
 

Abstract—It is important to diagnose lung nodules as early 

as possible in order to improve the cure rate of lung cancer 

patients. The CT technology is currently the most prevalent 

method of diagnosis and treatment in clinical medicine. 

However, the amount of data generated by CT diagnosis and 

treatment is increasing exponentially. In order to segment 

lung nodules from medical images, it is crucial to employ 

computer and artificial intelligence technology. The deep 

learning model proposed in this paper is MRBU-Net-WD 

model, a more effective and enhanced version of the U-Net. 

MRBU-Net-WD is distinguished by combining residual 3D 

convolution modules with multiscale densely connected 

modules. Moreover, In addition, in order to avoid the 

phenomenon of gradient disappearance when the network 

depth of the model is increasing. The Bi-FPN is therefore 

introduced to enhance the feature maps of the network at each 

depth, as well as to provide an effective fusion of features 

across depths. The weighted Dice loss function has a 

significant improvement for the pixel imbalance between lung 

nodules and background images in lung CT images. To test 

the proposed model, the LUNA-16 dataset has been 

extensively trained and evaluated. The performance of the 

comparison methods generally outperforms that of the 

original U-Net model and several other newly proposed 

models. 

 
Index Terms—Lung nodule segmentation, Convolutional 

neural network, Residual 3D Convolution, Deep learning, 

Computer-aided diagnosis 

I. INTRODUCTION 

ccording to statistics, lung cancer has always been the 

most prevalent form of cancer worldwide. It typically 

manifests in the middle and later stages, resulting in a high 

mortality rate. Therefore, the earlier lung cancer is detected, 

the better the treatment for the patient. The pathology of 

early stage lung cancer is characterized by small size of 

nodules in the lung and have blurred edges, making them 

easy to misdiagnose and miss. Early and accurate detection 

and analysis of pulmonary nodules can result in timely and 

effective treatment, thereby significantly increasing 

patients' survival rates [1]. Although the advent of 

Computed Tomography (CT) technology can aid in the 

early detection of diseased nodules, the rising demand for 

imaging diagnosis necessitates that physicians carefully 

consider and screen each patient individually, which is 

inefficient and can cause doctor fatigue. This increases the 

likelihood of an incorrect diagnosis. Computer-aided 

diagnosis (CAD) has been the main diagnostic modality for 

physicians in recent years, achieving rapid and accurate 

acquisition of patient's lesion information from a large 

number of CT images and reducing the possibility of 

missed and misdiagnosis. With the aid of computer image 

processing technology, physicians are able to precisely 

position and segment pulmonary nodules, analyze tissue 

components and identify pathological features within the 

lesion region of the nodule [2]. 

Traditional segmentation algorithms include threshold 

segmentation [3], edge detection segmentation [4], and 

region growth [5]. Kostis et al. [6] used a morphological 

approach in the problem of removing nodules attached to 

blood vessels and to separate the pulmonary nodules by 

identifying the attachment area. Sargent et al. [7] 

introduced morphological manipulations that combine 

shape hypotheses in place of morphological templates with 

a fixed size. According to Dehmeshki et al. [8], a region 

growth method that integrates fuzzy connectivity, distance, 

and intensity as growth mechanisms was proposed and 

applied to the segmentation of lung nodules. Based on 

Mumford-Shah partitioning techniques and level setting 

methods, Chan et al. [9] proposed an active contour model. 

It provides better detection and retention of boundary 

location information even when the initial image does not 

appear smooth, automatically detects internal contours 

beginning with a single initial curve and does not require 

the initial curve's position in an image to be fixed. The 

SBGF-new SPF algorithm presented by Nithila et al. [10] is 

capable of segmenting vascular adhesions and pleural 

adhesions from CT images, and it has a high accuracy and 

low error rate for segmenting lung nodules from CT images. 

A method was proposed by Ye et al. [11] that was able to 

successfully separate lesions with similar intensities but 

different shapes and correctly identify lesions with similar 

intensities but different shapes. According to Wu et al. [12], 

a hierarchical statistical learning method may be used to 

determine whether candidate nodules detected on CT scans 

are associated with pulmonary vessels, fissures, and lung 

walls. Using image features, Lu et al. [13] proposed a 

flexible hierarchical feature learning framework for the 

detection of all types of nodules and polyps. These methods 

are only applicable to simple scenarios. The performance 

and generalization capabilities are subpar and cannot be 

effectively transferred to new task scenarios. Later on, deep 

learning methods were improved to perfectly solve the 

limitations of machine learning in some problems. 

Many medical image segmentation fields have used deep 

learning extensively and effectively in recent years. In 
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order to effectively extract, classify, and recognize images, 

deep neural networks employ a multilayer nonlinear 

mapping structure. Deep neural networks are typically 

modeled using CNNs. The convolutional layer, pooling 

layer and fully connected layer form a simple CNN model. 

Each layer performs a specific function. Kumar et al. [14] 

were the first to use convolutional neural networks (CNN) 

for the problem of extraction of lung nodules and also 

achieved classification and recognition to some extent. As a 

result of the CNN network model being used to classify an 

image, the final fully-connected layer compresses the 2D 

matrix information in the original image, resulting in the 

loss of image information and influencing the segmentation 

function. Shelhamer et al. [15] proposed a novel network 

structure (FCN) for the semantic level image segmentation 

problem, which differs most from the CNN in that it uses a 

convolutional layer instead of the original fully-connected 

layer. This change allows the network to make more 

accurate, dense predictions for images of any size. The 

high-level feature information obtained after convolution is 

fused with the upsa mpled output and passed to the 

convolution layer in order to produce a more precise output. 

With the advent of deep neural networks, techniques for the 

automatic segmentation of lung nodules have been 

accelerated. The system has achieved excellent results in 

retrieval, recognition, and semantic segmentation. 

 Due to the continuous advancement of computer 

hardware and software, researchers have been able to sift 

through large volumes of data in order to develop 

intelligent models and methods for solving a variety of 

practical problems. Natural image processing has made 

significant progress in areas such as improving diagnostic 

efficiency and reducing the likelihood of misdiagnosis and 

missed diagnoses. This technique has become a standard in 

the direction of medical image segmentation in particular. 

As of now, the most popular network model used in 

medical image segmentation are convolutional neural 

networks and full convolutional neural networks. In a full 

convolutional neural networks, the U-Net model is the most 

widely used network model. 

Although there are some improved models for lung 

nodule image segmentation in recent years, the 

segmentation accuracy needs further research and 

improvement. In our study, we proposed a hybrid network 

model for segmentation of pulmonary nodules. The model 

proposed in this paper differs from the previous models in 

the following ways: First, the primary idea of this paper is 

to embed the 3D convolutional module into the U-Net 

model. Second, To further improve the segmentation 

accuracy of the model, the multi-scale modules are densely 

connected using the multi-scale dense connection module, 

so it allows the model to obtain more feature information 

during upsampling and downsampling. Third, as the depth 

of the network deepens during the training process, the 

gradient of U-Net model disappears. Hence Bi-FPN is 

introduced to enrich the feature maps of the network at 

each depth, and it also provides effective fusion of features 

across different depths. Finally, the defect of uneven target 

region and background pixels in lung CT images is solved 

by using the weighted Dice loss function. The hybrid model 

with these changes is what we call the MRBU-Net-WD 

model. To validate the effectiveness of the improved model 

in lung nodule segmentation, experiments will be 

conducted on the LUNA-16 dataset, and the experimental 

results show that the MRBU-Net-WD model performs 

better than the original U-Net model and some recently 

proposed new models. 

 

 
 

Fig. 1．Schematic diagram of U-NET network structure. 
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II. MATERIALS AND METHOD 

As discussed in this section, there have been several 

strategies for dividing up lung nodules that have been 

proposed in recent years. These strategies also include the 

methods used in this improvement. 

A. U-Net  

The U-Net model was first proposed in 2015. Based on 

the end-to-end FCN [17], Ronneberger et al. [16] enhanced 

and proposed the U-Net model, which improved the 

expressiveness of features and the segmentation 

performance by using skip connections between encoding 

and decoding paths. A substantial amount of attention has 

also been paid to this method in the field of medical image 

segmentation. It is being improved by an increasing number 

of academics. The U-Net model has superior segmentation 

performance in the field of medical image segmentation 

compared to the FCN model. 

The encoder-decoder structure is utilized by the U-Net 

model, and the overall structure is symmetrical. 

Upsampling and downsampling comprise the majority of 

the network's structure. The FCN network's convolutional 

and pooling layers are preserved in the U-Net model. In the 

connection layer portion, however, the full connection is 

converted to a skip connection, and feature fusion is 

achieved through a stacking operation. Consequently, the 

U-Net model is capable of recognizing object categories 

using both shallow and deep features. Therefore, the U-Net 

model can achieve more precise segmentation. Fig 1 is a 

schematic representation of U-network Net's architecture, 

which can be divided into three sections: left encoding, 

right decoding, and skip connection. The encoding path 

adheres to a typical convolutional network architecture with 

two repeated 3×3 convolutions, a ReLU activation function, 

a 2×2 maximum pool operation, and a span of 2 

downsampling are connected. After the downsampling 

operation, the number of feature channels is increased. On 

the path of decoding, feature maps are upsampled. When 

the number of feature channels needs to be reduced, a 3×3 

convolution operation is used to process the feature maps, 

there will be a ReLU activation function in the last 

convolutional layer of the coding path, the final 1×1 

convolution operation maps the feature vector to the output 

layer of the network. By means of the stacking operation, 

the skip connection part integrates the encoding and 

decoding paths on the left and right respectively, combining 

the low-level information derived from the encoding path 

with the high-level information derived from the decoding 

path. Due to this, the fused feature map has both shallow 

and deep semantic feature information, which allows the 

segmentation effect to be more precise. 

B. Bi-FPN 

Bi-FPNs (Feature Pyramid Networks) are complex 

bidirectional FPNs used by Efficient-Det. When building a 

top-down, bottom-up bidirectional channel, unify feature 

resolution scales by upsampling and downsampling 

information from different scales of the backbone network 

when merging information from different scales. By adding 

horizontal features between features connected at the same 

scale, to prevent excessive feature loss during training. 

During feature fusion, Bi-FPN also adds respective weights 

to each input feature separately, so that the network is able 

to determine the importance of each feature. A fast 

normalized fusion is used to provide dynamically learned 

behavior and accuracy. Bi-FPN enhances the feature maps 

at different depths in the network using bidirectional 

cross-scale connectivity and also performs effective feature 

fusion for features at different depths. The Bi-FPN network 

architecture is shown in Fig 2. 

C. Residual 3D Convolution 

With the continuous advancement of medical imaging, 

the data generated in clinical medical diagnosis no longer 

consists solely of 2D medical image data but rather a 

greater proportion of 3D medical image data. In order to 

raise the precision of segmentation, it is important to 

acquire the full feature data included in the 3D images. An 

effective method for improving the manifestation of the 

deep network model is to increase the network depth in 

 

 
 

Fig. 2. Bi-FPN network structure diagram. 

 

 

 

 
 

Fig. 3. Residual network diagram. 
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order to obtain the 3D spatial structure information in the 

image and to resolve the gradient disappearance problem 

during the training process. In theory, As the number of 

network levels grows, the network capabilities will improve, 

but in practice, this is not the case. The model's accuracy 

will decrease after a saturation point is reached as the 

number of network model layers is increased. This is 

because of the extent of Gradient disappearance is a 

problem that arises during network training. A series of 

residual blocks comprise the residual network. The direct 

mapping section and the residual section make up the two 

parts of the residual block, as shown by the following 

formula: 

 

            (1) 

 

Among them, xl and xl+1 denote the input and output data 

of the l layer, f(⋅) denotes the residual mapping function; wl 

represents the convolution algorithm, and F(⋅) represents 

the ReLU function. 

Fig 3 is a diagrammatic representation of the residual 

network. The result after direct mapping and the result after 

residual learning are added to the residual portion, which 

consists of convolution operations (represented in the figure 

as two convolution operations). Connect a ReLU function 

to the operation to obtain the final output result. 

D. Multiscale Densely Connected Module 

Reference [18] proposes treating each output of a 

convolution operation as a densely connected form of all 

inputs to enhance the efficacy and depth of feature 

extraction. In light of this, equations 2 through 5 show the 

multi-scale feature fusion encoding calculation process that 

is proposed in this paper. Equations 6 through 9 show the 

decoding calculation process. 

 

                (2) 

 

           (3) 

 

             (4) 

 

                 (5) 

 

Among them, Xi-1 denotes the input of the present level; 

  denotes the output of the current level; Xd
i-1 denotes 

the output of Xi-1 after downsampling, D( ⋅ ) denotes 

downsampling, Xn
i-n denotes the adjustment of Xn

i-n to the 

same size as the Xi-1 layer, Xb
i-1 indicates the characteristic 

mask of the upper layer i-1, Xd
(i-1) indicates the fusion of 

Xb
i-1 and Xd

i-1 two feature maps, H( ⋅ ) denotes the 

concatenation operation and 1×1×1 convolution, F( ⋅ ) 

denotes the activation function. 

 

                (6) 

 

       (7) 

 

              (8) 

 

                 (9) 

Among them, Yi-1 denotes the input of the current layer, 

Yi denotes the output of the current stratum, Yq
i-1 denotes 

the output of Yi-1 after downsampling, U(⋅) denotes the 

upsampling, and Xi-1 denotes the low-level containing two 

sets of feature information: i-1 layer to i-n layers 

information, the high-level feature information from layers 

i+1 to i+n; Ync
i-1 denotes the fusion of two parts of Xi-1 and 

Yq
i-1 feature maps, H(⋅) denotes the concatenation operation 

and 1×1×1 convolution, and F(⋅) represents the activation 

function. 

E. Weighted Dice loss function 

In medical image segmentation, Dice loss function is a 

well-known loss function. In CT images, the area of the 

lung nodule region to be segmented is much smaller than 

the area of the background, so there is a problem of pixel 

imbalance between the lung nodules and the background in 

lung nodule segmentation. However, the original Dice loss 

function is not an effective solution for this kind of problem. 

Therefore, an optimized weighted Dice loss function is 

presented in this paper, as shown in Equation 10. 

 

       (10) 
 

In Equation 10, u and v represent the prediction map 

outputted using the softmax classifier and the real picture 

encoded using one-hot. k represents the number of 

categories, k∈{0,1,...,K-1}. uk(x) represents the odds that 

pixel x is in class k in the output probability graph. vw
k(x) 

represents the weighted true picture, and the weighting is 

shown in Equation 11. 

 

             (11) 

 

In Equation 11, vk(x) is the odds that pixel x is in class 

the k class in the real graph, w(x) is the weight, and the 

weights are calculated as shown in Equation 12. where 

wclass(x) is the class weight, according to the class to which 

pixel x belongs, it is given different weights, the class with 

more pixels has a relatively small weight, while the class 

with fewer pixels has a relatively large weight; warea(x) is 

the connected domain area weight, which is calculated as 

shown in Equation 13, where volume(x) is the area of the 

linked field and c is a constant, from Equation The larger 

the area of a connected domain, the smaller the connected 

domain area weight warea(x), and vice versa; wborder(x) is the 

border pixel weight, which gives a larger weight to the 

border pixels to raise the segmentation result of the border, 

which is gained by minus the corrupted image from the 

expanded image. is the balance factor, which measures the 

degree of influence of the boundary pixel weight on the 

overall weight. 
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   (12) 

 

          (13) 

 

III. THE PROPOSED ALGORITHM 

This paper proposes this model as a deep learning 

technique for segmenting lung nodules. This model is 

primarily an improvement to the U-Net model and retains 

the symmetrical properties of the U-Net network model. 

Fig. 4 depicts the MRBU-Net-WD architecture proposed. 

The number of tiers and each network dimension of the 

MRBU-Net-WD model are shown in Table I. The encoding 

path is on the left. The decoding path is on the right. We 

introduce residual 3D convolution (R3D-CONV) and 

multi-scale dense connections, combine the U-Net model 

and residual network, and use Bi-FPN between the encoder 

and decoder. 

As input, the MRBU-Net-WD model takes 512×512 

images as input. The model's input data is a 3D-CT image, 

and the image's low-level features are extracted via the 

encoding route and then entered via the decoding route. In 

the decoding path, the image's high-level semantic features 

are extracted via an upsampling operation. The entire 

network's encoding and decoding paths consist of residual 

3D convolution modules and multi-scale dense connection 

modules. The encoding and decoding paths are linked by a 

bidirectional feature fusion, and the segmentation results 

come from a 1×1×1 convolutional level. 

In the case of input image, the MRBU-Net-WD encoder 

network consists of two 3×3×3 volumes, each followed by 

an activation feature and a 2×2×2 max-pooling action with 

stride 2. Features are reduced in size. The downsampling 

stage is composed of two 3D convolutional layers and 

activation functions, followed by a pooling layer for 

downsampling with a 2×2×2 max-pooling operation and 

stride 2. The feature sizes corresponding to the five 

encoding depths are 512×512×64, 256×256×128, 

128×128×256, 64×64×512, 32×32×1024, of which 64, 128, 

256, 512, and 1024 represent the number of channels. The 

 

 
 

Fig. 4. Schematic diagram of MRBU-Net-WD model structure. 

 

 

 
TABLE Ⅰ 

MRBU-NET-WD MODEL NETWORK PARAMETERS. 

 Layer name Filter dimension Number of parameters 

Contraction path 

 
Conv×10, ReLu 3×3×3 2.826×107 

MaxPool×4 2×2×2  

Bi-FPN 

 
Conv×5 3×3×3 1.269×105 

BatchNormalization×12  3072 

ReLU×12, MaxPool×3  2×2×2  

DepthwiseConv×7   4032 

Expansion path 

 
Conv×9, ReLu 3×3×3 1.023×107 

ConvTrans×4, ReLu 2×2×2 2.786×106 

Total parameters   4.141×107 
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encoder and decoder are symmetrical, and the process is 

performed in reverse. Equation 14-15 depicts the 

convolution operations that occurs in each stage of the 

network: 

 

(14) 

 

             (15) 

 

                (16) 

 

denotes kernel convolution, while Equations 15 and 16 

correspond to forward propagation. In Equation 14, I and k 

represent, respectively, the input picture and nucleus. In 

Equations 15 and 16, A[l], w[l], b[l], and f[l] represent the 

activation, weight, offset, and optimization feature of the 

lth layer, respectively. 

In the residual stage, every convolution the input image 

is convolved by two identical 3×3×3 convolution 

operations; the ReLU optimization feature is connected 

after optimization feature; and the input feature map is 

obtained after each convolution. Using a 2×2×2 

max-pooling action with a step size of 2, the input feature 

maps are added together to make the output feature map. 

During the stage of multi-scale feature fusion, the 

encoding and decoding paths contain identical convolution 

operations, and each convolution module contains two 

identical 3×3×3 convolution kernels. The convolution 

operation is followed by the lot regularization operation 

and the ReLU activation function. In the encoding path, the 

output result from the first stage is downsampled by a 

factor of 4, and the output result from the second stage is 

downsampled by a factor of 2, before being combined as 

the input for the subsequent stage. The decoding path 

reverses the downsampling operation, while the fusion 

method remains the same. 

The encoder features are input to Bi-FPN, and the 

decoder receives the output characteristics vector. Each 

stage of the decoder deconvolutes the feature map, which 

consists of a deconvolution operation with a stride of 2, and 

the corresponding feature vector from the feature network. 

The concatenation operation is followed by two 3×3×3 

convolutions, while each deconvolution operation is 

followed by two repeated 3D convolutions and an 

activation function. In the last layer of deconvolution, the 

feature map goes through two 3×3×3 convolution and 

activation functions and a 1×1×1 convolutional layer with 

as many output channels as there are label categories. 

MRBU-NET-WD receives CT images as input and 

generates 3D spatial features. And due to the residual 

module, multi-scale dense connection module, and Bi-FPN, 

it prevents the network from degenerating during the 

training process and prevents over-or undersegmentation. 

enhance the model's segmentation accuracy. 

IV. EXPERIMENT 

A. Data  

Lung Nodule Analysis 2016, or LUNA16, is a dataset for 

lung nodule detection that was released as part of the 2016 

Lung Nodule Analysis competition. The LUNA16 dataset 

is derived from the LIDC-IDRI dataset [19], which contains 

1018 cases and 888 CT scans in total. All CT images are 

provided by a number of reputable medical institutions and 

well-established imaging companies. Lesion labeling on 

each CT image was done by four seasoned people chest 

radiologists. The process will have two stages. In the first 

stage, four doctors will independently annotate all the 

images in detail, including nodules of different sizes. In the 

second phase, each physician will review the results of the 

rest of the physicians for ensure accuracy and 

comprehensiveness. 

The LUNA16 dataset contains approximately 1186 

nodule annotations, which also include various attribute 

files of nodules. Each data in the LUNA16 dataset is a 3D 

image, including a range of multi-directional thoracic 

sections, and due to different scanning instruments, 

scanning equipment parameters, and the patient's own 

 

 
 

Fig. 5. LUNA16 data set example. 
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physiological conditions, the quantity of cuts in every 

picture will vary to some extent. Specifically, each 3D 

image in the dataset is composed of a different number of 

2D images. Fig 5 shows the LUNA16 dataset. 

B. Evaluation metrics 

In order to test the segmentation effect of the 

MRBU-NET-WD model introduced in this paper, the Dice 

coefficient (DSC), Jaccard, and Sensitivity evaluation 

indicators are presented in this chapter (Sen). In the 

experiment, the segmented lung nodules can be classified 

as true/false positive or true/false negative pulmonary 

nodules. True Positives (TP) indicate that the model 

predicts a lung nodule that is in fact a lung nodule, whereas 

True Negatives (TN) indicate that the model predicts a 

non-pulmonary nodule that is in fact a lung nodule. 

Non-pulmonary nodules; false positive (FP), which means 

the model predicted a lung nodule when it was actually a 

non-pulmonary nodule; and false negative (FN), which 

means the model predicted a lung nodule when it was 

actually a non-pulmonary nodule. 

The accuracy rate is used to evaluate the model's 

overall accuracy, allowing for a more intuitive analysis of 

the model's advantages and disadvantages. Accuracy is 

defined by equation 17: 

 

              (17) 

 

The Jaccard similarity coefficient is often used to 

distinguish similarities and differences in data sets. Higher 

coefficients represent higher similarity. Jaccard is defined 

by equation 18: 

 

              (18) 

 

Sen is the proportion of correctly segmented tumor 

points in an image relative to the number of actual tumor 

points. The better the segmentation result, the higher the 

sensitivity. Sen is defined by equation 19: 

 

                (19) 

 

C. Experimental environment settings 

In the experiments, a MRBU-Net-WD network is used to 

segment lung nodules in the LUNA16 dataset to prove the 

validity of this network for lung nodule segmentation. 

Moreover, to prevent the model from becoming overfit, an 

early stop training strategy is employed; if the model's 

performance does not improve after an additional ten 

training epochs, model training is terminated. In this 

experiment, the Tensorflow deep learning framework was 

adopted, Python 3.6 was used as the programming language, 

the processor was Intel Core i5-12600f, and the graphics 

card was NVIDIA Ge Force GTX 3060. The data sets used 

in this chapter are separated into two sections: training and 

testing. Repeat the training and test ten times in a cycle and 

average the segmentation index. In purpose of testing the 

model, the batch amount is fixed to 16, the initial study 

speed is fixed to 0.001, and the optimization algorithm was 

Adam. 

D. Experimental results 

In the experiment, 704 images were selected at random 

as the training set, 96 images were used as the test set. The 

image size of both the training and test sets is 256×256. 

The transverse and longitudinal axes of Fig 6 indicate the 

number of iterations and the DSC in turn. During the 

training and validation phases, Fig. 6 demonstrates that 

when the MRBU-Net-WD network's epoch on the 

LUNA16 dataset reaches 40, the model converges on both 

the training and validation sets. When the epoch reaches 60, 

the training set and test set curves become stable, and 

training accuracy no longer increases. 

Fig 7's abscissa and ordinate delegates the amount of 

iterations and the Loss value, respectively. The Loss curve 

of the training process of the MRBU-Net-WD network on 

the LUNA16 dataset is depicted in Fig 7. The 

MRBU-Net-WD network present in this study converges 

fundamentally when the training epoch of the training set 

and the validation set is approximately 40. When the epoch 

reaches 70, both the training set and the validation set have 

attained convergence, and the loss value is stable at 0.03. It 

 

 

 
Fig. 6. MRBU-Net-WD network accuracy curve. 

 

 

 
 

Fig. 7. MRBU-Net-WD Network training Loss curve. 
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demonstrates that the MRBU-Net-WD network can 

accommodate the distribution of samples in the training set 

and validation set, which are essentially the same. 

As demonstrated in Table II, the MRBU-Net-WD 

network proposed in this paper denotes a great 

enhancement over the former U-Net model. The 

MRBU-Net-WD network has improved its DSC by 11.8%, 

8.09% and 2.45% compared to some recently proposed 

models. The segmentation effect is much better than that of 

other models, which shows that the improved 

MRBU-Net-WD does a better job of generalization and 

doesn't overfit.  

In the case of images containing negative samples, the 

acquisition of negative samples is conducted by 

intercepting them randomly from images without nodules. 

The acquisition is expanded to the same size as the positive 

samples. Introduce 5% of negative test samples. 

False-positive lung nodules with a radius of less than 2 

pixels were masked out of the original 512×512 image to 

reduce the false-positive rate. In addition, it is assumed that 

false lung nodules will be identified in some 

non-pulmonary nodules in the positive sample, and the 

false positive rate is computed by taking the complete count 

of false lung nodules by the complete count of identified 

lung nodules. The sum of the precision rate and the rate of 

false positives is 1. The number of correct lung nodules out 

of the total number of lung nodules is the recall rate. 

After adding 5% of negative samples, Table III shows 

that the improved model MRBU-Net-WD is only slightly 

less accurate than the U-Det model in terms of recall, but it 

is more accurate. 

Based on Table IV, it is evident that the MRBU-Net-WD 

model outperforms the other models, based on the results of 

introducing 10% negative samples, similar to 5% negative 

samples. In terms of recall, the MRBU-Net-WD model is 

only slightly worse than the U-Det model, but it 

demonstrates certain advantages in all other performance 

indicators. 

In order to verify the improvement of weighted Dice 

function, the performance of weighted cross entropy loss 

function, Focal loss function and weighted Dice loss 

function were compared and analyzed. Based on the data in 

Table V it is not difficult to analyze that among the three 

weighted loss functions, this change in the weighted Dice 

loss function has the best impact on the segmentation 

results, and its Dice coefficients on the segmentation of 

pulmonary nodules are 96.63% respectively. Thus, 

compared with the weighted cross entropy loss function 

and Focal loss function, the weighted Dice loss function 

has the best segmentation performance. It can not only 

solve the pixel imbalance problem of pulmonary nodules, 

but also increase the segmentation accuracy of pulmonary 

nodules. At the meantime, the weighted Dice loss function 

also has higher stability. In conclusion, compared with the 

weighted cross entropy loss function and Focal loss 

function, the weighted Dice loss function has higher 

accuracy and stability. 

In this study, six groups of experiments were conceived 

to verify the suggested improved model against each other. 

From Table VI, it can be seen that the optimization effects 

of multi-scale fusion, Bi-FPN, Residual 3D Convolution 

(R3D-conv) and Weighted Dice loss function enhance the 

 

TABLE Ⅱ 
COMPARISON OF SEGMENTATION EFFECTS OF EACH MODEL 

 DSC Sen Jac 

U-Net 78.82 78.04 65.94 

U-NET3+ 84.83 91.08 71.37 

U-Det 88.54 95.03 74.28 

RUNet 94.18 96.75 79.15 

MRBU-Net-WD 96.63 98.94 83.74 

 

 

TABLE V 

SEGMENTATION RESULTS FOR SEVERAL WEIGHTED LOSS FUNCTIONS 

(DSC:%) 

 Cross 

Entropy Loss 

Weighted Cross 

Entropy Loss 

Focal 

Loss 

Weighted 

Dice Loss 

Mean 88.2 90.5 93.5 96.6 

Std 7.0 3.7 5.3 4.3 

Med 88.9 91.1 95.5 97.6 
Min 69.0 85.5 85.5 91.1 

Max 89.6 95.6 98.5 99.4 

 
 

TABLE Ⅲ 

COMPARISON OF SEGMENTATION EFFECTS WITH 5% NEGATIVE 

SAMPLES 

 RECALL F1SCORE JAC 

U-Net 93.67 85.74 69.55 
U-NET3+ 92.96 91.64 75.36 

U-Det 97.83 92.46 76.52 

RUNet 94.35 88.24 83.61 
MRBU-Net-WD 96.54 93.91 85.67 

 

 

Table VI 
COMPARATIVE EXPERIMENTAL RESULTS 

 Multi-scale 

feature 

fusion 

Bi-FPN R3D-conv Weighted 

DIce loss 

function 

DSC 

U-Net × × × × 78.82 

Model1 √ × × × 83.34 

Model2 × √ × × 82.78 

Model3 ×  √  84.12 

Model4 × × × √ 86.87 

Model5 √ √ × × 87.32 

Model6 √ √ √ × 92.49 

MRBU 

-Net-WD 

√ √ √ √ 96.67 

 

 

TABLE Ⅳ 
COMPARISON OF SEGMENTATION EFFECTS WITH 10% NEGATIVE 

SAMPLES 

 RECALL F1SCORE JAC 

U-Net 93.71 84.06 66.53 

U-NET3+ 93.86 91.05 71.56 
U-Det 97.41 90.14 74.04 

RUNet 94.37 84.62 79.75 

MRBU-Net-WD 96.54 92.35 82.49 
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partitioning effect of the model very significantly. In terms 

of segmentation accuracy, the results of the multi-scale 

fusion, Bi-FPN, Residual 3D Convolution and Weighted 

Dice loss function can be superimposed and the final 

splitting precision is higher than that of the improved model 

alone. 

Similarly, as can be seen from Figure 8, the algorithm 

in this study significantly outperforms other methods in 

segmenting fine nodules, nodules with unclear edges, and 

nodules with similar gray values in the image. 

Using four sets of experiments, tables, graphs, and 

results of visual segmentation, this paper shows that the 

proposed MRBU-Net-WD network divides lung nodules 

more effectively than other models. 

V. CONCLUSIONS 

In this study, the architecture of U-Net model is 

improved and a new network structure. The 

MRBU-Net-WD model is presented by analyzing the 

features of medical pictures at the present stage and the 

current research status. Combining the residual 3D 

convolution module further enhances the U-Net network's 

segmentation performance. The multi-scale dense 

connection, which further improves the segmentation 

performance of the U-Net model, solves the problem of the 

gradient disappearing as the network depth increases during 

U-Net model training. On this basis, Bi-FPN is introduced 

to enrich the feature maps of each network depth and 

provide an effective fusion of features across depths. The 

defect of uneven target region and background pixels in 

lung CT images is solved by using the weighted Dice loss 

function. In the conclusion of this study, it is tested on the 

LUNA16 dataset. The experimental results demonstrate 

that the MRBU-Net-WD model segmentation effects are 

superior to those of some recently proposed models. In 

spite of this, the experiments presented in this paper do not 

overprocess the image data. It will be possible for 

researchers to process the data in more detail before 

training for the sake of improve the model's ability to 

segment lung nodules in the future. 
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