ry3

Y

As presented in Table 7, it is understood that different

methods used different approaches in tool usage and per-

formance counters usage. UDL method in [33] used the

PCM tool from Intel to create the dataset and used L1 cache

hits, L1 cache misses and LLC cache misses as performance

counters. It could detect category 1 and category 3 attacks.

ICM and HPC methods in [34] used the CMT tool from

Intel to create the dataset and used L1 cache misses and

LLC cache misses as performance counters. It could detect
category 1 and category 3 attacks. Method on AES encryp-

tion in [35] used the CMT tool from Intel to create the da-

taset and used L1 cache misses and LLC cache misses as

performance counters. It could detect category 1 and catego-

ry 3 attacks. HPC method in [36] used the perf tool that

comes in Linux OS to create the dataset and used only LLC

cache misses as performance counters. It could detect cate-

gory 1 and category 3 attacks. The proposed method named

SFML-SCAM is capable of detecting all three kinds of at-

tacks. Besides, it has the capability of detecting stealth at-

tacks. It makes use of the PAPI library for making datasets
at runtime. It uses many performance counters such as In-

struction Per Cycle (IPC), L1_MISS, L2_MISS,

LLC_MISS, and RETIRED_BRANCH for the detection of

attacks using a machine learning approach. The proposed

0
.6

1

0
.8

3

0
.7

2 0
.8

2 0
.9

1

0
.9

1

0
.9

1

0
.9

1

0
.8

1

1
.1

1

1
.1

1

0
.8

1

0
.7

1

0
.7

1

0
.6

1 0
.7

1

0
.7

2

0
.6

3

0
.9

1

0
.9

0
.8

2 0
.9

1

0
.8

9

0
.9

2

1 2 3 4 5 6

C
P

U
 U

S
A

G
E

 (
%

)

CPU CONFIGURATIONS

C P U U S AG E C O M P AR I S O N

VM Env (Normal)
 VM Env (Stress)
Non VM Env (Normal)
Non VM Env (Stress)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

method thus outperforms the methods found in the state of

the art.

VII. DISCUSSION

Detecting and mitigating cache side-channel attacks is the
main focus of this paper. Six different configurations of

VMs are used in an empirical study. The rationale behind

this is that it ensures a diversity of experiments.

Table VIII: Performance difference between stress and normal modes in

terms of detection rate

Configura-

tions

Detection Rate Difference

VM Env

(Normal)

VM Env

(Stress)

Difference in Detec-

tion Rate

1 0.984984 0.925925 0.059059

2 0.971971 0.919919 0.052052

3 0.962962 0.929929 0.033033

4 0.987987 0.923923 0.064064

5 0.945945 0.929929 0.016016

6 0.97097 0.928928 0.042042

Besides each configuration is considered with normal

mode and stress mode. In the normal mode, the cache does
not experience stress while in the stress mode, there is cache

stress which will have more resource utilization. The pro-

posed methodology for detecting cache side-channel attacks

showed that there is a difference in the detection rate for

normal and stress modes for all configurations.

As presented in Table 8, there is a performance difference

between the normal and stress models for all configurations.

In the case of stress mode, the detection rate is slightly

Table IX: Performance difference between stress and normal modes in

terms of CPU usage

Configura-

tions

Difference in CPU Usage

VM Env

(Normal)

VM Env

(Stress)

Difference in

CPU Usage

1 0.61 0.91 0.3

2 0.83 0.91 0.08

3 0.72 0.81 0.09

4 0.82 1.11 0.29

5 0.91 1.11 0.2

6 0.91 0.81 0.1

Table X: Information leakage against stealth attack

Attack Detection Method
Information Leakage due to

one Stealth Attack (bits)

UDL method in [35] 189

ICM and HPC method in [36] 246

Method on AES Encryption in [37] 345

HPC method in [38] 195

SFML-SCAM (Proposed Detection

Model)
0

Fig 7: Attack detection rate comparison

reduced. As presented in Table 9, there is a performance

difference between the normal and stress models for all con-

figurations in terms of CPU usage. In the case of stress

mode, the CPU usage is observed to be more except in the
last configuration. As presented in Fig. 7, the attack detec-

tion rate is presented for VM normal and VM stress models

with stealth attacks due to its detection mechanism. Other

existing methods cause information leakage. for different

configurations. As presented in Table 10, the proposed de-

tection model does not cause information leakage As pre-

sented in Fig. 9, there is no information leakage with the

proposed detection method as it can handle it. Other meth-

ods caused information leakage in one experiment.

Fig 8: Difference in CPU usage

0
.9

8
4

9
8

4

0
.9

7
1

9
7

1

0
.9

6
2

9
6

2

0
.9

8
7

9
8

7

0
.9

4
5

9
4

5

0
.9

7
0

9
7

0
.9

2
5

9
2

5

0
.9

1
9

9
1

9

0
.9

2
9

9
2

9

0
.9

2
3

9
2

3

0
.9

2
9

9
2

9

0
.9

2
8

9
2

8

0
.0

5
9

0
5

9

0
.0

5
2

0
5

2

0
.0

3
3

0
3

3

0
.0

6
4

0
6

4

0
.0

1
6

0
1

6

0
.0

4
2

0
4

2

1 2 3 4 5 6D
E

T
E

C
T

IO
N

 R
A

T
E

/D
E

T
E

C
T

IO
N

 R
A

T
E

 D
IF

F
E

R
E

N
C

E
CONFIGURATION

D E T E C T I O N R AT E D I F F E R N C E

Detection Rate Difference VM Env (Normal)

Detection Rate Difference VM Env (Stress)

Detection Rate Difference Difference in Detection Rate

0
.6

1

0
.8

3

0
.7

2 0
.8

2 0
.9

1

0
.9

1

0
.9

1

0
.9

1

0
.8

1

1
.1

1

1
.1

1

0
.8

1

0
.3

0
.0

8

0
.0

9

0
.2

9

0
.2

0
.1

1 2 3 4 5 6

C
P

U
 U

S
A

G
E

/D
IF

F
E

R
E

N
C

E
 I

N
 C

P
U

U

S
A

G
E

CONFIGURATION

D I F F E R E N C E I N C P U U S A G E

Difference in CPU Usage VM Env (Normal)

Difference in CPU Usage VM Env (Stress)

Difference in CPU Usage Difference in CPU Usage

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

Fig 9: Information leakage against stealth attack

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a security framework for

improving Quality of Service (QoS) by detecting and miti-

gating cache side-channel attacks in virtualized environ-

ments. Two algorithms are proposed to realize the frame-

work. They are known as Softmax Function-Based Machine
Learning for Side-Channel Attack Monitoring (SFML-

SCAM) and Intelligent Noise Addition for Attack Mitiga-

tion (INA-AM). The first algorithm takes care of monitoring

and detecting cache side-channel attacks and notifying ad-

ministrators while the second one is responsible to mitigate

the effects of attacks. A machine learning technique assists

the SFML-SCAM in detecting attacks based on the abnor-

mality in the CPU counters in real-time. The INA-AM algo-

rithm, on the other hand, has a strategy to add noise to the

cache data to deceive the attacker and mitigate the effects of

the attack. The usage of the machine learning technique en-
hances the functionality of the SFML-SCAM to detect at-

tacks in real-time. Experiments are made with open-source

tools along with a prototype that implements the proposed

algorithms. Information leakage is evaluated for all detec-

tion methods against stealth attacks. Experimental results

revealed that the proposed framework outperforms the state-

of-the-art. This paper focused on VM side-channel attacks.

However, the defence fails if the hypervisor is compromised

to use a tool to launch attacks by adversaries. Therefore, in

the future, we focus on the VM protection approach against

compromised hypervisors.

References

[1] Mahfouz, A. M., Rahman, M. L., & Shiva, S. G. (2017). Secure live

virtual machine migration through runtime monitors. 2017 Tenth

International Conference on Contemporary Computing (IC3). P1-5.

[2] Li, Z., Yan, C., Yu, L., & Yu, X. (2018). Energy-aware and multi-

resource overload probability constraint-based virtual machine

dynamic consolidation method. Future Generation Computer

Systems, 80, 139–156.

[3] Tao, Z., Xia, Q., Hao, Z., Li, C., Ma, L., Yi, S., & Li, Q. (2019). A

Survey of Virtual Machine Management in Edge Computing.

Proceedings of the IEEE, 1–18.

[4] Saeed, A., Garraghan, P., Craggs, B., Linden, D. van der, Rashid, A.,

& Hussain, S. A. (2018). A Cross-Virtual Machine Network Channel

Attack via Mirroring and TAP Impersonation. 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD). P1-8.

[5] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario

Südholt, Jean-Marc Menaud. Cache-Based Side-Channel Attacks

Detection through Intel Cache Monitoring Technology and Hardware

Performance Counters. FMEC 2018 - Third IEEE International

Conference on Fog and Mobile Edge Computing, Apr 2018,

Barcelona, Spain. P1-6.

[6] Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C., Campbell, R.,

&Torrellas, J. (2019). Attack Directories, Not Caches: Side Channel

Attacks in a Non-Inclusive World. 2019 IEEE Symposium on

Security and Privacy (SP).P1-17.

[7] Liu, F., Wu, H., Mai, K., & Lee, R. B. (2016). Newcache: Secure

Cache Architecture Thwarting Cache Side-Channel Attacks. IEEE

Micro, 36(5), 8–16.

[8] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., & Lee,

R. B. (2016). CATalyst: Defeating last-level cache side channel

attacks in cloud computing. 2016 IEEE International Symposium on

High Performance Computer Architecture (HPCA). P1-13.

[9] Anwar, S., Inayat, Z., Zolkipli, M. F., Zain, J. M., Gani, A., Anuar, N.

B., … Chang, V. (2017). Cross-VM cache-based side channel attacks

and proposed prevention mechanisms: A survey. Journal of Network

and Computer Applications, 93, 259–279.

[10] Fiore, U., Florea, A., Gellert, A., Vintan, L., & Zanetti, P.

(2018). Optimal Partitioning of LLC in CAT-enabled CPUs to

Prevent Side-Channel Attacks. Lecture Notes in Computer Science,

115–123.

[11] Jia, H., Liu, X., Di, X., Qi, H., Cong, L., Li, J., & Yang, H.

(2019). Security Strategy for Virtual Machine Allocation in Cloud

Computing. Procedia Computer Science, 147, 140–144.

[12] Mushtaq, M., Bricq, J., Bhatti, M. K., Akram, A., Lapotre, V.,

Gogniat, G., & Benoit, P. (2020). WHISPER A Tool for Run-time

Detection of Side-Channel Attacks. IEEE Access, 1–30.

[13] Qiu, Y., Shen, Q., Luo, Y., Li, C., & Wu, Z. (2017). A Secure Virtual

Machine Deployment Strategy to Reduce Co-residency in Cloud.

2017 IEEE Trustcom/BigDataSE/ICESS. P1-8.

[14] Liu, S., Wei, Y., Chi, J., Shezan, F. H., & Tian, Y. (2019). Side

Channel Attacks in Computation Offloading Systems with GPU

Virtualization. 2019 IEEE Security and Privacy Workshops (SPW).

P1-6.

[15] Yan, M., Gopireddy, B., Shull, T., &Torrellas, J. (2017). Secure

Hierarchy-Aware Cache Replacement Policy (SHARP). Proceedings

of the 44th Annual International Symposium on Computer

Architecture - ISCA ’17. P1-14.

[16]] Natu, V., & Duong, T. N. B. (2017). Secure Virtual Machine

Placement in Infrastructure Cloud Services. 2017 IEEE 10th

Conference on Service-Oriented Computing and Applications

(SOCA). P1-8.

[17] Sayakkara, A., Le-Khac, N.-A., & Scanlon, M. (2019). A survey of

electromagnetic side-channel attacks and discussion on their case-

progressing potential for digital forensics. Digital Investigation. P1-

12.

[18] MariaMushtaq, AyazAkram, Muhammad Khurram Bhatti, Maham

Chaudhry, MuneebYousaf, et al.. Machine Learning For Security:

The Case of Side-Channel Attack Detection at Run-time. ICECS2018,

Dec 2018, Bordeaux, France. P1-5.

[19] Yang, C., Guo, Y., Hu, H., Wang, Y., Tong, Q., & Li, L.

(2019). Driftor: mitigating cloud-based side-channel attacks by

switching and migrating multi-executor virtual machines. Frontiers of

Information Technology & Electronic Engineering, 20(5), 731–748.

[20] Agarwal, A., & Duong, T. N. B. (2019). Secure virtual machine

placement in cloud data centres. Future Generation Computer

Systems, 100, 210–222.

[21] Van Cleemput, J., De Sutter, B., & De Bosschere, K. (2017). Adaptive

Compiler Strategies for Mitigating Timing Side Channel Attacks.

IEEE Transactions on Dependable and Secure Computing, 1–14.

[22] Shin, Y., Koo, D., &Hur, J. (2020). Inferring Firewall Rules by Cache

Side-channel Analysis in Network Function Virtualization. IEEE

INFOCOM 2020 - IEEE Conference on Computer Communications.

P1-10.

1
8

9

2
4

6

3
4

5

1
9

5

0

I N F O R M AT I O N L E AKAG E D UE T O O N E

S T E A L T H A T T A C K (B I T S)

IN
FO

R
M

A
IT

O
N

 L
EA

K
A

G
E

(B
IT

S)

DETECTION METHODS

I N F O R M AT I O N L E AK AG E

UDL method in [35]

ICM and HPC method in [36]

Method on AES Encryption in [37]

HPC method in [38]

SFML-SCAM (Proposed Detection Model)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

[23] MAsim Mukhtar, Maria Mushtaq, M Khurram Bhatti,

VianneyLapotre, Guy Gogniat. FLUSH + PREFETCH: A

Countermeasure Against Access-driven Cache-based Side-Channel

Attacks. Journal of Systems Architecture, Elsevier, 2020, 104, P1-19.

[24] Sangeetha, G., & Sumathi, G. (2020). An optimistic technique to

detect Cache based Side Channel attacks in Cloud. Peer-to-Peer

Networking and Applications. P1-14.

[25] Chiappetta, M., Savas, E., & Yilmaz, C. (2016). Real time detection

of cache-based side-channel attacks using hardware performance

counters. Applied Soft Computing, 49, 1162–1174.

[26] Yuan Xu, Gelei Deng, Tianwei Zhang, Han Qiu, YungangBao.

(2021). Novel denial-of-service attacks against cloud-based multi-

robot systems. Information Sciences. 576, p329-344.

[27] EnioMarku, GergelyBiczok, and Colin Boyd. (2021). SafeLib: a

practical library for outsourcing stateful network functions securely.

IEEE, p1-9.

[28] MUSTAFA GAMSIZ AND ALİ HAYDAR ÖZER . (2021). An

Energy-Aware Combinatorial Virtual Machine Allocation and

Placement Model for Green Cloud Computing. IEEE. 9, p18625-

18648.

[29] K. Balaji, P. Sai Kiran, M. Sunil Kumar. (2021). An energy efficient

load balancing on cloud computing using adaptive cat swarm

optimization. Elsevier, p1-5.

[30] DEAFALLAH ALSADIE. (2021). A Metaheuristic Framework for

Dynamic Virtual Machine Allocation with Optimized Task

Scheduling in Cloud Data Centres. IEEE. 9, p74218-74233.

[31] Yarom, Y.; Falkner, K. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In Proceedings of the

USENIX Security Symposium, San Diego, CA, USA, 20–22 August

2014.

[32] Yarom, Y. Mastik: A Micro-Architectural Side-Channel Toolkit.

Available online: https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

(accessed on 16 July 2021).

[33] Gulmezoglu, B.; Moghimi, A.; Eisenbarth, T.; Sunar, B.

FortuneTeller: Predicting Microarchitectural Attacks via

Unsupervised Deep Learning. arXiv 2019, arXiv:1907.03651

[34] Mohammad-Mahdi, B.; Thibaut, S.; Marc, L.; Sudholt, M.; Menaud,

J. Cache-based side channel attacks detection through Intel Cache

Monitoring Technology and Hardware Performance Counters. In

Proceedings of the 2018 Third International Conference on Fog and

Mobile Edge Computing, Barcelona, Spain, 23–26 April 2018.

[35] Mushtaq, M.; Akram, A.; Muhammad, K.B.; Rao, N.B.R.; Lapotre,

V.; Gogniat, G. Run-time Detection of Prime+Probe Side-Channel

Attack on AES Encryption Algorithm. In Proceedings of the 2018

Global Information Infrastructure and Networking Symposium,

Thessaloniki, Greece, 23–25 October 2018.Appl. Sci. 2020, 10, 984

14 of 14.

[36] Chiappetta, M.; Savas, E.; Yilmaz, C. Real time detection of cache-

based side channel attacks using hardware performance counters.

Appl. Soft Comput. 2016, 49, 1162–1174.

[37] Mahipal, S., and Sharmila, V. C. (2021). Virtual Machine Security

Problems and Countermeasures for Improving Quality of Service in

Cloud Computing. 2021 International Conference on Artificial

Intelligence and Smart Systems (ICAIS). P1-6

[38] Dhavlle, A., Rafatirad, S., Khasawneh, K., Homayoun, H., and

Dinakarrao, S. M. P. (2021). Imitating Functional Operations for

Mitigating Side-Channel Leakage. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, P1-14.

[39] Dutta, S. B., Naghibijouybari, H., Abu-Ghazaleh, N., Marquez, A.,

and Barker, K. (2021). Leaky Buddies: Cross-Component Covert

Channels on Integrated CPU-GPU Systems. 2021 ACM/IEEE 48th

Annual International Symposium on Computer Architecture (ISCA).

P1-13.

[40] Eliyan, L. F., and Di Pietro, R. (2021). DoS and DDoS attacks in

Software Defined Networks: A survey of existing solutions and

research challenges. Future Generation Computer Systems, 122,

p149–171.

[41] Ranaweera, P., Jurcut, A. D., and Liyanage, M. (2021). Survey on

Multi-Access Edge Computing Security and Privacy. IEEE

Communications Surveys & Tutorials, 23(2), p1078–1124.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

__

https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

