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Abstract—In the present paper, we discuss mainly the elemen-
tary wave interactions for the simplified hyperbolic equations
which shows the rich internal mechanisms. By virtue of the
characteristic method, we construct the unique perturbed
solution. Moreover, we find the Riemann solutions are stable.

Index Terms—Wave interaction, Hyperbolic conservation
laws, Delta shock, Riemann problem.

I. I NTRODUCTION

I N this paper we study mainly the following hyperbolic
equations

{

ut + (ψu)x = 0,

vt + (ψv)x = 0,
(1)

whereψ = ψ(ν) is the given smooth function ofν = au+bv
which satisfies the conditiona2 + b2 6= 0, a and b are the
constants. For the general caseψ = ψ(u, v), the authors [1]
investigated the existence of the global solutions.

In [2], the authors studied the Riemann problem for (1)
with

(u, v)(x, t)|t=0 =







(u+, v+), as x > 0,

(u−, v−), as x < 0,
(2)

and they obtained the stability of the Riemann solutions and
the delta shock waves appeared.

In [3], by using the viscous vanishing method the authors
investigated

{

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0,
(3)

whereρ(x, t) ≥ 0 andu is respectively the density and the
velocity.

In [4], the author studied the following coupled systems
{

vt + (vg(u))x = 0,

(vu)t + (vug(u))x = 0,
(4)

which included (3). In [5], we obtained the global explicit
solutions for the Cauchy problem of (4).

In [6], the author discussed the following Riemann prob-
lem

{

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,
(5)
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and p = − 1
ρ
. In [7], the authors investigated the general

solutions for system (5) and gave some conjectures on the
solutions structures. Many works about the initial value
problem are recommended to [8], [9], [10] and the references
cited therein.

In this study, we make the investigations of the elementary
wave interactions for (1). We consider the wave interactions
containingδ−shock in another paper, and here we just study
the cases containing noδ−shock. Many conclusions about
δ−shock can be referred to [11], [12], [13].

We consider the following initial value question for (1)

(u, v)(x, t)|t=0 =











(u−, v−), as x < −η,

(um, vm), as − η < x < η,

(u+, v+), as x > η,

(6)

where the perturbation parameterη > 0 is small enough.
We will research the above problem by studying detailedly
the elementary wave interactions. We will investigate the
two Riemann problems and analyze the wave interactions.
Moreover, by lettingη → 0, we conclude that the perturbed
solution of (1) and (6) has convergence, which reveals the
stability of the Riemann solutions of (1) and (2).

The present paper is continued as follows. we list the
studies for (1) and (2) in Section II. In Section III, we
investigate the elementary waves interactions and obtain that
the Riemann solutions are globally stable. In Section IV we
get the main result.

II. PRELIMINARIES

In what follows, we give briefly the Riemann problem of
(1) and (2) [2].

The characteristic roots of (1) areµ1 = ψ, µ2 = ψ +
νψr, and the right characteristic vectors ofµi (i = 1, 2) are
respectively

−→χ 1 = (b,−a)T , −→χ 2 = (u, v)T . (7)

It is easily known that whenνψν = 0, (1) is non-strictly
hyperbolic. From

∇µ1 ·
−→χ 1 ≡ 0, ∇µ2 ·

−→χ 2 = ν(νψ)νν , (8)

In our paper, letψν > 0, (νψ)νν > 0, andψ(0) = 0. Let
(u, ρ)(x, t) = (u, ρ)(ξ), ξ = x

t
, and (1) and (2) become the

following problem
{

−ζuζ + (ψu)ζ = 0,

−ζvζ + (ψv)ζ = 0,
(9)

and (u, v)(±∞) = (u±, v±). For the smooth solutions, (9)
becomes

A(ς)ςζ = 0, (10)
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whereς = (u, v)T , and

A(ς) =

(

−ζ + ψ + auψν buψν
avψν −ζ + ψ + bvψν

)

.

Besides(u, v) = constant, (10) has the singular solution






ζ = φ,

au+ bv = au− + bv−,
(11)

and the rarefaction wave solution






ζ = ψ + νψν ,

u
v
= u

−

v
−

, ν− < ν.
(12)

Denote
←−
R whenν− < ν < 0, and

−→
R whenν > ν− > 0.

At ζ = ω, it holds the Rankine-Hugoniot equations
{

−ω[u] + [ψu] = 0,

−ω[v] + [ψv] = 0,
(13)

where[u] = ur − ul denotes the jump ofu, ul = u(ω − 0),
ur = u(ω + 0), etc.

From (13) we obtain the contact discontinuity






ζ = ψ(ν−) = ψ(ν+), ν− = ν+,

au+ bv = au− + bv−, ν = ν−,
(14)

and the shock wave






ζ = ω = ν+ψ(ν+)−ν
−
ψ(ν

−
)

ν+−ν− ,

u
v
= u

−

v
−

, ν < ν−.
(15)

Denote
←−
S whenν < ν− < 0, and

−→
S whenν− > ν > 0.

Note thatR coincide with S, we know that (1) is the
Temple class [14], [15].
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Whenν− < 0 (Fig. 1.), there are three possibilities:
if ν+ < ν− < 0, the unique solution is

←−
S + J , if ν− <

ν+ < 0, the unique solution is
←−
R + J , if ν+ < ν− < 0, the

unique solution is
←−
R +

−→
R ;

When ν− > 0 and ν+ > 0 (Fig. 2.), there are two
possibilities:

if ν+ > ν− > 0, the unique solution isJ +
−→
R , if ν− >

ν+ > 0, the unique solution isJ +
−→
S .

When ν− ≥ 0 ≥ ν+, we obtainδ−shock solution which
satisfies



























ω = r+ψ(ν+)−ν
−
ψ(ν

−
)

ν+−ν− ,

x = ωt,

ϕ(t) = 1√
1+ω2

ψ(ν+)−ψ(ν
−
)

ν+−ν− (u+v− − u−v+)t,

ψ(ν)|x=ωt = ω.

(16)

The δ-entropy condition is

µ2(ν+) ≤ µ1(ν+) ≤ ω ≤ µ1(ν−) ≤ µ2(ν−). (17)

Theorem 2.1We construct the unique Riemann solution
of (1) and (2).

III. SOLUTIONS OF THE PERTURBED INITIAL VALUE

PROBLEM (1) AND (6)

Now we consider the elementary wave interactions for (1)
and (6). There are four different cases from(−η, 0) and
(η, 0):
J+
−→
S andJ+

−→
S , J+

−→
R andJ+

−→
R , J+

−→
S andJ+

−→
R ,

←−
S + J and

←−
R + J .

Case 1.WhenJ +
−→
S overtakesJ +

−→
S .

Sinceν− > νm > ν+ > 0 (Fig. 3.), we get (Fig. 4.)

(u−, v−) + J1 + (u1, v1) +
−→
S 1 + (um, vm) + J2+

(u2, v2) +
−→
S 2 + (u+, v+).

(18)
The propagating speed of

−→
S 1 is ω1 = ν1ψ(ν1)−νmψ(νm)

ν1−νm
and that of J2 is µ2 = ψ(νm) = ψ(ν2). Thus,

−→
S 1 will

overtakeJ2 in the finite time. The intersection point(x1, t1)
satisfies

{

x1 + η = ω1t1,

x1 − η = µ2t1,
(19)

which shows that(x1, t1) =
(

ω1+µ2

ω1−µ2
η, 2η

ω1−µ2

)

.

After (x1, t1), it generates a new
−→
S 3 and a newJ3. Notice

ω3 = ω1, andJ3 is parallel toJ1 due toµ3 = µ1.
Due to the fact thatω3 = ω1 = ν1ψ(ν1)−νmψ(νm)

ν1−νm ,

ω2 = ν2ψ(ν2)−ν+ψ(ν+)
ν2−ν+ , we know thatω3 > ω2 and

−→
S 3

will overtake
−→
S 2 at (x2, t2) and generate a new

−→
S 4 where

the point(x2, t2) satisfies
{

x2 − x1 = ω3(t2 − t1),
x2 − η = ω2t2.

(20)

It follows that

(x2, t2) =

(

ω3 + ω2

ω3 − ω2
η,

2η

ω3 − ω2

)

. (21)

When the time is large enough, the solution is given as fol-
lows (u−, v−)+J1+(u1, v1)+J3+(u3, v3)+

−→
S 4+(u+, v+).
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Fig. 3. Wave curves whenν
−
> νm > ν+ > 0.
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Theorem 3.1WhenJ+
−→
S overtakesJ+

−→
S , we observe that

the perturbed solution isJ +
−→
S which remains unchanged.

Case 2.WhenJ +
−→
R overtakesJ +

−→
R .

Sinceνm > ν− > 0 andν+ > νm > 0, i.e., ν+ > νm >

ν− > 0 (Fig. 5.). The propagation speed of
−→
R 1 is ζ1 =

ψ(νm) + νmψν(νm) and that ofJ2 is µ2 = ψ(νm) = ψ(ν2)

(Fig. 6.). It is clear that
−→
R 1 will overtakeJ2 at (x1, t1) which

is determined by
{

x1 + η = ζ1t1,

x1 − η = µ2t1.
(22)

It yields that

(x1, t1) = (
ζ1 + ν2

ζ1 − µ2
,

2η

ζ1 − µ2
). (23)

ThenJ2 crosses the whole of
−→
R 1, which satisfies























dx
dt

= ψ(ν),

x+ ε = [ψ(ν) + νψν(ν)]t,

u
v
= u1

v1
= um

vm
,

x(t1) = x1.

(24)

Since
dx
dt

= ψ(ν) + νψν(ν) + t[2ψν(ν) + νψνν(ν)](a
du
dt

+ b dv
dt
),

= ψ(ν),
(25)

we haveadu
dt

+ b dv
dt

= νψν(ν)
t[2ψν(ν)+νψνν(ν)]

. Considering that
the condition(rφ)rr > 0, we have

(νψ(ν))′′νν = [(νψ(ν))ν ]
′ = [ψ+νψν ]

′ = 2ψ′(ν)+νψ′′(ν) > 0.

And together withψν > 0, it follows that

d2x
dt2

= ψ′(ν)[adu
dt

+ b dv
dt
] > 0. (26)

-

6
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Fig. 5. Wave curves whenν+ > νm > ν
−
> 0.
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From (24), we know thatJ2 will pass through
−→
R 1

completely in the finite time. After the completion of the
penetration, we denote the contact discontinuity withJ3 and
µ3 = ψ(ν−) = ψ(ν1), which shows thatJ3 is parallel toJ1.
Sinceψ(ν1) = ψν3) andψ(νm) = ψ(ν2), we know that the
propagation rate of

−→
R 1 keeps unchanged.

The solution is(u−, v−)+J1 +(u1, v1)+J3 +(u3, v3)+−→
R 3 + (u2, v2) +

−→
R 2 + (u+, v+). As η → 0, J1 andJ3 will

coincide with each other and the two rarefaction waves
−→
R 3

and
−→
R 2 will coalesce into one.

Theorem 3.2WhenJ+
−→
R intersects withJ+

−→
R , we observe

that the perturbed solution is stillJ +
−→
R .

Case 3.WhenJ +
−→
S intersects withJ +

−→
R .

Sinceν− > νm > 0 andν+ > νm > 0 (Fig. 7. and Fig.
9.). Similar discussions as Case 1, the interaction of

−→
S and

J2 results in a new
−→
S 1 and a newJ3.
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Fig. 7. Wave curves in(u, v) for Subcase 3.1.
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−→
S 1 must overtake

−→
R at the intersection point(x2, t2)

which satisfies
{

x2 − x1 = ω1(t2 − t1),
x2 − η = [ψ(νm) + νmψν(νm)]t2,

(27)

ω1 is the velocity of
−→
S 1, which yields

(x2, t2) =

(

η +
2[ψ(νm) + νmψν(νm)]

ω1 − µ2
η,

2η

ω1 − µ2

)

.

When t > t2,
−→
S 1 begins to penetrate

−→
R and



















dx
dt

= rψ(ν)−ν
−
ψ(ν

−
)

ν−ν
−

= νψ(ν)−ν3ψ(ν3)
ν−ν3 ,

x− η = [ψ(ν) + νψν(ν)]t,
u
v
= u2

v2
= u+

v+
,

x(t2) = x2.

(28)

Since

dx
dt

= ψ(ν) + νψν(ν) + [2ψ′(ν) + νψ′′(ν)]t(adu
dt

+ b dv
dt
),

= νψ(ν)−ν3φ(ν3)
ν−ν3 ,

(29)

and du
dt

= u2

v2

dv
dt

, we know

a
du

dt
+b

dv

dt
=

1

[2ψ′(ν) + νψ′′(ν)]t
[
ψ(ν)− ψ(ν3)

ν − ν3
ν3−νψν(ν)],

it follows that

du

dt
=

ψ(ν)−ψ(ν3)
ν−ν3 ν3 − νψν(ν)

[2ψ′(ν) + νψ′′(ν)](a + b v2
u2
)t
.

-

6
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Fig. 9. Wave curves in(u, v) for Subcase 3.2.
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Subcase 3.1.ν− > ν+.
For this subcase, it holdsν− > ν+ > νm > 0 (Fig. 7.).

When t > t3, the solution is (Fig. 8.)

(u−, v−) + J1 + (u1, v1) + J3 + (u3, v3) +
−→
S 1 + (u+, v+).

Subcase 3.2.ν− < ν+.
From ν+ > ν− > νm > 0 (Fig. 9.) we know

−→
S 1 cannot

penetrate
−→
R completely. The solution is (Fig. 10.)

(u−, v−) + J1 + (u1, v1) + J3 + (u3, v3) +
−→
R + (u+, v+).

Theorem 3.3 When J +
−→
S intersects withJ +

−→
R , we

observe that asν− > ν+, the perturbed solution isJ +
−→
S

as the perturbation parameter tends to zero, asν− < ν+, the
perturbed solution isJ +

−→
S .
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Fig. 12.
←−
S + J and

←−
R + J , νm < ν+ < ν

−
< 0.

Case 4.When
←−
S + J intersects with

←−
R + J .

Since νm < ν− < 0 and νm < ν+ < 0 is satisfied.
J1 emitting from (−η, 0) will catch up with

←−
R and begin

to penetrate it. Like as the arguments in Case 2,J1 will
penetrate

←−
R completely. AndJ3 is parallel toJ2 emitting

from (η, 0).
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Now we turn to study the intersection between
←−
S with

←−
R 1. Denote their first intersection point is(x1, t1) which is
determined by

{

x1 + η = νmψ(νm)−ν
−
ψ(ν

−
)

νm−ν− t1,

x1 − η = [ψ(νm) + νmψν(νm)]t1.

It yields that






x1 = 2(νmψ(νm)−ν
−
ψ(ν

−
))η

νmψ(νm)−ν
−
ψ(ν

−
)−[ψ(νm)+νmψν(νm)](νm−ν−) − η,

t1 = 2η
νmψ(νm)−ν

−
ψ(ν

−
)

νm−ν
−

−[ψ(νm)+νmψν(νm)]
.

When t > t1,
←−
S begins to penetrate

←−
R 1 and















dx
dt

= νψ(ν)−ν
−
ψ(ν

−
)

ν−ν
−

,

x− η = [ψ(ν) + νψν(ν)]t,
u
v
= u1

v1
= u3

v3
,

x(t1) = x1.

(30)

Similar discussions with the second part of Case 3, we
proceed as follows.
Subcase 4.1.ν− > ν+.

For this subcase, we haveνm < ν+ < ν− < 0 (Fig. 11.).
The shock wave

←−
S will cross the whole of

←−
R 1 completely.

When t is large enough, the solution is (Fig. 12.)

(u−, v−) +
←−
S 1 + (u3, v3) + J3 + (u2, v2) + J2 + (u+, v+).

Subcase 4.2.ν− < ν+.
Here we haveνm < ν− < ν+ < 0 (Fig. 13.), the solution

is (Fig. 14.)

(u−, v−) +
←−
R 1 + (u3, v3) + J3 + (u2, v2) + J2 + (u+, v+).
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Fig. 13. Wave curves in(u, v) for Subcase 4.2.
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Fig. 14.
←−
S + J and

←−
R + J , νm < ν

−
< ν+ < 0.

Theorem 3.4When
←−
S +J intersects with

←−
R +J , it follows

that as ν− > ν+, the perturbed solution is
←−
S + J as

the perturbation parameter tends to zero, asν− < ν+, the
perturbed solution is

←−
R + J .

IV. CONCLUSION

Now we have finished the discussions of the perturbed
initial value problem (1) and (6). And we find that the
structures of the perturbed solutions are much more simple
due to the fact that (1) belongs to the Temple types. We
summarize our main results in this paper.

Theorem 4.1The perturbed Riemann solutions of (1) and
(6) converge to the corresponding cases of (1) and (2) as
η → 0. Therefore, we observe that the Riemann solutions of
(1) and (2) are stable.

It is important to study the elementary wave interactions
of (1), since it is significant in the practical applications
and enlightening for the general mathematical theory for
the hyperbolic equations. In the future study, we will probe
into the perturbed solutions which is added the perturbation
source term.
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