
 

  

Abstract—Knowledge tracing quantifies student’s knowledge 

state by analyzing their interaction with exercises and predicts 

their future answers. This study proposes a Multiple Attention 

Modules-based Knowledge Tracing model to improve the 

representation of learning and forgetting behaviors in 

knowledge tracing. The proposed model employs three 

attention modules to shape learned and forgotten behaviors.  

The conceptual attention module calculates the similarity 

between concepts, while the state attention module measures the 

similarity between concept mastery states. The behavioral 

attention module helps the model to pay explicit attention to 

student’s exercise interactions.  To assess the effectiveness of the 

three attention modules on modeling performance, the study 

explores their impact on learning and forgetting behavior by 

ablating them in turn. The experimental results demonstrate 

that all three attention modules contribute positively to the 

modeling performance. In comparison with several other 

knowledge tracing models, the proposed model shows better 

performance on four real datasets. 

 
Index Terms—attention mechanism, deep learning, 

forgetting behaviors, knowledge tracing, learning behaviors 

 

I. INTRODUCTION 

nowledge tracing employs a Machine Learning 

approach to model the sequence of student exercises. 

This approach analyzes the student's exercise interactions to 

trace their knowledge state. Finally, it predicts the student's 

future performance when answering new questions. This 

method has proven to be effective in the field of smart 

education, and its use has increased in recent years due to the 

growing popularity of online learning platforms. In general, 

KT models take exercise interactions ( )1 2 tX = x ,x ,...,x  as 

input, where ( )t t tx = q ,r  represents the exercise and 

corresponding answer at timestamp t . The answer is 

typically indicated as 0 for incorrect and 1 for correct. The 
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model's output is represented as ( | )= t tP r q , indicating the 

probability that the student will answer future exercises 

correctly.   

Traditional knowledge tracing models include Bayesian 

Knowledge Tracing (BKT)[1], Deep Knowledge Tracing 

(DKT)[2], and Dynamic Key-Value Memory Networks 

(DKVMN)[3]. BKT traces knowledge state based on Hidden 

Markov Model (HMM)[4]. DKT incorporates Deep Learning 

methods and uses recurrent neural networks with hidden 

vectors to represent knowledge state. DKVMN borrows from 

memory networks[5] and uses two external matrices to store 

concepts and knowledge state respectively. 

The above models provide a foundation for tracing student 

knowledge, but do not model learning and forgetting 

behavior in depth. To enhance model's ability to represent 

learning and forgetting behavior, this paper aims to: 

1) The similarity between concepts is described. Firstly, 

the model autonomously generates vector representations of 

concepts and stores them in matrix 
k

M . Secondly, an 

attention mechanism is utilized to obtain attention weights 

between concepts, thereby characterizing their 

interconnections.  

2) The similarity between mastery states of concepts is 

described. Firstly, the model represents the student's mastery 

states of concepts and stores them as vector expressions in the 

matrix 
v

M . Secondly, an attention mechanism is utilized to 

obtain the attention weights between concept mastery states, 

which describes the similarity between students as they learn 

and forget these concepts. 

3) Multiple attention modules-based knowledge tracing 

is proposed. Firstly, an attention mechanism is employed to 

model the forgetting behavior, where the output results are 

represented by the vector to . Secondly, by utilizing the 

similarity between the concept mastery state and vector to , 

the learning vector and forgetting vector of the student are 

obtained to update the concept mastery state, thus modeling 

the process of knowledge state change. 

II. RELATED WORK 

A. Knowledge Tracing 

BKT is the most representative of the probabilistic 

knowledge tracing models, and was the first to propose a 

model for knowledge tracing. BKT uses binary variables to 

represent student’s mastery of concepts and updates them 

based on their past exercise interactions using HMM. 

BKT models concepts individually, but in reality, they are 

interconnected and hierarchical[6]. To address this limitation, 

Kaser et al.[7] proposed a Dynamic Bayesian Knowledge 

Multiple Attention Modules-based Knowledge 

Tracing 
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Tracing that represents multiple concepts jointly, improving 

the model's representational power. Moreover, BKT has also 

extended TLS-BKT[8]  and other models. However, they 

ignore the impact of similarities between concepts on the 

student's knowledge state 

DKT is the first model that applies Deep Learning methods 

to knowledge tracing, using recurrent neural networks[9] or 

long short-term memory networks[10] to trace student's 

knowledge state. DKVMN proposes a key matrix to store the 

concept, and a value matrix stores the student's mastery of the 

concept to trace student's knowledge state. DKT and 

DKVMN achieved good results in predicting student’s future 

performance. However, rather than modeling forgetting 

behavior, they opted to utilize memory erasure mechanisms. 

Suragani et al.[11] introduced three new input features, 

namely the number of hints, first response time, and the 

number of attempts, to DKT, in order to enhance its 

performance. Yeung et al.[12] utilized DKVMN to track the 

student's knowledge state, and combined it with Item 

Response Theory (IRT) to extract the student's ability and the 

exercise's difficulty, resulting in improved performance of 

the model. Liu et al.[13] proposed a hierarchical memory 

network inspired by the mechanism of human memory. Sun 

et al.[14] proposed Collaborative Embedding for Knowledge 

Tracing, which incorporates the student's interactions with 

exercises and the connections between exercises and 

concepts. Abdelrahman et al.[15] utilized a Hop-LSTM 

model, which is based on DKVMN, to capture the long-term 

dependencies of the student's interaction with the exercises, 

and achieved promising results. 

Although these models have shown improved performance 

in knowledge tracing, they continue to use memory erasure 

mechanisms to model the forgetting behavior of students. 

However, this approach may not be reasonable. Sandoval et 

al.[16] argue that forgetting is a necessary part of the brain's 

memory system to maintain a balance between encoding and 

integrating new information. Forgetting helps to eliminate 

unused or unwanted memories or inhibit their expression. 

Ebbinghaus forgetting curve[17] indicates that forgetting 

starts immediately after learning and the initial phase of 

forgetting is rapid. Subsequently, forgetting gradually slows 

down, and the degree of forgetting is influenced by the 

number of repetitions and the time interval between learning 

sessions. 

Nagatani et al.[18] proposed DKT-F, which improves 

DKT by considering three factors that influence forgetting: 

the number of times a concept is repeatedly learned, the time 

interval between learning the same concept, and the time 

interval of learning. However, this model does not consider 

the influence of student’s mastery states of the concept and 

the similarity between concept mastery states on forgetting 

behavior. In contrast, inspired by educational psychology, Li 

et al.[19] proposed LFKT: a deep knowledge tracing model 

that merges learning and forgetting behavior. LFKT 

considers not only the above three factors affecting forgetting 

but also the influence of student’s conceptual mastery states 

on forgetting behavior. However, this model did not take into 

account the influence of the similarity between concept 

mastery states on forgetting behavior. 

In general, most researchers have not modeled student’s 

forgetting behavior, but have used memory erasure 

mechanisms instead, or have modeled forgetting behavior but 

with incomplete consideration. Most researchers have traced 

student’s knowledge state using only practice interactions 

and used them as direct inputs to the model, without 

explicitly focusing the model on these interactions. 

To address the aforementioned issues, this paper draws 

inspiration from research findings in cognitive 

neuroscience[16] and proposes a knowledge tracing model. 

This model integrates the modeling of both learning and 

forgetting behavior by considering various factors that 

influence them. It also places explicit focus on practice 

interactions. 

B. Attention Mechanism 

Biologically, attentional mechanisms[20] allow humans to 

selectively focus their attention based on nonvolitional and 

volitional cues[21]. Nonvolitional cues refer to situations 

where a person acquires information unconsciously, such as 

when a book and a red glass are placed together. The person 

first notices the red glass or even ignores the book because 

the color of the glass is more eye-catching. Volitional cues, 

on the other hand, occur when a person acquires information 

consciously. In the same scenario, if the person intends to 

read, they will first notice the book and even disregard the 

glass's presence. 

Before the emergence of attention mechanisms, neural 

networks, such as convolutional neural networks and 

recurrent neural networks, only accounted for nonvolitional 

cues when processing input features. For instance, the 

maximum pooling layer retains the max feature values in a 

given region, without consciously focusing on specific 

feature values. The attention mechanism addresses this 

limitation by mapping a query and a set of key-value pairs to 

an output. Here, the query acts as a volitional cue, while the 

key and value serve as nonvolitional cues. The output is the 

weighted sum of the values, with each weight assigned based 

on the similarity between the query and the key. As the 

attention mechanism considers volitional cues, the output 

becomes biased towards certain input features, allowing for 

more explicit attention to be placed on these features by the 

model. 

The self-attention mechanism is a variation of the attention 

mechanism with a similar idea. However, in the self-attention 

mechanism, the query, key, and value are all the same, 

reducing dependence on external information and improving 

the capture of internal data similarity. 

III. MODEL 

In this paper, we propose a model called Multiple 

Attention Modules-based Knowledge Tracing (MAKT). The 

overall structure of the model is illustrated in Figure 1. 
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Fig. 1.  Multiple Attention Modules-based Knowledge Tracing 

 

MAKT is composed of five distinct modules: the 

conceptual attention module, the state attention module, the 

behavioral attention module, the update module, and the 

prediction module. The conceptual attention module 

computes the similarity between concepts in the matrix 
k

M


 kd N
. The state attention module computes the 

similarity between the concept mastery states in the matrix 
vv

M



d N

. The behavioral attention module provides the 

model with more explicit attention to exercise interactions. 

The update module updates the matrix 
v

t -1M  using the output 

from the state attention module and the behavioral attention 

module. The prediction module forecasts the student's 

performance at time t  based on the matrix 
v

t -1M . 

A. Introduction to Attention Modules 

Although many previous studies have recognized that the 

similarity between concepts and mastery states can impact 

student’s learning and forgetting behaviors, recent findings in 

cognitive neuroscience indicate that the similarity between 

mastery states has a more direct influence on these 

behaviors[16]. This similarity refers to which students learn 

and forget concepts in a similar manner. 

The conceptual attention module is designed to capture the 

concept similarity features, with its output represented by the 

concept attention matrix tG . The state attention module is 

responsible for capturing the concept mastery state similarity 

components, and its output is represented by the state 

attention matrix tC . 

On the other hand, Previous researchers have primarily 

focused on the influence of exercise interactions ( E ) on 

student’s learning and forgetting behaviors, using it as a 

direct input to the knowledge tracing models. However, they 

have overlooked the impact of certain behaviors on exercise 

interactions during the learning process, such as the number 

of repetitions of learning ( R ), the sequence time interval ( S ), 

and the learned time interval ( L ). For example, the higher 

the value of L  and the smaller the values of S  and R , the 

better the outcome of student’s exercise interaction. To 

address the issue, this paper incorporates volitional cues into 

the behavioral attention module to increase the model's 

explicit attention to exercise interactions. As a result, the 

output is represented by the behavioral attention vector to . 

B. Multiple Attention Modules-Based Knowledge Tracing 

1) Conceptual Attention Module 

The conceptual attention module uses the matrix 
k

M


 kd N
, which stores the concept, as input to calculate 

the similarity between concepts. The resulting calculation is 

represented by the concept attention matrix tG . Inspired by 

Ashish et al.[22], MAKT uses the scaled dot product 
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self-attention mechanism: 

Softmax( )

T
k k

kt -1 t -1
t t -1

M M
G M=

kd
 (1) 

where 1Softmax( ) ( )N

n= nx

i ix = x / e ; the matrix 
k

t -1M  

stores vectors representing concepts; the concept attention 

matrix tG


 kd N
 is the result of the calculation, which 

contains information about the similarity between concepts. 

To calculate the similarity between the concepts in 

exercise tq , we first convert tq  into one-hot encoding, and 

then multiply it with the embedding matrix A


 kd N
 to 

obtain the exercise embedding vector 
1

tk


 kd . The vector 

tk  is then multiplied by the concept attention matrix tG  to 

obtain the association weight 
tw , which represents the 

similarity between the concepts contained in exercise tq ： 

Softmax( )
t t t

w k G=   (2) 

2) State Attention Module 

The state attention module uses the matrix 
Nvv

M



d

, 

which stores the concept mastery states, as input to calculate 

the similarity between concept mastery states. The resulting 

calculation is represented by the state attention matrix tC : 

Softmax( )

T
v v

vt -1 t -1
t t -1

M M
C M=

vd
 (3) 

where the matrix 
v

t -1M  stores vectors representing the 

concept mastery states; the state attention matrix
Nv

tC



d

 

is the result of the calculation, which contains information 

about the similarity between concept mastery states. 

3) Behavioral Attention Module 

In the behavioral attention module, The student's exercise 

interactions E  are converted into a one-hot encoding first, 

and then multiplied with the embedding matrix 
2

B


 vd N
 

to obtain a vector 
1

te


 vd
, which represents the student's 

exercise interactions. The values of R , S , and L  are 

concatenated to form a row vector [ , , ]R S L  of dimension 

three and are then normalized. The resulting vector is then 

multiplied with the embedding matrix 
3

D


 vd
 to obtain a 

vector 
1

tv


 vd
, which represents the student's behavior 

during the learning process.  

Certain student behaviors during the learning process have 

a direct impact on exercise interactions. MAKT leverages an 

attention mechanism to reveal the relationship between the 

two. By using vector tv  to represent volitional cues as the 

input for the query, and vector te  to represent nonvolitional 

cues as the input for the key and value, MAKT becomes more 

explicitly attentive to exercise interactions with the addition 

of volitional cues: 

Softmax( )T

t t t to v e e=  (4) 

where, the behavioral attention vector to  is the result of 

the calculation, and its dimension is vd , which is a composite 

representation of R , S , L  and E . 

4) Update Module 

The behavioral attention vector to  and the state attention 

matrix tC  are essential in modeling learning and forgetting 

behavior. They are spliced and fed into a fully connected 

layer with a Tanh activation function, resulting in a vector 
1 vd

ta


  that represents a composite of the to  and tC  

components: 

1 1)[anh( ,T ]
t t

T

t
a ow C b= +  (5) 

To convert the vector ta  into a forgotten vector 

1 vd

tf


 , a fully connected layer with a Sigmoid activation 

function is used: 

Sigmoid( )T

t f ff W a b= +t  (6) 

where Sigmoid( ) 1 / (1 )i-x

ix = + e , it is used to ensure that the 

forgotten vector 
tf  is a valid probability distribution, where 

each element in 
tf  represents the probability that the 

corresponding concept has been forgotten. And f
W  is the 

weight matrix of the fully connected layer, f
b  is the bias 

vector. 

To convert the vector ta  into a learning vector 
1 vd

tu


 , 

a fully connected layer with a Tanh activation function is 

used: 

Tanh( )T

t u t u
u W a b= +  (7) 

where Tanh( ) ( ) / ( )i i i ix -x x -x

ix = e - e e +e , it is utilized to 

constrain the output values of the fully connected layer within 

a suitable range, allowing the modeling of learned behavior. 

Each element in the resulting learning vector tu  corresponds 

to a learned concept. And uW  is the weight matrix of the 

fully connected layer, u
b  is the bias vector. 

The matrix 
v
t -1M  is updated by utilizing the learning 

vector tu  and forgetting vector tf , along with the associated 

weights tw : 

( ) ( )(1 ) ( )v v

t t -1 t t t
M i M i f u w i= − +  (8) 

5) Prediction Module 

In the prediction module, the association weights tw  are 

multiplied by the matrix 
v

t -1M  to obtain the vector tn , which 

is the output of the student's concept mastery state: 
v

t t t -1
w Mn =  (9) 

Considering that there will be some differences between 

exercises, such as different difficulty coefficients, the 

exercise embedding vector tk  is concatenated with the 

vector tn . This concatenated vector contains both the 

student's conceptual mastery state and the exercise 

information. Inputting this vector to the fully connected layer 

with the Tanh activation function to obtain the vector ti : 

2 2Tanh( [ , ] )T

t t t
w n ki b= +  (10) 

Finally, an output layer with a Sigmoid activation function, 

used ti  as input, is used to predict how well students will 
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perform on exercise tq : 

3 3Sigmoid( )T

t
w i b= +tp  (11) 

C. Training 

In the training process, we use the cross-entropy loss 

function to minimize the discrepancy between the predicted 

and actual labels and to learn the embedding matrices A , B , 

D , as well as other parameters like 
k

tM . 

( log (1 ) log(1 ))= − + − − t t t t

t

Loss r p r p  (12) 

IV. EXPERIMENTS 

A. Dataset 

To validate the effectiveness of the MAKT model, 

experiments were conducted on four actual datasets: 

ASSISTments2012, ASSISTments2017, Slepemapy.cz, and 

JunyiAcademy. For the sake of brevity, they will be referred 

to as Assist12, Assist17, Slepemapy, and Junyi respectively. 

Table I displays the fundamental information of the four 

datasets. 

 

TABLE I 

DATASET INTRODUCTION 

Dataset 
Number of 

Students Records Concepts 

Assitst12 46674 5818868 266 

Assitst17 1709 942816 102 

Slepemapy 87952 10087305 1458 

Junyi 238120 26666117 684 

 

Compared to ASSISTments2009, the Assist12 and 

Assist17 datasets provide more information about student’s 

answers, such as startTime and endTime. However, Xiong et 

al.[23] found problems with the ASSISTments2009 dataset, 

such as duplicate records and confusion between central 

questions and scaffolding questions. Although the 

ASSISTments platform promptly resolved the issue of 

duplicate records, it still mixes the main question with the 

scaffolding question in different researchers' studies. This 

paper's experiments will address these issues by filtering out 

scaffolding questions and removing student exercise 

interactions with fewer than three interaction records. 

B. Evaluation indicators 

In this paper, we evaluate the performance of the proposed 

model using two commonly used metrics in the field of 

knowledge tracing: AUC (Area Under Curve) and ACC 

(Accuracy). AUC is calculated as the area under the ROC 

(Receiver Operating Characteristic) curve and ranges 

between 0.5 and 1. A value of 0.5 indicates a random 

prediction model, while a higher value indicates better 

prediction performance. ACC is the ratio of correct 

predictions to total predictions, and a higher value indicates 

more accurate predictions. 

C. Experimental Details 

The experimental environment of this paper is shown in 

Table II. 

 

TABLE II 

EXPERIMENTAL ENVIRONMENT 

Experimental 

configuration 
Parameter Value 

OS Windows 11 

CPU Inter(R) Core(TM) i9-9900K CPU@3.60GHz  

GPU NVIDIA GeForce RTX 3080 Ti 

Python 3.10 

Pytorch 1.10.2 

RAM 64GB 

 

In each dataset, 80% of the data is allocated as the training 

set and 20% is allocated as the test set. From the 20% of the 

training set, a further 20% is randomly selected as the 

validation set, which is used to tune the hyperparameters and 

select the best model. 

To account for variations in the number of students, 

exercise interactions, and concepts across datasets, we set the 

initial learning rate to 0.001, which is relatively high, and 

employ learning rate decay after every ten training epochs. 

We use Adam as the optimizer and a batch size of 32. The 

model parameters are initialized randomly with a Gaussian 

distribution with a mean of zero and a standard deviation. 

The MAKT model also has a dimensional vd  of the 

concept mastery state and a dimensional kd  of the concept in 

terms of parameter settings. To simplify the calculation, d  is 

set to be equal to both vd  and kd . The model's performance 

is evaluated based on the AUC value, and the impact of 

different parameters on its performance is explored. The 

experimental results are presented in Table III. 

 

TABLE III 

HYPERPARAMETERS IMPACT AUC VALUE 

d Assist12 Assist17 Slepemapy Junyi 

8 0.803 0.745 0.813 0.809 

16 0.807 0.754 0.825 0.839 

32 0.810 0.769 0.831 0.827 

64 0.816 0.784 0.826 0.844 

128 0.815 0.779 0.825 0.817 

 

The experimental results indicate that the MAKT model's 

performance is affected by different hyperparameter settings. 

Specifically, in the Assist12 dataset, the optimal model 

performance is achieved when d is set to 64, resulting in an 

AUC of 0.816. In the Assist17 dataset, the optimal model 

performance is also achieved when d is 64, resulting in an 

AUC of 0.784. For the Slepemapy dataset, the optimal model 

performance is achieved when d is set to 32, resulting in an 

AUC of 0.831. Finally, in the Junyi dataset, the optimal 

model performance is achieved when d is set to 64, resulting 

in an AUC of 0.844. 

D. Effect of Different Modules on Model Performance 

This study aims to investigate the impact of the 
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performance of the model by ablating the three attention 

modules (conceptual attention module, state attention module, 

and behavioral attention module) in MAKT. To replace the 

ablated modules, the corresponding functions of DKVMN, 

which also uses external matrices to store concepts and 

mastery states of concepts, are used instead. Table IV 

presents the specific structure of the model, where MAKT-C 

denotes that only the conceptual attention module is retained 

while the other two modules are ablated. 

 

TABLE IV 

MODELS FOR FUSING DIFFERENT MODULES 

Conceptual 

Attention 

Module 

State 

Attention 

Module 

Behavioral 

Attention 

Module 

Model 

√   MAKT-C 

 √  MAKT-S 

  √ MAKT-B 

√ √  MAKT-CS 

 √ √ MAKT-SB 

√  √ MAKT-CB 

√ √ √ MAKT 

 

This paper compares the model in Table IV with DKVMN 

on four real data sets for performing experiments. The 

experimental results are shown in Table V and Table VI. 

 

TABLE V 

COMPARISON OF AUC VALUES OF DIFFERENT MODELS 

Model 
Dataset 

Assist12 Assist17 Slepemapy Junyi 

MAKT-C 0.733 0.693 0.803 0.817 

MAKT-S 0.753 0.738 0.824 0.839 

MAKT-B 0.747 0.709 0.809 0.820 

MAKT-CS 0.756 0.745 0.821 0.833 

MAKT-SB 0.781 0.768 0.829 0.841 

MAKT-CB 0.750 0.711 0.800 0.832 

MAKT 0.816 0.784 0.831 0.844 

DKVMN 0.732 0.707 0.792 0.822 

 

TABLE VI 

COMPARISON OF ACC VALUES OF DIFFERENT MODELS 

Model 
Dataset 

Assist12 Assist17 Slepemapy Junyi 

MAKT-C 0.701 0.695 0.753 0.735 

MAKT-S 0.728 0.720 0.785 0.763 

MAKT-B 0.715 0.711 0.763 0.741 

MAKT-CS 0.720 0.720 0.785 0.761 

MAKT-SB 0.737 0.722 0.797 0.768 

MAKT-CB 0.709 0.697 0.763 0.743 

MAKT 0.749 0.724 0.803 0.770 

DKVMN 0.686 0. 677 0.743 0.751 

 

The experimental results demonstrate that the performance 

of MAKT is superior to that of DKVMN in most cases, even 

though some models in the Junyi dataset have lower 

performance than DKVMN. Furthermore, the higher the 

number of retained modules in MAKT, the higher the model's 

performance. This suggests that incorporating inter-concept 

similarity, concept mastery state similarity, and volitional 

cues can help trace student’s knowledge state more 

effectively. 

Among the three MAKT models, MAKT-S achieves the 

best performance, followed by MAKT-B and MAKT-C. This 

indicates that the state attention module is the most important 

when modeling learning and forgetting behavior, followed by 

the behavioral attention module, and then the conceptual 

attention module. This is also evident in the comparison of 

the three models, MAKT-CS, MAKT-SB, and MAKT-CB, 

where the model including the state and behavioral attention 

modules performs the best, the model containing the state and 

conceptual attention modules comes in second, and the model 

including the behavioral and conceptual attention modules 

has the lowest performance. 

E. Comparative Analysis of Model Performance 

To evaluate the model’s performance in this paper, MAKT 

is compared with other KT models. The experimental results 

are shown in Table VII and Table VIII. 

 

TABLE VII 

AUC VALUES OF DIFFERENT KNOWLEDGE TRACING MODELS 

Model 
Dataset 

Assist12 Assist17 Slepemapy Junyi 

DKT 0.717 0.726 0.742 0.814 

DKT-F 0.722 0.729 0.749 0.840 

DKVMN 0.732 0.707 0.792 0.822 

LFKT 0.751 — 0.803 — 

MAKT 0.816 0.784 0.831 0.844 

 

TABLE VIII 

ACC VALUES OF DIFFERENT KNOWLEDGE TRACING MODELS 

Model 
Dataset 

Assist12 Assist17 Slepemapy Junyi 

DKT 0.679 0. 682 0.731 0.744 

DKT-F 0.685 0.681 0.753 0.759 

DKVMN 0.686 0. 677 0.743 0.751 

LFKT 0.723 — 0.762 — 

MAKT 0.749 0.724 0.803 0.770 

 

Based on the experimental results presented in this paper, 

it was observed that DKT-F outperformed DKT in the four 

real datasets, as DKT-F models forgetting behavior based on 

DKT. Additionally, DKVMN demonstrated higher overall 

AUC and ACC values than DKT due to its unique approach 

of modeling the mastery state of each concept instead of just 

the overall knowledge state of the student. The varying 

performance among these models is attributed to their diverse 

modeling strategies. 

In comparison to DKVMN, both MAKT, and LFKT 

demonstrated higher AUC and ACC values on the four real 

datasets, as they model forgetting behavior while also 

modeling student’s learning behavior. However, MAKT 

outperformed LFKT primarily because it considers not only 
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the influence of concept mastery state on student learning and 

forgetting behavior, but also the influence of similarity 

between concepts and similarity between concept mastery 

states on these behaviors. Additionally, MAKT adds 

volitional cues to give explicit attention to the exchange of 

exercises. Overall, the AUC and ACC values of MAKT 

exceeded those of the baseline model on all datasets, 

indicating that the model performance of this paper has some 

advantages. 

F. Model consistency comparison experiment 

If student A and student B are answering the same exercise 

related to concept C, it is more likely that student A will 

answer correctly if student A’s knowledge state of concept C 

is better than that of student B. Degree of Agreement (DOA) 

quantifies the quality of the knowledge state portrayed by the 

model based on this fact. The DOA metric is calculated by 

the following formula： 

1 1 1

( , , ) ,1
( , )

( , , )

a bS S M
jc jca b

c c jc

a b j

C c a b r r
V V I

Z C c a b= = =

 ( )
 DOA(c)=  

where 
a

cV denotes the knowledge state of student a  about 

the concept c ; ,x y( ) = if x y , otherwise ,x y( ) =  ;  

1jcI = if exercise j  contains the concept c , 

otherwise 0jcI = ;  ( , , ) 1C c a b = if both student a  and 

student b  answered the exercise about concept c , 

otherwise ( , , ) 0C c a b = . 
a

jcr  denotes the true state of student 

a  answer to exercise j   about the concept c . The average 

DOA value was used to evaluate the quality of the knowledge 

state traced by the model for each concept. Figure 2 illustrates 

the comparison between MAKT and the baseline model in 

terms of DOA. 

The results in Figure 2 demonstrate that the DOA values 

for MAKT are consistently higher than those of the baseline 

model across all datasets. This suggests that the knowledge 

state generated by the MAKT model are more accurate, of 

higher quality, and more closely aligned with the actual 

situation than those generated by the comparison model. 

G. Model training efficiency comparison experiment 

The number of iterations during model training is 

indicative of the model's training efficiency. A lower number 

of iterations implies a higher training efficiency, provided 

that the optimal AUC and ACC values are achieved. Figure 3 

presents the experimental results comparing the number of 

iterations in MAKT and the baseline model. 

Figure 3 presents the experimental results comparing the 

number of iterations in MAKT and the baseline model 

training on all datasets. The findings indicate that MAKT has 

higher training efficiency than other baseline models, as the 

number of iterations required for MAKT training is 

consistently lower. 

Further, we explored the training time efficiency of 

MAKT and the comparison models. Specifically, we 

compared the average running time of training a single batch 

of different models on the Assist12 dataset. The experimental 

results are shown in Table IX. 

 

TABLE IX 

COMPARISON OF TRAINING TIME EFFICIENCY OF EACH MODEL 

Model DKT DKVMN DKT-F LFKT MAKT 

Time 28.30 17.53 30.68 53.41 19.68 

 

 
Fig. 2.  DOA value of the models 

 

 
Fig. 3.  Iterations value of the models 
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As can be seen from table IX, The training time required 

for a single batch of MAKT is lower than that of most of the 

other models used for comparison. On the other hand, LFKT 

takes the longest time for training a single batch, followed by 

DKT and DKT-F, which is related to their use of RNN or 

LSTM models. When computing LSTM networks, gating 

units such as forgetting gates, input gates, and output gates 

need to calculate the current output based on the previous 

output results, which increases the time cost. 

V. CONCLUSION 

In this study, we propose a model called Multiple 

Attention Modules-based Knowledge Tracing (MAKT), 

which aims to improve the representation of learning and 

forgetting behaviors in knowledge tracing. MAKT employs 

three attention modules: the conceptual attention module 

discovers concept-to-concept similarities; the state attention 

module detects similarities between student’s concept 

mastery states; and the behavioral attention module amplifies 

the model's attention on exercise interactions. The three 

modules work together to model student’s learning and 

forgetting behaviors. The update module describes changes 

in student’s concept mastery states, and the prediction 

module forecasts their future answers. This paper 

experimentally investigates the effects of different modules 

on model performance and compares them with multiple 

knowledge tracing models on four real data sets. The 

experimental results reveal that the multiple attention 

modules proposed in this paper effectively trace student’s 

knowledge state and outperform other models in terms of 

performance. 
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