
 

  

Abstract—The contemporary paradigm for developing novel 

distribution grids is centered on the integration of distributed 

generations (DGs) and shunt capacitors (SCs) within the 

distribution infrastructure. Unreasonable DG and SC 

configurations may have a negative impact on grid line loss and 

voltage quality. The goal of optimal allocation research of 

distribution network (OARDN) is to allocate distributed 

generators (DGs) and shunt capacitors (SCs) in the distribution 

network in a rational manner to minimize power losses, 

enhance voltage quality, and ensure secure and stable power 

supply to the loads. Aiming at the critical OARDN problems, 

such as minimizing power loss and improving voltage quality, 

this paper proposes an improved sand cat swarm optimization 

algorithm (ISCSO). To address the issue of the original SCSO 

being prone to local optima and low search accuracy, this 

method introduces a tent map-based chaotic strategy and 

reverse learning approach to augment the precision of the 

optimization, and proposes a cross-learning mechanism to 

expand the global search ability, and this method is used to 

solve the single-objective problem. Based on ISCSO, the 

sensitivity analysis method and pareto non-inferior sorting 

method are introduced, which is extended to the MOISCSO 

algorithm to solve multi-objective OARDN problem.  

Simulation experimental results on IEEE33, IEEE69, and 

IEEE119 test systems and comparison with other scholars' 

research results show that the proposed method is practical and 

competitive for solving single-objective and multi-objective 

OARDN problems. 

 

 
Index Terms—tent map-based chaotic strategy, reverse 

learning approach, cross-learning mechanism, sensitivity 

analysis method 
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I. INTRODUCTION 

ISTRIBUTION network is the last link in power 

transmission grid, and the quality of its power 

transmission is the most important concern for electricity 

consumers [1]. In conventional distribution network, the 

electrical energy is mainly provided by the main substation at 

the beginning, and the voltage will fall along the power 

transmission direction thus resulting in a voltage lower than 

the rated voltage at the terminal, in addition, during 

transmission, the power losses in the system are very high, 

sometimes reaching about 30% of the load of the entire 

distribution system due to the excessive length of the 

transmission lines and the aging of the equipment [2], which 

further adversely affects the voltage distribution in the 

system [3], and this is a major challenge for the grid operator. 

Many scholars have found that the power loss is caused by 

reactive power, and try to deploy shunt capacitors (SCs) to 

reduce the power loss. SC has been widely used in radial 

distribution system because of its lower operating cost, lower 

loss and simple maintenance [4-6]. 

In recent years, a new distribution network has been 

established under the extensive research of renewable energy 

and the large-scale application of distributed generation. The 

introduction of distributed generators (DGs) in the 

distribution network results in a shift from unidirectional 

power flow to bidirectional power flow, which effectively 

reduces the power loss of the entire system and leads to a 

significant improvement in voltage quality [7-10]. Therefore, 

it is a current trend to combine DG and SC to optimize the 

power flow of distribution network [11]. However, 

reasonable DGs and SCs configurations have positive effects 

on the distribution network. In contrast, unreasonable 

configurations may not be beneficial to the distribution 

network and even have a noticeable impact on the 

distribution network [12,13]. Therefore, it is very essential to 

determine the location and capacity of DGs and SCs to 

minimize power loss and improve the voltage quality, which 

makes the OARDN problem a very interesting and hot 

research topic in recent years [14]. 

OARDN problem is a nonlinear and constrained 

optimization problem, for such an optimization problem, 

previous research methods often relied heavily on 

mathematical approaches for problem-solving [15-17], but 

the traditional methods to solve such problems have strong 

limitations, while the population intelligence optimization 

algorithms derived in recent years can solve the OARDN 

problem well, such as the discrete artificial bee colony 

algorithm [18], DE algorithm [19,20], HPSO algorithm [21], 

Optimal Allocation Research of Distribution 

Network with DGs and SCs by Improved Sand 

Cat Swarm Optimization Algorithm 

Hongyu Long, Yuqiang He, Yuansen Xu*, Chun You, Diyang Zeng and Hu Lu 

D 

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_34

Volume 50, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

and hyper-cube ant colony algorithm [22], and many scholars 

have given solutions. Srinivas Nagaballi has studied the 

problem by using strategy with game theory for the optimal 

allocation of distributed power sources in railroad systems 

[23]. Truong proposes the QOCSOS algorithm with a chaotic 

local search strategy to optimize the allocation of distributed 

power sources [24]. Mikail Purlu and Belgin Emre Turkay et 

al. used heuristics to minimize annual energy loss and voltage 

deviation indexes for the optimal configuration of renewable 

distributed power sources [25]. Armin Arasteh applied 

IWOA to find the best spots and sizes for distributed 

generation units [26]. M. R. ELKADEEM proposed a novel 

approach to improve the HHO algorithm for solving the 

OARDN problem [27]. T. S. Tawfeek proposed the analytical 

algorithm and PSO algorithm and used these two algorithms 

for tidal analysis of distribution networks [28]. Most of the 

above literature mainly solved the single-objective OARDN 

challenge. For the multi-objective OARDN challenge, many 

scholars used the weighting coefficient method to accumulate 

multiple objective values, and such a method has strong 

subjectivity and limitation, and it is difficult to determine a 

reasonable weighting coefficient [29,30]. In the traditional 

OARDN research, most scholars prefer to study the 

optimization effect of different configurations of DG on 

optimization objective function. While the joint 

configuration of DG and SC is seldom studied. At the same 

time, many scholars ignore the influence of the power factor 

of DG on the optimization results. For this reason, this paper 

investigates the number and location of DG and SC and the 

setting of power factor. 

On this basis, the improved sand cat swarm optimization 

algorithms (ISCSO and MOISCSO) are proposed in this 

paper and applied to the OARDN problem for the first time. 

For the OARDN problem with nonlinear and multiple 

constraints, two different constraint processing strategies are 

proposed to adapt the single-objective and multi-objective 

optimization issues, respectively. Simulation experiments are 

performed on three different test systems, namely IEEE33, 

IEEE69, and IEEE119, to confirm the efficacy of the 

proposed approach. The results are then compared to those of 

other researchers. The simulation outcomes demonstrate that 

the proposed method offers significant advantages in solving 

the OARDG problem with DGs and SCs, which leads to 

enhanced safety and stability of the distribution network. 

The remainder of the paper is organized as follows: 

Section II presents the mathematical model of OARDN. 

Section III shows the improved methods of ISCSO and 

MOISCSO. Section IV shows the application of the proposed 

methods to single-objective and multi-objective OARDN 

problems with DG and SC, and Section V provides a 

comprehensive conclusion. 

II. PROBLEM FORMULATION 

Essentially, the OARDN problem is a nonlinear 

multi-constraint optimization problem with complex 

engineering application background. This study achieves the 

optimal sizing and placement of DGs and SCs in the 

distribution network, considering specific objectives and 

fulfilling all the constraints. Therefore, from the 

mathematical form, the OARDN problem consists of three 

parts: the optimization of the objective function, fulfillment 

of the constraints, and the techniques used to address these 

constraints. 

A. Objective Functions 

1) Minimum active power loss 

The power in the distribution network comprises both 

longitudinal and transverse components of energy, given that 

the power factor is typically lower than 1. Whether it is power 

grid operators or power consumers, we are more concerned 

about the active power loss in the whole system [31]. 

Therefore, the first optimization function is to reduce the 

active losses in the system. 

 
2

, Liloss Li LiP I R=   (1) 
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1
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loss loss Li

i

P P
=
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 1 min( )lossf P=  (3) 

Ploss,Li represents the active power loss of the ith branch, ILi 

represents the current flowing through the ith branch, RLi 

represents the total resistance on the ith branch, and NL 

represents the total number of branches in the system, Ploss 

represents the sum of the active power losses of all branches, 

i.e., active component of grid losses. The objective function 

aims to reasonably allocate the location and size of the DGs 

and SCs connected to the distribution network to reduce the 

active network loss of the whole system. 

2) Minimal voltage deviation 

In power distribution systems, the evaluation criteria for 

electric energy include the quality of voltage. In the 

traditional distribution networks, power is always provided 

by the head end, and the voltage at the end nodes of the 

system is often lower than the rated voltage. When 

distributed power sources and reactive power compensators 

are connected to the distribution network, they have a 

positive impact on the system, but the unreasonable 

configuration of DGs and SCs can cause shocks to the system, 

making the voltage at some nodes exceed the rated voltage. 

Therefore, minimizing the total voltage deviation in the 

system is the second optimization objective that should be 

considered. Its mathematical form is reflected in equation (4): 

 2

1

( )
QN

i ref

i

CVd V V
=

= −  (4) 

 2 min( )f CVd=  (5) 

In which, CVd denotes the voltage deviation, Vi denotes 

the voltage of the ith PQ node, and Vref represents the 

reference voltage, with a unit value of 1 (p.u.). NQ denotes the 

number of PQ nodes. The objective function aims to raise the 

voltage of all nodes to a rated voltage of about 1.0 (p.u.). 

B. Constraints 

All constraints must be met for all configurations of 

equipment aimed at solving the objective function. The 

constraints of OARDN include an equality part and an 

inequality part. 

1) Equality Constraints 

When optimizing the objective function in OARDN, it is 

necessary to ensure the power balance constraint is satisfied 

for both active and reactive power [32].  

The equations are defined as follows: 
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Where PS, QS denote the active and reactive power 

supplied by the substation, PDG,k, QDG,k denotes the two 

components of capacity output of the kth distributed 

generation (when the power factor of distributed generator is 

not 1). QSC,m denotes longitudinal component of capacity 

injected by the mth SC equipment. PLoad,j and QLoad,j denotes 

the components of capacity on the jth node. Ploss,Li and Qloss,Li 

denotes the power losses on the ith branch. NDG is the 

quantity of distributed generations, NSC is the quantity of 

static reactive power compensators, and Nn denotes the 

quantity of nodes in the grid. 

2) Inequality Constraints 

The inequality constraints in this context can be further 

classified as either controlled or control variable expressions. 

Among them, node voltage and branch current belong to state 

variables, power factor and capacity size belong to control 

variables. 

1: Node Voltage Constraint 

In solving the objective function, the voltage measurement 

at each grid point must satisfy inequality (8); otherwise, the 

system will be damaged when the voltage deviates from the 

rated value. 

 min max  , 1,2,...,i nV V V i N    (8) 

Where Vmin and Vmax represent the minimum and maximum 

allowable values of each node voltage. 

2: Branch current constraint 

To consider the issue of the carrying capacity of each line 

in the distribution network, the current flowing through each 

branch must be limited. 

 
,max   , 1,2,...,i i LI I i N   (9) 

3: Power Factor Constraint 
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Where pfk represents the power factor of the kth distributed 

generation, pfmax and pfmin represent power factor limits of a 

single distributed generation, respectively. The power factor 

formula is: 
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4: Capacity constraint of DGs and SCs 

The capacity of the devices configured in the system 

should be limited to a certain range, and their total capacity 

must not surpass 80% of its rated capacity. The aim of this is 

to reduce the cost of operation and the security of the grid. 
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3) Constraint Processing Strategy 

In previous studies, many scholars have used the penalty 

coefficient approach to deal with the constraints in the 

OARDG problem. This approach requires artificially setting 

penalty coefficients, which has a strong subjectivity. When 

the penalty coefficients are not selected properly, the results 

of the objective function will be affected. Therefore, this 

paper proposes two constraint processing strategies to devise 

solutions that cater to both the single-objective and 

multi-objective variants of the OARDN issue, respectively. 

1: Single-objective constraint processing strategy 

Upon performing the power flow calculation, the equality 

constraint of OARDN is deemed satisfied. The inequality 

constraint processing strategy is implemented as follows. 
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 (14) 

The specific execution process can be explained as follows: 

when the program performs the next loop, the control 

variable CXk is updated for each solution, and in order to 

satisfy its limited range, when the value of CXk is less than the 

value of its lower limit CXk,min, then CXk=CXk,min is made, and 

when the value of CXk is higher than the value of its upper 

limit CXk,max, then CXk=CXk,max is made. 

The state variable inequality constraints are processed as 

follows. 

Step 1: Each solution corresponds to an objective function 

value f=f(CX, SX) and a total violation value Cvio. CX denotes 

the control variable, and SX denotes the state variable. The 

total violation value is specifically calculated as follows. 
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Step 2: When any two solutions j and k, compare their total 

violation values Cvio(j), Cvio(k), and if the total violation of 

Cvio(j) < Cvio(k), the jth solution is described as better than the 

kth solution. If the total violation values are equal, the 

objective function values are compared. 

2: Multi-objective constraint processing strategy 

Based on the single-objective constraint processing 

strategy step, when the total violation value Cvio(j) is less than 

Cvio(k), the solution j dominates the solution k. When the total 

violation values are the same, compare the target value of 

each solution. Specific execution process is as follows: 

 
 {1,2,... }   ( ) ( )

   
  {1,2,... }   ( ) ( )

l l

m m

l n f j f k

m n f j f k

  

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 (17) 

Where n denotes the quantity of target goals, and fl(j) 

denotes the lth target goal of solution j. When all the target 

goal values of solution j are smaller than solution k, and there 

is at least one target goal value in solution j that is smaller 

than solution k, the solution j is superior to solution k, also 

known as solution j dominates solution k. 

Multi-objective optimization is to find the most suitable 

pareto optimal set (POS) to make the value of each objective 

function as small as possible. For this reason, the paper 

proposes a pareto non-inferior sorting method to filter out the 

POS, based on calculating the rank of each solution for the 

hierarchy and calculating the congestion degree of each 

solution for the sorting. 

a) Rank 

Each solution in the population is assigned two sets, 

namely N(i) and S(i). N(i) is the number that administrate the 

i-th individual. Whereas S(i) denotes the number of 

individuals occupied by individual i. The next phase involves 

identifying every solutions in group that satisfy N(i)=0 and 

storing them in the set F(1). The quantity of solutions in F(1) 
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is recorded as M, and their rank is assigned the value of 

Rank(0), which is assigned to 1. For solution l, the pool of 

solutions administrated by l (i.e., S(l)) is identified, then 1 is 

subtracted from N(l) for each solution l in the set S(l). This 

process is repeated for all solutions until their respective 

ranks have been determined and they have been allocated to 

the appropriate set, F(i). 

b) Congestion degree 

The solution with a lower hierarchy is preferred when the 

solutions are at different hierarchies. When they are in the 

same hierarchy, they are sorted by calculating the congestion 

degree, and the solutions with a higher congestion degree are 

selected first. The following formula utilized for evaluating 

the congestion degree: 

 
,max ,min

( 1) ( 1)
( ) l l

l

l l

f i f i
CD i

f f

+ − −
=

−
 (18) 

 
1
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N

l

l
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=
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Where, CD(i) denotes the congestion degree of solution i. 

N denotes the number of objective functions. fl,min and fl,max 

denote the lower and upper bounds, respectively, of the l-th 

target goal. 

III. IMPROVEMENT OF SCSO ALGORITHM 

A. Original SCSO Algorithm 

The sand Cat Swarm Optimization (SCSO) algorithm is a 

novel swarm intelligence optimization algorithm. It was 

proposed by Amir Seyyedabbasi and Farzad Kiani in 2022 

[33], inspired by the fact that sand cats in nature have 

incredible hunting ability as well as low-frequency detection 

ability. The algorithm has been validated on two versions of 

the benchmark function test set, CEC14 and CEC15, and the 

results demonstrate this approach possesses superior 

capability compared to other swarm intelligence optimization 

methods. The search process of SCSO is similar to other 

swarm intelligence optimization algorithms, the search 

process of the SCSO algorithm can be divided into two 

phases, a local search phase and a global search phase. An 

obvious advantage of this approach is that there are few 

parameter settings and a very balanced conversion process 

between global and local search. 

The process of optimizing the SCSO algorithm is outlined 

below: according to the size of the problem and the number of 

self-defined populations to generate the initialized population 

matrix, set the expression of each solution as Xi=(Xi,1, 

Xi,2,…Xi,j). The SCSO algorithm is inspired by the auditory 

abilities of sand cats at low frequencies, and its mathematical 

model can be represented by formula (20). 

 
max

2
( )

2
G

LSC k
L LSC

k

 
= −


 (20) 

The acronym LSC stands for the auditory features of sand 

cats and is set to a value of 2. The variable k denotes the 

current iteration number, while kmax denotes the maximum 

allowed iteration number. During the initial search for the 

optimal algorithm, a global search process needs to be 

executed to perform a large-scale search, thus limiting the 

approximate range of solution. The specific execution 

formula is given in (21). 

 
( 1) ( ) ( )( )i k bs k i kX r X rand X+ =  −   (21) 

 r LG rand=   (22) 

Where Xbs(k) symbolizes the best solution at the kth loop, 

During the kth iteration, Xi(k) serves as a symbol for the 

current solution, while rand symbolizes a randomly 

generated number between 0 and 1. The local search process 

is then executed. 

 
( 1) ( 1) cos( )i k bs k rndX X X r+ += −    (23) 

Where Xrnd represents a random solution. The SCSO 

algorithm's shift from overall exploration stage to partial 

exploration stage is regulated by the parameter R. When the 

magnitude of R exceeds 1, the global search phase is carried 

out, and vice versa for the local search phase. The 

expressions are as follows: 

 2R LG rand LG=   −  (24) 

B. Improved SCSO Algorithm 

In solving the OARDN problem, the SCSO algorithm can 

not find the best optimal solution, and also the convergence 

accuracy is not high. The reason for this is that the algorithm's 

scope is too limited during the global search phase, making it 

incapable of escaping from local optimal solutions. Therefore, 

this paper proposes three improvement methods to enhance 

the comprehensive performance of the SCSO algorithm. 

1) Tent map-based chaotic strategy 

Tent map-based chaotic strategy has been introduced to 

widen the search space during the initial phase of the method, 

with the goal of avoiding the possibility of missing potential 

solutions. 

 1

/  , [0, )
( )

(1 ) / (1 ) , [ ,1]

n n

n n

n n

x a x a
X f x

x a x a
+


= = 

− − 
 (25) 

The function is a chaotic mapping within its parameter 

range and has a uniform distribution function and good 

correlation. In the range of a, the system is in a chaotic state, 

and when a is 0.5, the system is in a short-period state. 

2) Reverse learning approach 

After expanding the initial search range of the algorithm, 

the optimal solution set will appear in this range. To reduce 

the search time of the algorithm while further approximating 

the optimal solution, the reverse learning approach will be 

introduced into the SCSO algorithm. 

 
, , (max) , (min) ,i j i j i j i jreverseX X X X= + −  (26) 

The value of the control variable of solution i in the 

optimal configuration of the distribution network is 

represented by Xi,j, which denotes the initial position of 

solution i along the jth dimension. reverseXi,j represents the 

inverse solution corresponding to Xi,j. 

3) Cross learning mechanism 

To prevent the algorithm from getting stuck in local optima, 

lacking precision, and other shortcomings during the search 

phase, a cross-learning mechanism will be introduced. 

 
, k+ 1, ( ) 2, ( ) 3, ( )( )

1 2 3 [1 ]

i j r j k r j k r j kX X X X

r N

= +  −



（ 1）

、r 、r ，
 (27) 

Where Xi,j(k+1) denotes a new solution generated after the 

cross-learning mechanism. r1, r2, and r3 are uniformly 

distributed random numbers in the interval [0, 1]. η is a step 

factor, which regulates the extent of cross-fusion and is 

assigned to 0.5. Xr1,j(k+1), Xr2,j(k+1), and Xr3,j(k+1) denote three 

different solutions taken from the parent generation. 

The pseudo-codes of the proposed ISCSO and MOISCSO 
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algorithms to solve the single-objective and multi-objective 

OARDN problems are shown in TABLE I and TABLE II, the 

process diagrams are shown in Fig. 1 and Fig. 2. 

 
TABLE I 

PSEUDO-CODE OF ISCSO ON SINGLE-OBJECTIVE OARDN PROBLEM 

Start 

Step 1: Identify the data of the system and generate the initial population, 

using (25, 26)  

Step 2: Compute the target goal value Ploss, CVd and the violation value Cvio 
for all individuals. 

Step 3: Record the optimal solution for both the group and individual. 

Set the number of iterations k=0 
while k < kmax 

Update the value of LG by (20); 

if |R|>1 

Update populations by (21); 

else 

Update populations by (23); 
end 
Implementation of Step 2 and Step 3 

Compare the group optimum solution and the individual optimum 
solution for the kth and k-1th generations; 

Update group optimal solution and individual optimal solution; 

k=k+1; 
end while 

 

 

 

 
TABLE II 

PSEUDO-CODE OF MOISCSO ON MULTI-OBJECTIVE OARDN PROBLEM 

Start 

Step 1: Identify the data of the system; 

Step 2: Select the installation position of DG and SC according to the 

sensitivity degree analysis, generate the initial population, using (25, 26); 
Step 3: Compute the objective function value Ploss and CVd for all 

individuals, rank and sort all individuals and store them in an external file; 

Set the number of iterations k=0 
while k < kmax 

Update the value of LG by (20); 

if |R|>1 

Update populations by (21); 

else 

Update populations by (23); 
end 
Calculate the objective function value Ploss and CVd for all individuals; 

Merge current populations with populations in external files for 
ranking and sorting; 

Update the populations in the external file and record the objective 

function value Ploss and CVd for all individuals 
k=k+1; 

end while 

 

 

Start

Identify test system data and produce initialization variable parameters

Use tent map-based chaotic strategy and reverse learning approach to formulate  initial and reverse  approximation 

Calculate the objective function value and constraint value of individuals, and select the best top N individuals. 

Record individual optimal solution and group optimal solution

k=1

Update individual location (location and capacity of DG and SC)

Record individual optimal solution and group optimal 

solution

K=Kmax ?

Output the objective function value and configuration scheme

End

k=k+1

YES

NO

 
Fig. 1.  The process diagram of single-objective OARDN problem 
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Fig. 2.  The process diagram of Multi-objective OARDN problem 
 

IV. SIMULATION EXPERIMENT AND COMPARISON 

In response to the limitations of the SCSO, three 

improvements are introduced and enhanced algorithms, 

ISCSO and MOISCSO, are proposed for single and 

multi-objective applications. To assess the advancement and 

superiority of the method in detail, single and multi-objective 

experiments will be carried out on various combinations of 

DGs and SCs configurations across three different test 

systems. 

Set the population size of the single-objective experiment 

to 30 and the number of iterations to 100. The multi-objective 

experiments are conducted with a population size of 100 and 

a maximum iteration limit of 300. Such parameter settings 

are enough for achieving the optimal solution within a 

minimal time, and it will not waste computer computing 

resources. 

A. Single Objective Simulation for OARDN 

1) Case1 

In this case, the experiment of the single-objective 

OARDN problem will be conducted on IEEE33 test system. 

The ISCSO method is adopted to verify the deployment of 15 

different combinations of DG and SC for minimizing power 

loss and voltage deviation in the system. There are two types 

of combinations of DG and SC: the first type is that the power 

factor of DG unit is 1, which includes three independent 

configurations of DG, three independent configurations of 

SC and three combinations of combined configurations of 

DG and SC; the second type is that the power factor of DG 

unit is 0.9, which includes three independent configurations 

of DG and three combined configurations of DG and SC. 

TABLE III presents the optimization results for the first 

type of configuration scheme and the results compared with 

other studies. The table shows the detailed active power loss 

values Ploss and voltage deviation values CVd for different 

configuration schemes. 

By observing this table, it can be clearly seen that when a 

DG is deployed in the distribution network, the active power 

loss can decrease by nearly 50% compared with the active 

power loss generated by the original system, which reflects 

that the deployment of distributed generation has a positive 

effect on the stable operation of the distribution network, and 

further illustrates that it is necessary to study OARDN. With 

the increase of DG number, the active power loss will further 

decrease, from 111.03 KW to 77.36 KW. At the same time, it 

can be seen that the voltage deviation decreases from 0.0377 

(p.u.) to 0.0171 (p.u.). However, the magnitude of the 

decrease is decreasing. This indicates that the rational 

allocation of distributed generation has a good improvement 

on both power loss and voltage stability of the distribution 

network. As the results of similar studies are shown in the 

Start

Identify test system data and produce initialization variable parameters

Select the initial positions of DG and SC based on sensitivity analysis method 

Generate initial population and reverse population by using tent map-based chaotic strategy and reverse 

learning approach (The capacity of DG And SC)

Pre-processing the population and logging it to an external archive

k=1

Update individual position

Combine and sort the individuals of the current iteration with those of the previous 

iteration

Deal with the population and revise the external archive

k=kmax ?

Record pareto optimal set 

End

YES

k=k+1

NO
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TABLE III 

THE FIRST TYPE OF CONFIGURATION SCHEME AND COMPARISON RESULTS FOR CASE1 (PF=1) 

Configuration Algorithms Capacity (Location) of DGs Capacity (Location) of SCs 
Ploss 

(KW) 
Percentage of original Ploss reduction 

CVd 

(p.u.) 

 Case33   212.83  0.1223 

1DG ISCSO 2590.23(6) - 111.03 47.83% 0.0377 
 BSOA [34] 1.8575(8)  118.1 44.51%  

2DG ISCSO 
851.15(13) 

11580.01(30) 
- 87.16 59.05% 0.01695 

3DG ISCSO 

822.68(13) 

407.47(25) 

1086.59(30) 
- 77.36 63.65% 0.0171 

 ALO [35] 

148.5(10) 

520.8(13) 

1360.8(30) 

- 86.40 59.40% - 

 LSFSA [36] 

1112.4(6) 

487.4(18) 

867.9(30) 

- 82.03 61.46% - 

 GA-IWD [37] 

1221.4(11) 

683.3(16) 

1213.5(32) 

- 110.51 48.06% - 

1SC ISCSO - 1258.03(30) 151.38 28.87% 0.0838 

2SC ISCSO - 
524.87(11) 

920.00(30) 
142.45 33.07% 0.0650 

3SC ISCSO - 
454.65(12) 

485.11(29) 
613.33(30) 

141.72 33.41% 0.0633 

1DG+1SC ISCSO 2531.59(6) 1256.00(30) 58.45 72.54% 0.0173 

 WOA [38] 2557.6(6) 1762(6) 67.86 68.12%  

2DG+2SC ISCSO 
949.29(12) 

1091.28(30) 

503.01(11) 

920.00(30) 
29.02 86.36% 0.0019 

 IMDE [39] 
1080(10) 
896.4(31) 

254.8(16) 
923.3(30) 

32.08 84.97% - 

3SG+3SC ISCSO 

503.34(6) 

730.39(14) 
971.60(30) 

613.17(6) 

276.81(14) 
612.54(30) 

23.73 88.85% 0.0017 

 GABC [40] 

1098(28) 

132(29) 
609(30) 

644.03(13) 

602.81(24) 
750(30) 

93.72 55.96% - 

 
TABLE IV 

The Second Type of Configuration Scheme for Case1 (PF=0.9) 

Configuration Algorithms 
Capacity 

(Location) of DGs 

Capacity 

(Location) of SCs 
Ploss 

(KW) 

Percentage of 

original Ploss 

reduction 

CVd 

(p.u.) 

 Case33   212.83  0.1223 

1DG ISCSO 2766.19(6) - 70.86 66.71% 0.0172 

2DG ISCSO 
842.77(13) 

1344.10(30) 
- 35.24 83.48% 0.0019 

3DG ISCSO 

753.79(14) 

985.25(24) 

1232.78(30) 
- 18.58 91.27% 0.0012 

1DG+1SC ISCSO 2582.53(6) 400.60(31) 57.46 73% 0.0015 

2DG+2SC ISCSO 
825.57(13) 

1236.24(30) 

200.30(7) 

200.30(32) 
28.53 86.59% 0.0014 

3SG+3SC ISCSO 

769.02(13) 

1002.20(24) 

1200.02(30) 

113.46(2) 

120.89(3) 

108.97(5) 

16.93 92.05% 0.0012 

 

table, it can be seen that the ISCSO algorithm proposed in 

this paper is more competitive and better optimized than the 

ALO, LSFSA, and GA-IWD algorithms for the configuration 

of three DGs. 

When the combination of three independently configured 

SCs is deployed in the system, it can be seen that the active 

power loss and voltage deviation are in a downward trend 

with the increase of access number of SCs. The active power 

loss decreased from 151.38 KW to 141.72 KW, and the 

voltage deviation decreased from 0.0838 (p.u.) to 0.0633 

(p.u.). It is not difficult to find that the active power losses 

reduced by three SCs are less than the active power losses 

reduced by one DG. This reflects that although the access of 

SC has a positive impact on improving the distribution 

network, it is less effective in improving the distribution 

network compared to DG. 

In addition, it can be seen from this table that the 

optimization results of three DGs and SCs combinations are 

better than the previous six combinations. Under the 

combination of one DG and one SC, the transmission line 

loss of the system is only 58.45 KW, the other target value is 

also improved to 0.0173 (p.u.), which is more remarkable 

than that of three DGs. Finally, compared with other 

published research results, ISCSO algorithm is more 

effective in solving OARDN problem. 

In Fig. 3, the node voltage curves of these nine 

combinations and the node voltage curves of the initial state 

are shown, which shows that the node voltage improvement 

is smaller for the three SCs combinations and the node 

voltage improvement is the largest for the three DGs and SCs 
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combinations. 

The optimization results of the second configuration 

scheme are shown in TABLE IV. It can be concluded from 

the table that, in the same combination configuration of DG 

and SC, Ploss and CVd of the combination with a power factor 

of 0.9 are smaller than those of the combination with a power 

factor of 1. For example, when the power factor is 0.9, the 

Ploss of one DG is 70.86 KW, the CVd is 0.0172 (p.u.), the Ploss 

of three DGs and SCs is 16.93 KW, CVd is 0.0012 (p.u.). 

While when the power factor is 1, the Ploss of one DG is 

111.03 KW, the CVd is 0.0377 (p.u.), the Ploss of three DGs 

and SCs is 23.73 KW, CVd is 0.0017 (p.u.). The result show a 

clear comparison. Fig. 4 shows the node voltage curves of 

several different combinations under the second 

configuration scheme. Similarly, the node voltage quality of 

the combination of three DGs and SCs is better. 

2) Case2 

In Case2, a single-objective experiment of OARDN 

problem will be conducted on IEEE69 test system. The test 

system has an initial transmission line loss of 226.64 KW and 

a voltage deviation of 0.0995 (p.u.). In this case, its 

configuration scheme is similar to Case1, which is also 
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Fig. 3.  Node voltage profile for the first type of configuration on IEEE33 
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Fig. 4.  Node voltage profile for the second type of configuration on IEEE33 

TABLE V 

THE FIRST TYPE OF CONFIGURATION SCHEME AND COMPARISON RESULTS FOR CASE2 (PF=1) 

Configuration Algorithms 
Capacity 

(Location) of DGs 
Capacity 

(Location) of SCs 
Ploss 

(KW) 

Percentage of 

original Ploss 

reduction 

CVd 

(p.u.) 

 Case69   226.64  0.0995 

1DG ISCSO 1876.09(61) - 83.92 62.97% 0.0208 

2DG ISCSO 
532.56(18) 

1783.71(61) - 72.29 68.10% 0.0065 

3DG ISCSO 

543.08(12) 

251.58(22) 
1741.20(61) 

- 70.27 68.99% 0.0061 

 IRRO [17] 

784(12) 

863(50) 
1780(61) 

- 71.14 68.61% - 

 PSO [17] 

100(6) 

100(41) 
2000(61) 

- 83.33 63.23% - 

 TLBO [41] 

591.9(15) 

818.8(61) 
900.3(63) 

- 72.41 68.05% - 

 LSFSA [36] 

420.4(18) 

1331.1(60) 
429.8(65) 

- 77.10 65.98% - 

1SC ISCSO - 1380.09(61) 153.23 32.35 0.0643 

2SC ISCSO - 
405.08(17) 

1077.84(61) 
149.03 34.24% 0.0618 

3SC ISCSO - 
326.50(16) 

718.56(61) 
617.50(62) 

147.78 34.80% 0.0579 

 COA [42] - 
300(17) 

1500(57) 
1208(61) 

146.26 35.47% - 

1DG+1SC ISCSO 1831.37(61) 1303.52(61) 23.49 89.64% 0.0121 

2DG+2SC ISCSO 
857.67(12) 

1703.20(61) 
678.79(10) 

1077.84(61) 
9.91 95.63% 0.0016 

3SG+3SC ISCSO 

308.77(10) 

309.62(24) 
1728.03(61) 

718.56(61) 

447.09(64) 
389.41(68) 

8.23 96.37% 0.0012 
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TABLE VI 

The Second Type of Configuration Scheme for Case2 (PF=0.9) 

Configuration Algorithms Capacity (Location) of DGs Capacity (Location) of SCs Ploss 

(KW) 
Percentage of original Ploss reduction CVd 

(p.u.) 

 Case69   226.64  0.0995 

1DG ISCSO 1999.27(61) - 28.31 87.51% 0.0123 

2DG ISCSO 
564.51(17) 

1897.65(61) - 12.51 94.48% 0.0005 

3DG ISCSO 

436.89(17) 

1842.98(61) 
449.29(66) 

- 9.92 95.62% 0.0001 

1DG+1SC ISCSO 1954.77(61) 638.18(12) 21.42 90.55% 0.0085 

2DG+2SC ISCSO 
533.08(17) 

1744.58(61) 
330.02(64) 
320.58(66) 

6.36 97.19 0.0003 

3SG+3SC ISCSO 

455.49(16) 

1790.87(61) 
192.41(69) 

173.46(10) 

66.82(36) 
174.87(64) 

6.57 97.10 0.0003 
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Fig. 5.  Node voltage profile for the first type of configuration on IEEE69 
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Fig. 6.  Node voltage profile for the second type of configuration on IEEE69 

 

divided into two types. 

TABLE V shows the reduction of two types of target 

values achieved in the first type of configuration. The Ploss is 

83.92 KW for a single DG, which is 62.97% lower than the 

initial Ploss, and 68.99% lower for three DGs, which is not a 

significant decrease. It can be inferred that increasing the 

number of DGs can make the active loss and voltage 

deviation in the system decrease further, but the magnitude of 

the decrease is not large, and blindly increasing the number of 

DGs makes the economic cost increase. 

When three SCs are configured, it can be found that the 

Ploss value is 147.78 KW, with a decrease of only 34.8%, 

which further shows that the configuration of SC has less 

positive impact on the system than DG. 

When the combination of DG and SC is deployed, the Ploss 

of just one DG and one SC is 23.49 KW, with a decrease of 

89.64%, which is better than the results of the previous six 

configurations. The result of the configuration combination 

of two DGs and SCs is almost the same as that of three DGs 

and SCs, with a decrease of 95.63% and 96.37%, respectively. 

Such an optimization result is already satisfactory, so there is 

not much point in continuing to increase the number of 

devices. 

Simultaneously, the comparison with other references is 

shown in the table. It can be seen that the proposed ISCSO 

algorithm is superior to most other existing methods, with 

only a small gap in some configuration combinations. 

Fig. 5 shows the node voltage profiles for the nine 

configurations. It can be seen that the combined 

configuration of DG and SC is more effective for uniform 

voltage distribution. 

The second configuration scheme of Case2 is consistent 

with that of Case1. When the power factor is 0.9, the Ploss 

under the configuration of 3 DGs is 9.92 KW, with a drop of 

95.62%. Such a decrease is very significant and reflects the 

great influence of power factor. In TABLE VI, we find that 

the difference between the three DGs configurations and the 

combined deployment of three electrical devices is not 

significant, but in Fig. 6, we can find that there is a 

remarkable difference in the node voltage distribution 

between these two configurations, the node voltage 

distribution of DGs and SCs configuration is more uniform 

and less volatile. 

3) Case3 

This case will be tested on IEEE119 test system, and it is 

also divided into two types of configuration schemes. 

Compared with the IEEE33 and IEEE69 systems, this test 

system is much larger in size and therefore has a larger 

amount of data, which is more testing and challenging for the 

proposed ISCSO algorithm to solve the single objective 

problem of OARDN. In TABLE VII, it can be seen that due 

to the expansion of the system scale, the line loss of the initial 

system is larger, and the value of Ploss reaches 978.08 KW. 

Under different combination configurations, it can be seen 

that the reduction of power loss is not significant, the 

maximum value is only 59.6%, however, the power loss is 

reduced by 582.85 KW, such an optimization result is very 

significant. Similar to the trend in the previous two cases, as 
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TABLE VII 

THE FIRST TYPE OF CONFIGURATION SCHEME FOR CASE3 (PF=1) 

Configuration Algorithms Capacity (Location) of DGs Capacity (Location) of SCs Ploss 

(KW) 
Percentage of original Ploss reduction CVd 

(p.u.) 

 Case119   978.08  0.1875 

1DG ISCSO 2846.13(111) - 828.53 15.29% 0.1557 

2DG ISCSO 
3592.53(68) 

2846.81(111) - 686.41 29.82% 0.1113 

3DG ISCSO 

2903.56(39) 

3321.33(68) 
2868.02(111) 

- 571.01 41.62% 0.0831 

1SC ISCSO - 2326.81(111) 875.525 10.49% 0.1706 

2SC ISCSO - 
2592.66(38) 

2326.62(111) 
809.33 17.25% 0.1429 

3SC ISCSO - 
2571.70(38) 

2222.03(68) 

2350.66(111) 

748.09 23.51% 0.1211 

1DG+1SC ISCSO 3589.81(68) 2327.55(111) 733.40 25.02% 0.1263 

2DG+2SC ISCSO 
2755.67(40) 

3028.64(110) 

2510.12(68) 

2415.74(111) 
561.51 42.59% 0.0973 

3SG+3SC ISCSO 

3901.68(37) 

2217.45(70) 

3320.52(110) 

2608.66(35) 

1569.33(82) 

1709.18(112) 

395.23 59.60% 0.0537 

 
TABLE VIII 

THE SECOND TYPE OF CONFIGURATION SCHEME FOR CASE3 (PF=0.9) 

Configuration Algorithms 
Capacity 

(Location) of DGs 
Capacity 

(Location) of SCs 
Ploss 

(KW) 

Percentage of 

original Ploss 

reduction 

CVd 

(p.u.) 

 Case119   978.08  0.1875 

1DG ISCSO 3183.71(111) - 749.42 23.38% 0.1519 

2DG ISCSO 
3810.30(68) 

3182.76(111) - 554.00 43.36% 0.0974 

3DG ISCSO 

3837.58(38) 

3729.19(68) 
3039.58(111) 

- 380.96 61.05% 0.0551 

1DG+1SC ISCSO 3810.34(68) 2327.11(111) 680.09 30.47% 0.1161 

2DG+2SC ISCSO 
3840.28(38) 

3264.90(111) 
1204.78(51) 
1505.48(68) 

467.55 52.20% 0.0854 

3SG+3SC ISCSO 

3267.85(39) 

3508.96(68) 
3365.76(111) 

1040.11(24) 

1339.02(51) 
453.62(87) 

299.53 69.38% 0.3936 
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Fig. 7.  Node voltage profile for the first type of configuration on IEEE119 
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Fig. 8.  Node voltage profile for the second type of configuration on 
IEEE119 

the equipment quantity increases, the energy waste and 

voltage deviation decrease, but the difference is that in this 

case, three independently configured DGs or three jointly 

configured DGs and SCs are not the optimal solution, and the 

number of devices can continue to increase as needed to 

further achieve the active loss or voltage deviation reduction. 

In Fig. 7, it can be seen that the voltage fluctuations at each 

node are larger for different configuration schemes, but the 

node voltage distribution is more uniform for the three jointly 

configured DGs and SCs. 

TABLE VIII lists the second configuration scheme 

(PF=0.9) and the results. The data in this table further shows 

that the difference of power factor does affect the power loss 

and voltage deviation. It can be seen from Fig. 8 that the 

configuration combination with SC has better node voltage 

distribution and smaller voltage fluctuation than the 
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configuration combination without SC. 

B. Multi Objective Simulation for OARDN 

In the multi-objective research, it is difficult to obtain an 

excellent Pareto frontier only by solving the optimal 

configuration of DG and SC by optimization algorithm, so 

this study proposes a method for sensitivity analysis. The 

approach aims to access a DG or SC unit with a very small 

capacity at one node of the system and observe the impact 

degree on the whole system. The sensitivity values at each 

node are calculated by equations (28) and (29). 

 
( )loss loss i

i

DG

P P
SenDG

P

−
=


 (28) 

 
( )loss loss i

i

SC

P P
SenSC

Q

−
=


 (29) 

Among them, DGi and SCi represent DG or SC connected 

by the ith node, Ploss represents the active power loss of the 

standard system, and Ploss(i) represents the active power loss 

of the system after the ith node is connected to DG or SC. 

According to the calculated sensitivity value, the node with 

larger sensitivity value is selected as the best access location 

of DG or SC. Fig. 9, Fig. 10 and Fig. 11 show the sensitivity 

values of DG and SC of each node under three standard test 

systems. 

1) Case4 

By introducing the sensitivity analysis method, 

multi-objective constraint processing strategy and pareto 

non-inferior sorting method into the ISCSO algorithm, a 

MOISCSO algorithm for solving the multi-objective 

OARDN problem is formed. 

In this case, the MOISCSO algorithm and MOSCSO 

algorithm will be used to find a set of DG and SC 

configuration schemes that makes the Ploss and CVd smaller 

under the IEEE33 test system. Fig. 12 shows the Pareto fronts 

(PFs) of the two algorithms for the configuration scheme of
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Fig. 9.Sensitivity values of DG and SC on IEEE33 test system 
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Fig. 10.  Sensitivity values of DG and SC on IEEE69 test system 
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Fig. 11.  Sensitivity values of DG and SC on IEEE119 test system
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one DG and one SC. The minimum values of Ploss and CVd as 

well as the best compromise solution (BCS) are marked in the 

figure. From the data in TABLE IX, it can be found that the 

BCS solution of the MOISCSO algorithm is 59.77 KW, 

0.0052 (p.u.), which is better than the BCS of the MOSCSO 

algorithm, indicating that the PFs of the MOISCSO algorithm 

is near to the true PF. The two-device deployment scheme's 

PFs and improved results are displayed in Fig. 13 and 

TABLE X. Similarly, the BCS of MOISCSO algorithm is 

better than that of MOSCSO algorithm. It further shows that 

MOISCSO algorithm is more advantageous than MOSCSO 

algorithm, and it is more competitive in dealing with 

multi-objective OARDN problems. 

2) Case5 

 

 

Under the IEEE69 test system, like Case 4, the 

multi-objective OARDN problem of two types of 

combination configuration is studied. The PFs and the values 

of BCS for the MOISCSO and MOSCSO algorithms are 

given in Fig. 14 and TABLE XI. As can be clearly seen, the 

Pareto solution set of MOISCSO is more uniform, while on 

the contrary, the Pareto solution set of MOSCSO is more 

scattered and even has breakpoints. 

Fig. 15 and TABLE XII then give the values of PF and 

BCS for the configuration scheme with two DGs and two SCs. 

Their BCS values are 13.08 KW and 0.0014 (p.u.), 

respectively, and the BCS of this configuration scheme is 

significantly better than the BCS of the configuration 

combination of one DG and SC. 
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Fig. 12.PFs of MOISCSO algorithm and MOSCSO algorithm on IEEE33 

(1DG+1SC) 
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Fig. 13.  PFs of MOISCSO algorithm and MOSCSO algorithm on IEEE33 

(2DG+2SC) 

 
TABLE IX 

1DG+1SC configuration scheme on IEEE33 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

1DG+1SC 

MOISCSO 59.77 0.0052 55.06 0.0115 72.00 0.0037 
Capacity (Location) of DGs 29179.11(7) 2403.32(7) 2972(7) 
Capacity (Location) of SCs 1503.25(30) 1327.15(30) 1976(30) 

    
MOSCSO 59.80 0.0053 55.07 0.0115 72.00 0.0037 

Capacity (Location) of DGs 2926.51(7) 2403.42(7) 2972(7) 

Capacity (Location) of SCs 1492.97(30) 1328.01(30) 1.976(30) 

 
TABLE X 

2DG+2SC configuration scheme on IEEE33 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

2DG+2SC 

MOISCSO 35.63 0.0047 34.42 0.0059 39.60 0.0043 

Capacity (Location) of DGs 1486(7) 

1041.56(7) 

1486(7) 

876.21(7) 
1486(7) 

1279.93(7) 

Capacity (Location) of SCs 988(30) 

988(30) 

962.64(30) 

907.65(30) 
988(30) 

940.39(30) 

    
MOSCSO 36.67 0.0045 34.42 0.0061 48.30 0.0043 

Capacity (Location) of DGs 1486(7) 
1122.50(30) 

1486(7) 
866.68(30) 

1486(7) 
1486(30) 

Capacity (Location) of SCs 988(7) 

988(30) 

950.22(7) 

907.94(30) 

988(7) 

618.75(30) 
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3) Case6 

Similarly, testing on a large test system provides a more 

comprehensive evaluation of the proposed method. Therefore, 

this case will solve the multi-objective OARDN problem of 

two configuration schemes on IEEE119 test system. Fig. 16 

presents the Pareto fronts obtained by optimizing both Ploss 

and CVd for one DG and SC configuration. The values of the 

BCS are given in TABLE XIII with a Ploss of 1003.47 KW 

and a CVd of 0.1191 (p.u.). 
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Fig. 14.  PFs of MOISCSO algorithm and MOSCSO algorithm on IEEE69 

(1DG+1SC) 

 

11 12 13 14 15 16 17
0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 ISCSO

C
V

d

Ploss(KW)

BCS

(13.08,0.0014)

min Ploss

(11.56,0.0028)

min CVd

(16.98,0.0009)

 
Fig. 15.  PFs of MOISCSO algorithm on IEEE69 (2DG+2SC) 

 

 
TABLE XI 

1DG+1SC configuration scheme on IEEE69 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

1DG+1SC 

MOISCSO 26.94 0.0105 23.49 0.0121 47.85 0.0101 

Capacity (Location) of DGs 2065.48(61) 1830.62(61) 1905.25(61) 
Capacity (Location) of SCs 1527.71(61) 1302.91(61) 2155.68(61) 

    
MOSCSO 27.00 0.0106 23.49 0.0122 47.81 0.0101 

Capacity (Location) of DGs 2058.77(61) 1829.86(61) 1877.04(61) 

Capacity (Location) of SCs 1537.66(61) 1299.17(61) 2155.68(61) 

 
TABLE XII 

2DG+2SC configuration scheme on IEEE69 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

2DG+2SC 

MOISCSO 13.08 0.0014 11.56 0.0028 16.98 0.0009 

Capacity (Location) of DGs 1295.25(11) 

1516.76(61) 

1053.24(11) 

1516.76(61) 
1516.76(11) 

1516.76(61) 

Capacity (Location) of SCs 833.55(11) 
1077.84(61) 

638.47(11) 
1077.84(61) 

1077.84(11) 
1077.84(61) 
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Fig. 16.  PFs of MOISCSO algorithm on IEEE119 (1DG+1SC) 
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Fig. 17.  PFs of MOISCSO algorithm on IEEE119(2DG+2SC) 
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TABLE XIII 
1DG+1SC configuration scheme on IEEE119 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

1DG+1SC 

MOISCSO 1003.47 0.1191 815.11 0.1299 2456.14 0.1152 

Capacity (Location) of DGs 2956.35(111) 2883.43(111) 0(111) 
Capacity (Location) of SCs 6124.11(111) 2078.69(111) 13632.85(111) 

 
TABLE XIV 

2DG+2SC configuration scheme on IEEE119 

Configuration Algorithms 
BCS Min Ploss Min CVd 

fPloss fCVd fPloss fCVd fPloss fCVd 

2DG+2SC 

MOISCSO 609.71 0.0858 575.08 0.0961 861.31 0.0827 

Capacity (Location) of DGs 3986.29(81) 
3048.1(111) 

2607.64(81) 
2823.99(111) 

2795.16(81) 
2514.65(111) 

Capacity (Location) of SCs 3425.83(81) 

2508.86(111) 

2057.31(81) 

2407.09(111) 
6816.43(81) 

3626.64(111) 
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Fig. 18.  Node voltage profile of BCS of MOISCSO on IEEE33 
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Fig. 19.  Node voltage profile of BCS of MOISCSO on IEEE69 
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Fig. 20.  Node voltage profile of BCS of MOISCSO on IEEE119 
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Fig. 17 shows the PF for the configuration with two DGs 

and SCs, while TABLE XIV presents the data results. It can 

be seen from the figure that there is a discontinuity at both 

ends of PF, but overall, the quality of solution set is not 

affected. The values of the BCS are 609.71 KW and 0.0858 

(p.u.), respectively. 

This case also verifies that the MOISCSO algorithm is 

extremely practical for solving multi-objective OARDN 

problems. 

In Fig. 18, Fig. 19 and Fig. 20, the node voltage profile of 

BCS of MOISCSO algorithm in three different test systems is 

shown. It can be seen that the voltage distribution curve 

obtained by MOISCSO is better than the initial node voltage 

profile. Although the voltage of some nodes is a little high, it 

is also within the reasonable range of voltage constraints. 

V. CONCLUSION 

This study focuses on addressing the limitations of SCSO 

algorithm, which are primarily attributed to its susceptibility 

to local optima and suboptimal convergence, three 

improvement measures are introduced, namely tent chaotic 

mapping mechanism, reverse learning strategy and cross 

learning mechanism, and ISCSO algorithm is proposed in 

combination with single-objective constraint processing 

strategy. At the same time, considering the lack of 

multi-objective research on OARDN, to expand the ability of 

the proposed method to solve OARDN problems, this paper 

introduces the proposed multi-objective constraint 

processing strategy, sensitivity analysis method and pareto 

non-inferior sorting method into ISCSO algorithm, and forms 

MOISCSO algorithm to deal with multi-objective OARDN 

problems. 

In order to study the practicality and advantages of ISCSO 

algorithm and MOISCSO algorithm, simulation experiments 

of single-objective and multi-objective OARDN issues were 

conducted in three different scale test systems. The results of 

single-objective optimization show that one single DG access 

can significantly reduce the power loss and voltage deviation 

in the system. With the increase in the number of DG devices, 

the reduction range of the objective value is obviously 

reduced. The access of SC is not as effective as DG in 

optimizing the two objective functions, but it has a significant 

effect on improving the voltage of each node in the system. 

The combination of DG and SC is the most effective for 

reducing power loss and voltage deviation. The 

multi-objective optimization outcomes demonstrate the 

proposed approach can tackle the multi-objective OARDN 

problem and yield a set of well-distributed pareto solutions. 

Compared with the MOSCSO algorithm, it can also be found 

that the Pareto solution set of MOISCSO algorithm is closer 

to the real pareto frontier. 

In conclusion, the ISCSO and MOISCSO algorithms 

proposed in this paper provide a better solution to get the best 

configuration scheme for the OARDN problem, which is 

more helpful for the safe and stable operation of the 

distribution network. 
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