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Abstract--Virtualization technology makes cloud resources 

affordable. Virtual Machines (VMs) are widely used on top of 

host machines in cloud computing environments. Adversaries 

target L3 cache memory in such environments as VMs shared 

L3 cache of the physical machine. Cache side-channel attacks 

are possible unless there are mechanisms in place to prevent 

them. The attacker compromises a VM and through which 

tries to extract sensitive information from the victim's ma-

chine. In the literature, many solutions are found to resist 

cache side-channel attacks. However, an important limitation 

of the existing approaches is that they are not real-time in na-

ture. In this paper, we proposed a security framework for im-

proving Quality of Service (QoS) by detecting and mitigating 

cache side-channel attacks in virtualized environments. Two 

algorithms are proposed to realize the framework. They are 

known as Softmax Function-Based Machine Learning for Side-

Channel Attack Monitoring (SFML-SCAM) and Intelligent 

Noise Addition for Attack Mitigation (INA-AM). The first al-

gorithm takes care of monitoring and detecting cache side-

channel attacks and notifying administrators while the second 

one is responsible to mitigate the effects of attacks. A machine 

learning technique assists the SFML-SCAM in detecting at-

tacks based on the abnormality in the CPU counters in real-

time. The INA-AM algorithm, on the other hand, has a strate-

gy to add noise to the cache data to deceive the attacker and 

mitigate the effects of the attack. Experiments are made with 

open-source tools along with a prototype that implements the 

proposed algorithms. Information leakage is evaluated for all 

detection methods against stealth attacks. Experimental results 

revealed that the proposed framework outperforms the state-

of-the-art.  

Index Terms – Cloud computing, Virtual Machine, 

Side-Channel Attacks, VM Security Framework, Side 

Chanel Attack Prevention  

I. INTRODUCTION 

Cloud computing technology enabled a new paradigm 

shift in computing, storage, and associated services. With 

virtualization technology, cloud computing has become an 

affordable platform for sharing computing resources. How-

ever, the QoS depends on the smooth functioning of VMs in 

virtualized environments. There are many security vulnera-

bilities associated with VMs, hypervisors, and VM migra-
tion tasks. Cache side-channel attacks associated with virtu-

alization are a major concern as they can deteriorate QoS 

performance in cloud environments. 
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Cache side-channel attacks extract secret information by 

monitoring the cache behavior of a victim. Saeed et al. [4] 
proposed a methodology to demonstrate the cross-VM net-

work channel attack. With impersonation and mirroring, 

they could show the vulnerabilities in VM usage in the 

cloud.VM migration is used to manage resources efficiently. 

However, it is vulnerable to attacks unless secured. Tao et 

al. [3] focused on VM management in edge computing envi-

ronments. They investigated VM migration issues in such 

scenarios. They found that VM migration in edge computing 

has vulnerabilities to security attacks. As edge computing is 

evolving, it is indispensable to leverage security for VM 

migration in such an environment. Cleemput et al. [21] in-
vestigated timing side-channel attacks and proposed a meth-

od known as the adaptive compiler strategy for mitigating 

such attacks. It not only provides security but also reduces 

system overhead. Mukhtar et al. [23] proposed a counter-

measure to prevent cache side-channel attacks. The coun-

termeasure is based on flush + prefetch. Sangeetha and Su-

mathi [24] proposed a measure that counts processor cycles 

and memory utilization to detect side-channel attacks. 

Chiappetta et al. [25] used hardware performance counters 

to ascertain the presence of side-channel attacks. From the 

literature, it is understood that there are numerous approach-

es found to detect and mitigate side-channel attacks. How-
ever, there is a need for a real-time approach that can detect 

side-channel attacks as they occur and provide necessary 

communication and mitigation steps. Our contributions are 

as follows. 

1. We have built a security framework that 

takes care of the detection and mitigation of cache 

side-channel attacks in virtualized environments.  

2. We proposed two algorithms namely 

Softmax Function-Based Machine Learning for 

Side-Channel Attack Monitoring (SFML-SCAM) 

and Noise Addition for Attack Mitigation (INA-

AM) to detect and mitigate VM side-channel at-

tacks respectively. 

3. A prototype is used along with the usage 

of open-source existing tools appropriately to 

demonstrate proof of the concept.  

The remainder of the paper is structured as follows. Sec-

tion 2 reviews the literature on different kinds of attacks on 

VM and countermeasures. Section 3 discusses cache side-

channel attacks. Section 4 presents the proposed framework 

to detect and mitigate cache side-channel attacks. Section 5 

provides experimental results reflecting the performance of 

the proposed algorithms. Section 6 throws light on perfor-

mance evaluation. Section 7 provides a discussion about the 
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performance of the proposed methodology. Section 8 con-

cludes the paper and gives scope for future work.  

II. RELATED WORK 

VMs usage in cloud computing throws them to different 
security challenges. Saeed et al. [4] proposed a methodology 

to demonstrate the cross-VM network channel attack. With 

impersonation and mirroring, they could show the vulnera-

bilities in VM usage in the cloud. Bazmet al. [5] used differ-

ent performance counters and cache monitoring techniques 

to detect cache side-channel attacks. However, it seems to 

lack a real-time approach. Yan et al. [6] investigated the 

structure of cache memory used by virtualized environments 

and understood the probabilities of attacks such as side-

channel attacks like Evict+Reload and Prime+Probe. Liu et 

al. [7] investigated the cache side-channel attacks and pro-
posed a secure cache architecture. It is made dynamic with a 

line number mapper and other components of the hardware. 

They recommend processor manufacturers come up with 

security inbuilt. Liu et al. [8] considered performance opti-

mization features to defeat Last Level Cache (LLC) side-

channel attacks. Anwar et al. [9] made reviewed different 

solutions to VM side-channel attacks and cross-VM side-

channel attacks. Fiore et al. [10] proposed a method using 

CAT-enabled CPUs and optimization mechanisms in the 

partitioning of LLC to prevent cache side-channel attacks.  

VM migration is used to manage resources efficiently. 

However, it is vulnerable to attacks unless secured. Mahfouz 

et al. [1] proposed a method for the live migration of VM 

with security. They are proposed real-time runtime monitors 

that observe the migration process and its critical aspects to 
protect from attacks. Their methodology involves different 

phases such as the setup stage, memory transfer stage, stor-

age transfer stage, and network clean upstage. The three 

categories of threats considered include control plane class, 

data plane class, and migration module class. Their method-

ology is theoretical and implementation is yet to be done. Li 

et al. [2] proposed energy-aware dynamic virtual machine 

consolidation (EC-VMC) which is meant for limiting VM 

migration and enhancing the energy efficiency of data cen-

ters for QoS improvements. Tao et al. [3] focused on VM 

management in edge computing environments. They inves-

tigated VM migration issues in such scenarios. They found 
that VM migration in edge computing has vulnerabilities to 

security attacks. As edge computing is evolving, it is indis-

pensable to leverage security for VM migration in such an 

environment.  

Jiaet al. [11] proposed a secure VM allocation strategy to 

avoid problems associated with VM co-residence. It has 

optimization objectives such as energy efficiency, load bal-

ancing, and security. A similar kind of work is carried out in 

[13], [16], and [20]. Mushtaq et al. [12] proposed a tool for 

the automatic detection of side-channel attacks in virtualiza-

tion environments. The tool is named WHISPER which 

could detect attacks such as meltdown, specter, 

prime+probe, flush+flush, and flush+reload. Liu et al. [14] 

explored side-channel attacks in IoT-enabled environments 

for computation offloading where GPU virtualization is 
used. Yan et al. [15] proposed a framework to defend 

against cache-based side-channel attacks using a policy 

known as "Secure Hierarchy-Aware Cache Replacement 

Policy (SHARP)". Sangakkara et al. [17] investigated elec-

tronic side-channel attacks that are used as digital forensics 

for evidence recovery. Mushtaq et al. [18] proposed a ma-

chine learning-based solution for security against side-

channel attacks. Yang et al. [19] defined an approach where 

switching and migrating of multi-executor VMs is done to 

mitigate side-channel attacks.  

Cleemputet al. [21] investigated timing side-channel at-

tacks and proposed a method known as an adaptive compiler 

strategy for mitigating such attacks. It not only provides 

security but also reduces system overhead. Shin et al. [22] 

proposed a technique for analyzing cache side-channel and 
inferring firewall rules required to prevent attacks. Mukhtar 

et al. [23] proposed a countermeasure to prevent cache side-

channel attacks. The countermeasure is based on flush + 

prefetch. Sangeetha and Sumathi [24] proposed a measure 

that counts processor cycles and memory utilization to de-

tect side-channel attacks. Chiappetta et al. [25] used hard-

ware performance counters to ascertain the presence of side-

channel attacks. Other important researches found in the 

literature include novel denial of service (DoS) attacks [26], 

libraries for secure VM placement [27], energy-aware VM 

allocation [28], energy-aware adaptive cat swarm optimiza-

tion [29], and dynamic VM allocation strategy [30]. Mahipal 
and Sharmila [37] explored VM security issues and coun-

termeasures. Dhavlle et al. [38] focused on lessening side 

channel leakage issues. Dutta et al. [39] investigated the 

cross-component covert channels. Eliyan et al. [40] studied 

the security issues with DDoS attacks while Ranaweera et 

al. [41] focused on privacy and security in edge computing. 

From the literature, it is understood that there are numerous 

approaches found to detect and mitigate side-channel at-

tacks. However, there is a need for a real-time approach that 

can detect side-channel attacks as they occur and provide 

necessary communication and mitigation steps.  

III. CACHE SIDE CHANNEL ATTACKS 

This section provides details of different categories of 

side-channel attacks that are considered in this paper for 

detection and mitigation while improving the state of the art. 

Different kinds of side-channel attacks in virtualized envi-

ronments are explored in Yarom[31]. For convenience, they 

are categorized here. 

Table I: Shows different categories of cache side-channel attacks in virtu-

alized environments 

Category 
Side Channel Attack 

Name 
Target 

Category 1 Flush+ReloadAttcak Aimsat L3 Cache 

Category 2 Flush+ Flush Attack Aims at L3 Cache 

Category 3 Prime+Probe Attack Aims at L3 Cache 

 

As presented in Table 1, the side-channel attacks are 

mapped to different categories, and Sections 3.1 through 

Section 3.3 throw light on each category. The overview of 

the problem context and the associated attack model is 

shown in Fig 1. The physical host machines used by cloud 

data centers have their main memory, and secondary 

memory in the form of disks, network cards, and other phys-

ical hardware. In modern CPU architectures like Intel x86 
multi-core, L1 and L2 cache are associated with each core. 

Whereas the L3 cache which is known as Last Level Cache 

(LLC) is shared across the cores. The Virtual Machine Mon-

itor (VMM) of the hypervisor takes care of the creation and 
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management of VMs. Each VM can have a virtual environ-

ment similar to a physical machine with Operating System 

(OS) and applications run by users. 

Adversaries can launch Cache side-channel attacks on 

LLC due to its cache-inclusive property that leads to infor-

mation leakage through cache memory to the attacker (es-

sentially a user of an application running in VM). In cloud 

computing environments usage of shared cache memory is 

common as it helps in the reduplication of data and serves as 

the memory that reduces memory usage. LLC memory is 

monitored by the attacker to obtain sensitive information 

leading to the potential risk to the victim.  

 

Fig 1: Illustrates cache side-channel attack in the virtualization envi-

ronment 

A. Side-Channel Attack Category 1 

The Flush+Reload attack aims at LLC. The modus op-

erandi of the attack has three steps. The first step is known 

as FLUSH where clflush is the command used by the at-

tacker to flush the specific shared cache line. The second 
step is known as the IDLE step. In this step, the attacker 

waits for a certain period while the victim runs different 

operations that might include sensitive information. The 

third step is known as RELOAD. In this step, the attacker 

reloads the cache line and observes how much time it takes. 

If it is taking more time, it does mean that the victim did not 

use sensitive data from the shared page. If the time taken is 

less, it does mean that there is a victim's data filled in the 

shared page. Thus the time difference strategy is used by the 

attacker to ascertain access patterns of the victim for sensi-

tive data in LLC. This kind of attack is said to be the highest 

resolution of the side-channel attack which leads to the ex-
traction of secret keys of cryptographic primitives and also 

captures keystroke information of the victims. As the attack 

makes use of clflush, it leads to an increase in the LLC, L1, 

and L2 miss when the victim tries to access the cache lines 

available.  

B. Side-Channel Attack Category 2 

This category of attack (Flush+Flush) targets the shared 
cache memory or L3 cache. Instead of using the time differ-

ence between cache misses and cache hits after giving the 

clflush command by the attacker (as in category 1), the cate-

gory 2 attack makes use of the time difference between two 

clflush commands. Since clflush commands work faster than 

general memory access instruction it does not lead to LLC, 

L1, and L2 cache miss or hit. Hence the category 2 attack is 

faster and stealthy. However, it is not easy to notice the time 

difference between two clflush commands. As investigated 

in Yarom[31], the category 2 attack exhibits less accuracy. 

This attack has three steps namely FLUSH, IDLE, and 
FLUSH. The first two steps are similar to that of category 1 

while the third step differs. In the last FLUSH step, the at-

tacker estimates the time taken by the clflush command. If 

the time is more, it indicates that the victim has used sensi-

tive data or a probing cache line. On the other hand, if the 

time taken is less it does mean that the victim did not use the 

probing cache line.  

C. Side-Channel Attack Category 3 

The category 3 attack is known as the Prime + Probe at-

tack. It targets the LLC cache as it has memory shared be-

tween cores. There is no need for the attacker to prepare 

shared memory as LLC has shared memory. It is, therefore, 

the attack that is more used by the attacker. It is character-

ized by a lower resolution when compared with category 1 

and category 2 attacks. To share the cache, set, an attacker 

makes an eviction set that helps in sharing a cache set be-

tween the attacker and the victim. The attacker probes all the 

lines of the eviction set to know where sensitive data is ac-

cessed by the victim. This attack has three steps namely 
PRIME, IDLE, and PROBE. In the first step, an attacker 

fills sets with data. In the second step, the attacker waits a 

certain period while the victim runs certain commands that 

may be sensitive. In the third step, the probe operation cach-

es the sets with the data that has been prepared. The attacker 

measures probing time. If the time is more or if there is a 

change in the eviction set, it does mean that the cache set is 

used by the victim while evicting some cache lines associat-

ed with cache sets.  

IV. THE PROPOSED FRAMEWORK 

The proposed framework for VM security has two phases 

namely a) Monitoring and b) Mitigation. In the first phase, 

the framework uses the prime and probe technique to ana-

lyze CPU counters data to identify an attack. In the second 

phase, noise is added to the cache data to deceive the attack-

er and mitigate the effects of the attack. In the meanwhile, it 

alerts the administrator about the attack for making further 

decisions. The proposed solution has two algorithms imple-

mented. They are known as Softmax Function-Based Ma-
chine Learning for Side-Channel Attack Monitoring 

(SFML-SCAM) and Intelligent Noise Addition for Attack 

Mitigation (INA-AM).  The first algorithm takes care of 

monitoring and detecting cache side-channel attacks and 

notifying the administrator while the second one is respon-

sible to mitigate the effect of an attack. Figure 1 shows the 

overview of the proposed security framework. In the moni-
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toring phase, we used the prime and probe techniques as part 

of the methodology to detect side cache channel attacks. 

PAPI (Performance Application Programming Interface) 

library is used to obtain information about CPU counters 

and the data is saved. CSV file from time to time. Moham-

mad-Mahdi [34] tool is used to make different kinds of side-

channel attacks. Such scenarios are captured using PAPI and 

the dataset is generated and saved.  

 

Fig 2: Proposed security framework for improving QoS by detecting and 

mitigating cache side-channel attacks in virtualized environments 

For identification of the attack, a machine learning ap-

proach known as multi-label classification is used. Unlike 

binary classification which supports only two classes, it 

supports three or more class labels. The supervised machine 
learning approach used for the detection of attacks is known 

as the softmax classification model. It makes use of linear 

regression and the resultant values are subjected to normali-

zation probabilities. Softmax classifier uses both exponen-

tiation and normalization as expressed in Eq. 1.  

𝑃𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2, … … . . , 𝑘.(1) 

There are different probabilities used in the softmax clas-

sification. The probabilities of the given label when added, 

the sum should not exceed 1. The probability, denoted as pi, 

is computed and issued in the classification model. The 

more in probability, the higher the possibility to belong to a 

particular class. One hot encoding is used to make one input 
true for two or more inputs the largest probable value is 1. 

The softmax function also involves cross-entropy loss that 

helps in reducing the error between predicted and actual 

values. The underlying machine-learning model is shown in 

Figure 3.  

The softmax classification model learns from the data and 

detects different cache side-channel attacks. It not only de-

tects the presence of a side-channel attack but also classifies  

Table II: TensorFlow configuration details 

TensorFlow Parame-

ter 

Value 

Learning rate  0.1 

Number of epochs  100 

Batch size  100 

 

Fig3:Softmax based prediction model for attack detection 

the attacks. Attack categories discussed earlier are known as 

category 1, category 2, and category 3. These class labels 

denote specific attacks and they are denoted as A1, A2, and 
A3 respectively while the normal situation is labeled as A0. 

The ML model used is a single-layer perception (neural 

network model) which has no hidden layers. The dataset 

used for experiments is associated with input units. The pre-

dicted labels are denoted by the output unit. The perfor-

mance counters associated with the processor are recorded 

at runtime using the PAPI library and the data is generated 

in the form of. CSV file that is reused for the detection of 

attacks. The detection process works faster to have real-time 

performance in this paper, unlike the existing methods. The 

classifier is trained with several thousands of training sam-

ples to gain the required prediction knowledge. After train-
ing, the model is equipped with intelligence to predict dif-

ferent kinds of attacks. Tensor Flow, a framework from 

Google, is used for realizing softmax classification as part of 

our empirical study. Table 2 shows the parameters used to 

configure Tensor Flow. 

The detection model is implemented using the Python da-

ta science platform. The algorithm proposed for the detec-

tion of cache side-channel attacks is known as Softmax 

Function-Based Machine Learning for Side-Channel Attack 

Monitoring (SFML-SCAM). 

A. Attack Detection Algorithm  

SFML-SCAM algorithm provides the procedure followed 

to detect cache side-channel attacks in real-time. It takes. 

CSV file as input where performance counters data is avail-

able. This data is used to detect different kinds of attacks. 

The data is subjected to softmax classification.  

Algorithm 1:Softmax Function-Based Machine Learning 

for Side-Channel Attack Monitoring (SFML-SCAM) 

Input: Training Data D, Test Data T 

Output: Detection Results R 

 

1. Start  

2. Initialize training data features vector 

F1 

3. Initialize test data features vector F2 

4. F1Extract Features(D) 

5. F2Extract Features(T) 
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6. modelTrain Classifier(F1, Softmax 

Classifier) 

7. RPredict(model, F2) 

8. For each result r in R  

9. IF r=A1 Then 

10. Attack category 1 is detected 

11.    Else If r=A2 Then  

12.       Attack category 2 is detected 

13.    Else If r=A3 Then  
14.       Attack category 3 is detected 

15.    End If 

16. End For 

17. Notify the presence of an attack  

18. Return R 

19. End  

 

 

Algorithm 1:Softmax Function-Based Machine Learning for Side-

Channel Attack Monitoring 

As presented in Algorithm 1, it takes training data and 

testing data as inputs and produces attack detection results. 

For extracting features from the data, it initialized two vec-

tors known as F1 and F2 as in Step 2 and Step 3 respective-

ly. In Step 3 and Step 4, it populate features of training and 

testing datasets into F1 and F2 vectors respectively. In Step 

5, a model is trained using a Softmax classifier based on the 

features extracted from the training set. In Step 5, test set 
features are extracted. A model is fit in Step 6 to have a pre-

diction system with the required intelligence. Then in Step 

6, prediction is carried out on F2 which has training data 

features. The prediction results are saved to the vector R. 

Then from Step 8 through Step 16, an iterative process is 

carried out to identify the presence of an attack and know 

which kind of attack is in each instance of the results vector 

R. Thus it finds different classes of attacks namely A1, A2, 

and A3. Finally, the algorithm returns the detection results 

besides notifying the administrator about the presence of the 

attack.  

B. Attack Mitigation Algorithm  

An algorithm known as Intelligent Noise Addition for At-

tack Mitigation (INA-AM) is defined to mitigate the effect 

of different kinds of side-channel attacks. As presented in 

Algorithm 2, it is evident that it takes cache hits and cache 

Algorithm: Intelligent Noise Addition for Attack Mitiga-

tion (INA-AM) 

Input: Cache Hits H, Cache Misses M 

Output: Noise Cache Hits H’, Noise Cache Misses M’ 

 

1. Start 

2. Initialize noisy cache hits vector H’ 

3. Initialize noisy cache misses vector M’ 
4. hcountCountCacheHits(H) 

5. mcountCountCacheMisses(M) 

6. noisefunc-

tionComputeNoiseFunction(H, M) 

7. For each cache hit h in H 

8. IF the noise function recommends 

noise to h Then 

9. Add noise to h  

10.       Add h to H’ 

11.    End If 

12. End For 

13. For each cache miss m in M 

14.    IF the noise function recommends 

noise to m Then 

15.       Add noise to m 

16.       Add h to M’ 

17.    End If 

18. End For 

19. Output H’ 
20. Output M’ 

21.  End 

 

 

Algorithm 2: Intelligent Noise Addition for Attack Mitigation algo-

rithm 

misses vectors as inputs and returns the noisy cache hits and 

noisy cache misses to confuse the attacker to mitigate the 

effect of cache side-channel attacks. It initializes two vectors 

named H’ and M’ for holding noisy cache hits and noisy 

cache misses in Step 2 and Step 3 respectively. As the ad-

versary depends on the observation of low latency of cache 

hits and high latency of cache misses, it is essential to have 

an intelligent noise function to confuse the attacker. The 

count of cache hits and cache misses are computed in Step 4 

and Step 5. Step 6 computes the noise function which guides 

in adding noise as needed.  Based on the noise function an 

iterative process from Step 7 through Step 12 is used to add 
noise to cache hits. In the same fashion, another iterative 

process from Step 13 through Step 18 is used to add noise to 

cache misses. Finally, the algorithm outputs the noisy hits 

and misses vectors to ensure that the attacks will not be suc-

cessful.  

V. EXPERIMENTAL RESULTS 

Different configurations of VMs are used in the experi-
mental study. The CPU code names are mapped to simpli-

fied configuration names for convenience. The original 

name of the configuration mapped name is presented in Ta-

ble 3. Experiments are made with open-source tools along 

with a prototype that implements the proposed algorithms. 

Experimental results revealed that the proposed framework 

outperforms the state-of-the-art. Observations are made in 

terms of detection rate (%), time (seconds), and CPU usage 

(%). 

Table III: Mapping original CPU code names to configuration names for 

convenience 

Original CPU Code Name Configuration Name 

Intel Xeon E5-2620 v4 2.10 GHz (Broad well) Configuration 1 

Intel Xeon E3-1275v6 3.80 GHz (Kaby Lake) Configuration 2 

Intel Core i5-7400 3.00Ghz (Kaby Lake) Configuration 3 

Intel Core i7-7700 3.60GHz(Kaby Lake) Configuration 4 

Intel Core i7-9700 3.60 GHz (Coffee Lake) Configuration 5 

Intel Core i5-5250U 1.6GHz (Broad well) Configuration 6 

 

Results are observed on normal mode and stress model 

where the stressing tool is used to incur stress on compo-
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nents like I/O, memory, and CPU. Experiments are also 

made in virtualized and non-virtualized environments.  

A.Attack Detection Rate 

Attack detection rate is compared between virtualized and 
non-virtualized environments. Experiments are made with 

the six configurations.  

Table IV: Detection rate performance for two environments in normal and 

stress modes 

CPU 

Configu-

ration 

Attack Detection Rate (%) 

VM Env 

(Normal) 

VM Env 

(Stress) 

Non VM Env 

(Normal) 

Non VM 

Env 

(Stress) 

1 0.984984 0.925925 1 0.95095 

2 0.971971 0.919919 0.9981 0.941941 

3 0.962962 0.929929 0.9961 0.942942 

4 0.987987 0.923923 0.992099 0.943943 

5 0.945945 0.929929 0.9951 0.956956 

6 0.97097 0.928928 1 0.954954 

 

As presented in Table 4, the attack detection rate is pre-

sented in virtualized and non-virtualized environments using 

normal and stress models against different CPU configura-

tions.  

As presented in Figure 4, the CPU configurations are pro-

vided in the horizontal axis while the vertical axis shows the 

detection rate (%). A higher detection rate indicates better 

performance for the proposed method. The highest perfor-

mance is 1 indicating 100% detection rate. It is observed 

that different CPU configurations have exhibited varying 

detection rates. As performance monitors are associated 
with CPU monitors, it is bound to vary for each configura-

tion. There are differences in detection rates in virtualized 

and non-virtualized environments. In the same fashion, there 

are performance differences between normal and stress 

modes against all six configurations.  

B. Execution Time  

Execution time is compared between virtualized and non-

virtualized environments. Experiments are made with the six 

configurations for normal and stress modes.  

Table V: Execution time performance for two environments in normal and 

stress modes 

CPU Con-

figuration 

Time (seconds) 

VM Env 

(Normal) 

VM Env 

(Stress) 

Non VM Env 

(Normal) 

Non VM 

Env 

(Stress) 

1 1.9019 2.1042 1.5015 1.8018 

2 1.9019 2.2044 1.6016 1.9019 

3 1.8018 2.3046 1.6016 1.9019 

4 1.9019 2.2044 1.7017 1.9019 

5 1.7017 2.4048 1.5015 1.8018 

6 1.8018 2.2044 1.5015 1.8018 

 

As presented in Table 5, the execution time is presented in 

virtualized and non-virtualized environments using normal 

and stress models against different CPU configurations. As 

presented in Figure 5, the CPU configurations are provided 

on the horizontal axis while the vertical axis shows the exe-

cution time (seconds). Lower execution time indicates better 

performance for the proposed method. It is observed that 

different CPU configurations have exhibited varying execu-
tion times. As performance monitors are associated with 

CPU monitors, it is bound to vary for each configuration. 

There are differences in execution time in virtualized and 

non-virtualized environments. In the same fashion, there are 

performance differences between normal and stress modes 

against all six configurations.  

 

Fig4: Detection rate comparison for virtualized and non-virtualized envi-

ronments using normal and stress modes 

 

 

Fig 5: Execution time comparison for virtualized and non-virtualized envi-

ronments using normal and stress modes 
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C. CPU Usage 

CPU usage is compared between virtualized and non-

virtualized environments. Experiments are made with the six 

configurations for normal and stress modes.  

Table VI: CPU usage performance for two environments in normal and 

stress modes 

CPU 

Configu-

ration 

CPU Usage (%) 

VM Env 

(Normal) 

VM Env 

(Stress) 

Non VM Env 

(Normal) 

Non VM 

Env 

(Stress) 

1 0.61 0.91 0.71 0.91 

2 0.83 0.91 0.71 0.9 

3 0.72 0.81 0.61 0.82 

4 0.82 1.11 0.71 0.91 

5 0.91 1.11 0.72 0.89 

6 0.91 0.81 0.63 0.92 

 

As presented in Table 6, the CPU usage is presented in 

virtualized and non-virtualized environments using normal 

and stress models against different CPU configurations.  

As presented in Figure 6, the CPU configurations are pro-

vided on the horizontal axis while the vertical axis shows 

the CPU usage (%). Lower CPU usage indicates better per-

formance for the proposed method. It is observed that dif-

ferent CPU configurations have exhibited varying usage of 

CPU. As performance monitors are associated with CPU 
monitors, it is bound to vary for each configuration. There 

are differences in CPU usage in virtualized and non-

virtualized environments. In the same fashion, there are per-

formance differences between normal and stress modes 

against all six configurations. 

VI. PERFORMANCE EVALUATION 

 

Fig 6: CPU usage comparison for virtualized and non-virtualized environ-

ments using normal and stress modes 

The performance of the proposed attack detection method 

is compared with many state-of-the-art methods found in the 

literature. The existing models include the Unsupervised 

Deep Learning (UDL) method [33], Intel Cache Monitoring 

Technology (ICM) and Hardware Performance Counters 

(HPC) tools [34], the Method of AES encryption [35], and 

the HPC method [36]. The comparison is made in terms of 

the tool used to generate required data, used performance 
counter for the experimental study, cache side-channel at-

tacks detected by the models, and the ability to detect stealth 

attacks.  

Table VII: Performance comparison among different side-channel attack 

detection models (the proposed model is highlighted) 

Attack 

Detection 

Method 

The tool 

used to 

Gener-

ate the 

Dataset 

Used Performance 

Counter for Empiri-

cal Study 

Cache 

Side-

Channel 

Attacks 

Detected 

Ability 

to 

Detect 

Stealth 

At-

tack? 

UDL 

method in 

[35] 

PCM 

tool from 

Intel 

L1_INST_MISS 

L1_INST_HIT 

LLC_MISS 

Category 

1 

Category 

3 

N 

ICM and 

HPC 

method in 

[36] 

CMT 

tool from 

Intel 

L1_MISS 

LLC_MISS 

Category 

1 

Category 

3 

N 

Method 

on AES 

Encryp-

tion in 

[37] 

CMT 

tool from 

Intel 

L1_MISS 

LLC_MISS 

Category 

1 

Category 

3 

N 

HPC 

method in 

[38] 

perf tool 

in Linux 
LLC_MISS 

Category 

1 

Category 

3 

N 

SFML-

SCAM 

(Pro-

posed 

Detection 

Model) 

PAPI 

Library 

in Py-

thon  

Instruction Per 

Cycle (IPC), 

L1_MISS, 

L2_MISS, 

LLC_MISS and  

RE-

TIRED_BRANCH 

Category 

1 

Category 

2 

Catego-

ry3 

Y 

 

As presented in Table 7, it is understood that different 

methods used different approaches in tool usage and per-

formance counters usage. UDL method in [33] used the 

PCM tool from Intel to create the dataset and used L1 cache 

hits, L1 cache misses and LLC cache misses as performance 

counters. It could detect category 1 and category 3 attacks. 

ICM and HPC methods in [34] used the CMT tool from 

Intel to create the dataset and used L1 cache misses and 

LLC cache misses as performance counters. It could detect 
category 1 and category 3 attacks. Method on AES encryp-

tion in [35] used the CMT tool from Intel to create the da-

taset and used L1 cache misses and LLC cache misses as 

performance counters. It could detect category 1 and catego-

ry 3 attacks. HPC method in [36] used the perf tool that 

comes in Linux OS to create the dataset and used only LLC 

cache misses as performance counters. It could detect cate-

gory 1 and category 3 attacks. The proposed method named 

SFML-SCAM is capable of detecting all three kinds of at-

tacks. Besides, it has the capability of detecting stealth at-

tacks. It makes use of the PAPI library for making datasets 
at runtime. It uses many performance counters such as In-

struction Per Cycle (IPC), L1_MISS, L2_MISS, 

LLC_MISS, and RETIRED_BRANCH for the detection of 

attacks using a machine learning approach. The proposed 

0
.6

1

0
.8

3

0
.7

2 0
.8

2 0
.9

1

0
.9

1

0
.9

1

0
.9

1

0
.8

1

1
.1

1

1
.1

1

0
.8

1

0
.7

1

0
.7

1

0
.6

1 0
.7

1

0
.7

2

0
.6

3

0
.9

1

0
.9

0
.8

2 0
.9

1

0
.8

9

0
.9

2

1 2 3 4 5 6

C
P

U
 U

S
A

G
E

 (
%

)

CPU CONFIGURATIONS

C P U  U S AG E  C O M P AR I S O N

VM Env (Normal)
 VM Env (Stress)
Non VM Env (Normal)
Non VM Env (Stress)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_29

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 



method thus outperforms the methods found in the state of 

the art.  

VII. DISCUSSION 

Detecting and mitigating cache side-channel attacks is the 
main focus of this paper. Six different configurations of 

VMs are used in an empirical study. The rationale behind 

this is that it ensures a diversity of experiments.  

Table VIII: Performance difference between stress and normal modes in 

terms of detection rate 

Configura-

tions 

Detection Rate Difference  

VM Env 

(Normal) 

VM Env 

(Stress) 

Difference in Detec-

tion Rate 

1 0.984984 0.925925 0.059059 

2 0.971971 0.919919 0.052052 

3 0.962962 0.929929 0.033033 

4 0.987987 0.923923 0.064064 

5 0.945945 0.929929 0.016016 

6 0.97097 0.928928 0.042042 

 

Besides each configuration is considered with normal 

mode and stress mode. In the normal mode, the cache does 
not experience stress while in the stress mode, there is cache 

stress which will have more resource utilization. The pro-

posed methodology for detecting cache side-channel attacks 

showed that there is a difference in the detection rate for 

normal and stress modes for all configurations. 

As presented in Table 8, there is a performance difference 

between the normal and stress models for all configurations. 

In the case of stress mode, the detection rate is slightly  

Table IX: Performance difference between stress and normal modes in 

terms of CPU usage 

Configura-

tions 

Difference in CPU Usage 

VM Env 

(Normal) 

VM Env 

(Stress) 

Difference in 

CPU Usage 

1 0.61 0.91 0.3 

2 0.83 0.91 0.08 

3 0.72 0.81 0.09 

4 0.82 1.11 0.29 

5 0.91 1.11 0.2 

6 0.91 0.81 0.1 

 

Table X: Information leakage against stealth attack 

Attack Detection Method 
Information Leakage due to 

one Stealth Attack (bits) 

UDL method in [35] 189 

ICM and HPC method in [36] 246 

Method on AES Encryption in [37] 345 

HPC method in [38] 195 

SFML-SCAM (Proposed Detection 

Model) 
0 

 

Fig 7: Attack detection rate comparison 

reduced. As presented in Table 9, there is a performance 

difference between the normal and stress models for all con-

figurations in terms of CPU usage. In the case of stress 

mode, the CPU usage is observed to be more except in the 
last configuration. As presented in Fig. 7, the attack detec-

tion rate is presented for VM normal and VM stress models 

with stealth attacks due to its detection mechanism. Other 

existing methods cause information leakage. for different 

configurations. As presented in Table 10, the proposed de-

tection model does not cause information leakage As pre-

sented in Fig. 9, there is no information leakage with the 

proposed detection method as it can handle it. Other meth-

ods caused information leakage in one experiment.  

 

 

Fig 8: Difference in CPU usage 
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Fig 9: Information leakage against stealth attack 

 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a security framework for 

improving Quality of Service (QoS) by detecting and miti-

gating cache side-channel attacks in virtualized environ-

ments. Two algorithms are proposed to realize the frame-

work. They are known as Softmax Function-Based Machine 
Learning for Side-Channel Attack Monitoring (SFML-

SCAM) and Intelligent Noise Addition for Attack Mitiga-

tion (INA-AM). The first algorithm takes care of monitoring 

and detecting cache side-channel attacks and notifying ad-

ministrators while the second one is responsible to mitigate 

the effects of attacks. A machine learning technique assists 

the SFML-SCAM in detecting attacks based on the abnor-

mality in the CPU counters in real-time. The INA-AM algo-

rithm, on the other hand, has a strategy to add noise to the 

cache data to deceive the attacker and mitigate the effects of 

the attack. The usage of the machine learning technique en-
hances the functionality of the SFML-SCAM to detect at-

tacks in real-time. Experiments are made with open-source 

tools along with a prototype that implements the proposed 

algorithms. Information leakage is evaluated for all detec-

tion methods against stealth attacks. Experimental results 

revealed that the proposed framework outperforms the state-

of-the-art. This paper focused on VM side-channel attacks. 

However, the defence fails if the hypervisor is compromised 

to use a tool to launch attacks by adversaries. Therefore, in 

the future, we focus on the VM protection approach against 

compromised hypervisors. 
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