
Security and Performance Analysis of Elliptic Curve
Crypto System using Bitcoin Curves

Mohammed Mujeer ulla, Md Sameeruddin Khan, Preethi,
and Deepak S.Sakkari

Abstract—This paper analysis an attack on crypto
currency signatures generated by Elliptic Curve Digital
Signature Algorithm (ECDSA). This attack is done on
three different dimensions with leakage of nonce weak
nonce and by using Lenstra–Lenstra–Lovasz (LLL) by
considering various crypto currency curve parameters
such as number of private keys, single nonce, mul-
tiple nonces, single signature, multiple signatures on
varying bit sizes of length 64, 128, 256, 512 and 1024.
This work demonstrates demonstrate leak-weak nonce
method performs exponentially better over LLL to
crack ECDSA. In addition to finding multiple vulner-
abilities on ECDSA and to avoid leak-weak nonces
we use T-of-N threshold signing algorithm based on
GG20 where nonce k is distributed across N parties
unlike having with one single party. This technique
is implemented and evaluated considering group of N
parties. This paper brings out the pitfalls of ECDSA,
when it is used to sign crypto currency transactions.

Keywords— Elliptic Curve Cryptography (ECC),
Securities and Exchange Commission (SEC), National
Institute of Standards and Technology (NIST), Ed-
wards curve Digital Signature Algorithm (ECDSA),
Nonce - number only used once.

I. Introduction

Many sensitive and confidential data shared in real-time
applications like online banking system includes third-
party applications such as UPI payment schemes. Due to
abrupt advances in technology, trading centre and data
access remotely in healthcare-based applications, IIOT,
defence, retail market, and many other industries are at
an unacceptably high level [1]. Public-key cryptosystem
ensures confidentiality, integrity, authentication and hence
used by several internet security protocols.

Manuscript received April 23, 2022; revised March 3, 2023.
This work was supported in by Presidency University - Research
and Innovation Council for fifty thousand Indian rupees, Bangalore,
Karnataka, India - 560064.

Mohammed Mujeer Ulla is Assistant professor at Presidency
University ,Bangalore, Karnataka, India - 560064. e-mail : mujer-
roshan@gmail.com.

Md. Sameeruddin Khan is Dean at Presidency
University, Bangalore, Karnataka, India - 560064. e-mail:
sameeruddinkhan@presidencyuniversity.in.

Preethi is Assistant professor at Presidency University, Bangalore,
Karnataka, India - 560064. e-mail : preethisrivathsa@gmail.com.

Deepak. S. Sakkari is Associate Professor at Presidency University,
Bangalore, Karnataka, India - 560064. e-mail : sakkari@hotmail.com.

Elliptic Curve Digital Signature Algorithm (ECDSA) is
commonly used public-key protocol over internet commu-
nication. Few specific areas of ECDSA are TLS, PGP,
Smart card, Digital currencies like Bitcoin, Ripple and
Ethereum. The listed areas find wide application of
ECDSA. The ECDSA algorithm considered as highly se-
cured due to its strong computing of discrete logarithm
problem. Also it generates small key length for signing
which is considers as fastest method. Hence it is highly
recommended by IEEE and NIST since 2000, ANSI since
1999 and ISO since 1998 [2].

The ECDSA security is based on accurate generation of
per-signature nonce which is also known as ephemeral pri-
vate key. There are many ECDSA flaw’s that one could use
to uncover the private key, one among them is the use of
repeated nonce for generating signatures [3]. In this paper
we initially begin by collecting signatures from bitcoins
and ethereum, then we use them to efficiently compute
their private keys. In addition we find couple of bitcoin
and ethereum blockchain private keys that were generated
through iterated uses of nonces. We have employed two
methods to attack ECDSA signatures downloaded from
bitcoin and ethereum block chain. In first technique we try
to attack signatures targeting leak-weak and shared nonces
and in second method we use LLL algorithm to attack
the signatures on NIST and SECP curves. The popular
tool used in cryptanalysis is lattice reduction. This tool is
used by majority of the cryptosystems like RSA/Knapsack
and are broken using lattice reduction. ECDSA also uses
this tool combining lattice reduction , discrete algorithm
and performing factorization on composite numbers. LLL
algorithm introduced by Lenstra, Lenstra and Lovasz is
one among the known technique for lattice reductions.
Currently, the variants of the lattice algorithms are used
for lattice reduction. The main focus in this paper is on
applying leak-weak nonces, shared nonces and LLL to find
private keys of various length in terms of bits like 64 ,128,
256, 512, and 1024.

The paper is organized as follows into various sections.
Section II gives a theoretical proof of Elliptic Curve Digital
Signature (ECDSA) and the LLL Algorithm. Section III
describes three divisions, firstly- ECDSA: Disclosing the
private key, due to leak-weak and shared nonce using NIST
and SECP curve, secondly-ECDSA: Disclosing the private
key using Lenstra–Lenstra–Lovasz (LLL) method, if nonce

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

known, Finally-ECDSA-Disclosing the private key using
Lenstra–Lenstra–Lovasz (LLL) method, if nonce known
with real-world ECDSA bugs, also discusses-ECDSA: T-
of-N threshold digital signing algorithm based on GG20
cryp-tology. Section IV provides complete details of result
analysis and section V concludes the work with future
enhancement.

II. Theoretical Principle

A. Elliptic curve digital signature (ECDSA):
The Elliptic-Curve Digital Signature (ECDSA) is a

public-key used in digital signing algorithm. The keys gen-
erated using ECDSA are exponentially smaller in length
compared to the keys generated by any other digital
signing algorithm. The ECDSA public domain parameters
include an include an elliptic curve E on a field F which
is deterministic with a base point G of orderN, where N
is a very large integer. The signature verification using
public key is performed by Q= dG is considered as a point
on E, where d is a private key such that d = d modulo
N. The elliptic curve public keys are normally manifested
in compressed way by just furnishing the x coordinate of
intersecting point on elliptic curve and single parity bit of y
value. In order to sign a message hash h, the sender selects
empirical private key, also known as nonce (k), where k = k
modulo N, with this we have publicly verifiable point k.G
on the curve. Then the sender computes (xr, yr) = kG
MOD N and outputs the signature (r,s) where r = xr and
s = k−1(h+dr) MOD N . At the other end, receiver checks
the authenticity for the message hash using public key Q,
by computing (x′r, y′r) = hs−1G+rs−1Q, this is pictorially
shown in fig.1.

Fig 1. ECDSA

B. The LLL Algorithm :
There are several algorithms to find orthogonal basis.

The best and efficient technique is LLL algorithm. This
algorithm was invented by great researchers: Lenstra,
Lenstra and Lovasz. LLL algorithm mainly consists of

two conceptual parts:

• The working vector can become the successor of basis
vector or the working vector as it is replaced as basis
vector. This decision can be taken by reducing a non-
basis vector/working vector by reducing multiples of
the currently used basis vectors.

• The decision is based on satisfying Lovasz condition.
Lovasz condition checks the size of the working vector.
If it is large in bit size, the subsequent basis vector
are generated easily [4], here we maintain track of two
sets of vectors:

• ~v1,,......, the current set of basis vectors, which we are
attempting to minimize to a set that is approximately
orthogonal

• ~v1
∗, ~v2

∗ ,......, the set of orthogonal basis vector
produced by the Gram-Schmidt reduction.

We also need to keep track of k, K is the number of the
working basis vectors we are attempting to minimize,
is another important parameter to monitor. Suppose
our basis vectors are ~v1,~v2,......,~vk−1, ~vK ,.... and we are
working to reduce ~vK . We do this by subtracting multiples
of ~v1, ~v2,......,~vk−1. Now let us consider the vectors ~vk−1
and ~vK , if these were only two vectors we had we might
need to subtract some multiples of new ~vK from the old
~vk−1. This requires swapping ~vk−1 and ~vK . But since we
have a new k-1 vector we need to go through the whole
process again, this time with ~vk−1 as new working vector.
The decision of whether to swap ~vk−1 with ~vK and to
make ~vk−1 the working vector is based on whether the
Lovasz condition is satisfied or not. In addition to basis
vectors ~v1, ~v2,......,~vk−1, ~vK for the lattice we also have
the orthogonal basis ~v1

∗, ~v2
∗, ~v3

∗,.... found from the
Gram-Schmidt reduction. Let ~vK be the working vector
and

µk,k −1 =
~vk. ~v∗k−1
~v∗k−1 ∗ ~v∗k−1

If || ~vk
∗| |2 ≥

(3
4 − µ

2
k,k −1

)
, then we have completed the

comparison with ~vk and can make ~v∗k+1 the next working
vector, otherwise, we swap ~v∗k−1 and ~vK and make ~v∗k−1 as
the working vector. A toy example demonstrating above
steps in LLL algorithm is shown in appendix.

III. Methodology

C. Using NIST and SECP Curves, Disclosing ECDSA
Private Key with Leak, Weak, and Shared Nonce:

In this section we uncover the ECDSA-private keys
by applying elementary attacks. Firstly if attacker gets
to know the nonce k for every message used to generate
ECDSA signature then it is easy to compute the secret
key d by having d= (sk − h) r−1 MOD N. Secondly if

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

two different messages signed by h1 , h2 with same nonce
k and secret key, then it is trivial to compute secret key.
For instance let (r1, s1) and (r2, s2) be the signatures
generated on two message hash h1 and h2 respectively
then one can compute secret key k= (h1 − h2)(s1 − s2)−1

MOD N. In addition to above said attack we apply, two
optimizations to LLL algorithm. In first optimization ,
most significant bits known in which bi is assumed to be
positive value and we gradually raise the bias by centering
the bi by having the equation x

′

itiy + am + B ∼= 0 MOD
p which the solution x

′

i = biB. In second optimization
we decrease the lattice dimension by one by eliminating
y variable from x1t1y + a1 ∼= 0 MOD p so that we have
m− 1 equations with m unknowns all bounded.
Case 1: Disclosing the private key, due to leak of nonce
on NIST curves

As discussed earlier with ECDSA a message hash is
signed with its private key and the authenticity of signed
message hash is proved with the public key. Each time
we sign a message we randomize the nonce value to
generate a different verifiable signature each time. Over
all the signer has to reveal only the message signature
with its public key and not the nonce value. If the signer
reveals the nonce then intruder/third party easily finds
the private key. Fig.2 demonstrates revealing the private
key as a result of a nonce leak. Initially both sender

Fig 2. Leaked Nonce

and receiver agree on global parameters for ECDSA
message exchanges, steps to disclose the ECDSA private
key, due to leak of nonce using NIST curves are as follows:

• Sender selects his private key d and nonce value k to
sign the message hash,

• Sender computes his public key = d * G, which is a
verifiable point on curve by any other parties who
mutually commit on ECDSA,

• The intersecting point on elliptic curve E is the
signature (r,s) for message hash, where r = k.G and

s = k−1(H(M) + r.d).

Suppose the sender’s announcement of value k has been
leaked to intruder, and the steps followed by intruder to
recover private key if he has signature (r,s) and nonce k
is as follows:

• Intruder uses leaked values r=k.G and

s = k−1(H(M) + r.d) (1)

• Using equation (1) we get

s.k = H(M) + r.d (2)

• Using equation (2) we get

r.d = s.k −H(M) (3)

• Using equation (3) we get

d = r−1(s.k −H(M))MODN (4)

Table-V and table-VI shows disclosing the ECDSA
private key due to leak of nonce over NIST and SECP
curves for multiple signatures respectively.

Case 2.1: Disclosing the private key, due to weak
nonces using SECP curves on multiple signatures

One of the catastrophic failure of ECDSA is nonce reuse.
In simple terms if multiple signatures are signed using
same nonce k. Suppose if we use same nonce k, with r and
secret key to create two signatures pairing (r, s1)and(r, s2)
for two unique messages m1 and m2 then we have

s1 = k−1(h1 + r.sk) and s2 = k−1(h2 + r.sk) (5)

Equation 5 enables us to leak the secret key with,

= s2.h1 − s1.h2

r(s1 − s2)
and so k can be leaked

= h1.h2 + r.h1.priv − h1.h2 − r.h2.priv

r.h1.r.priv − r.h2 − r.priv

= r.h1.priv − r.h2.priv

r.h1 − r.h2
= priv

Nonce is also recoverable with

= h1 − h2

s1 − s2
= h1 − h2

k1(h1 − h2 + priv(r − r)) = k

Fig.3 demonstrates disclosing the private key, due to
weak nonces using SECP curves on multiple signatures.

Case 2.2: Disclosing the private key, due to weak nonces
using LLL on NIST curves with multiple signatures

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

Fig 3. Weak Nonce

Fig 4. LLL on multiple signatures

Quantum computing is a threat to to data security
and quantum computers can crack traditional encryption
methods. Most of the traditional encryption algorithms
strength rely’s on modular arithmetic. Shors algorithm
works on modular arithmetic to find the prime factors of
any integer there by paving a way to crack traditional
encryption schemes. Quantum computers with Shors
algorithm would thus be more effective in cracking
traditional encryption schemes and therefore a method
to resist such attacks is to use encryption schemes based
on lattices. A lattice based encryption is one that relies
on hard math problems involving lattices [5]. A lattice
is simple a mathematical structure used to represent an
infinite grid of points. Every lattice is formed from basis
vector, when multiplied together can form any point
in lattice. A lattice can comprise of infinite number of
dimensions and infinite number of basis vectors. To use
lattices for encryption involve a hard problem called
as shortest vector problem. As we add more and more
number of dimensions the problem becomes more and

more complicated until you find a solution to break them.
Here using LLL algorithm as a black box and we will to
attack signatures generated from bad nonce or random
number generator. These nonces will have fixed prefix or
suffix, where many of the least significant bits or most
significant bits are repeated. Even though if least or most
significant bits are not equal, this attack works normally.
Therefore, the LLL algorithm starts with a matrix input.
A collection of ECDSA signatures make up this input
matrix. The expected output from this algorithm is a
matrix with all nonces. This nonces enables to generate
ECDSA private keys described in case 1 and 2.1. Fig. 4
demonstrates application of LLL algorithm on multiple
signatures.

A lattice is denoted by λ and it is an additive subgroup
of real numbers. Its represented by a basis vector
g1, g2,gn in N-dimensional space. Consider X is a
lattice point represented as integral- linear combinations
of basis vector such as X=g1b1 +g2b2 ++gnbn where
the bi are integers. Fig. 8 illustrates a two-dimensional
lattice having two generator vectors i.e g1 and g2. By
mapping the generator vectors and columns in a matrix
forms a lattice point X is equal to the generator matrix
G times B where B is a vector of integers where b ∈ zn

is a vector or integers. In fig. 6 we choose B as equal
to integer vector [0,0], then X is equals to G times B
and therefore we get the lattice point as 0. In fig. 7 we
consider B is equal to integer vector [3,-1] then X is equals
G times B and therefore we get the lattice point as [3,0.5].
Basis reduction is a technique of decreasing the basis
B of a given lattice L to a new basis B’ comparatively
smaller without changing the lattice L.Figure 5 represents
a lattice having two different basis in two dimensional
structure. The determinant of the basis in Figure 5 is
shaded and the right basis is reduced and orthogonal.
The following procedure changes the basis by retaining
the same lattice : 1. Swap the two vectors in the basis
2. bi used for a vector, bi ∈ B
3. Add a linear combination of other basis vectors to
bi ∈ B vector.

Any vector v in lattice L, is represented as

v =
m∑

i=0
zibi (6)

Once inducted, we obtain new basis vector bj , where

bj = bj +
∑
i6=j

yibi, yiZ. (7)

A lattice L with new basis is represented as,

v =
∑
i6=0

zibi + zj(bj +
∑
i6=j

yibi) (8)

Thus, despite changing the basis lattice remains same.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

[N] 0 ... 0 0
0 [N] ... 0 0
...
0 0 ... 0 0

[r1s−1
1 −rns−1

n] [r2s−1
2 −rns−1

n] ... [B/N] 0
[m1s−1

1 −mns−n 1] [m2s−1
2 −mns−n 1] ... 0 [B]

Input Matrix To LLL Algorithm: for the

Unknown Nonce Bias.

The LLL algorithm is the most effective estimating
method for the shortest vector issue. It operates in poly-
nomial time and finds an approximation of the desired
result that is within an exponential factor. It is a practical
approach with sufficient accuracy for breaking cryptosys-
tems, factoring polynomials over integers, and solving
integer linear programming.Let b1, b2,ůůů, bn be a basis
for a N-dimensional lattice L, and b∗1, b

∗
2,ůůů, b∗n be the

orthogonal basis and we have

ui,k = b∗kbi

b∗i bi
(9)

The reduced basis of LLL is b1, b2,ůůů, bn if following
two conditions are met:
(1) ∀i 6= k, ui,k ≤ 1

2 ,
(2) for each i,||b∗i+1 + ui,i+1b

∗
i ||2 ≥ 3

4 ||b
∗
i ||2

Fig 5. Lattice: linear code over real numbers with
generator matrix NxN

Fig 6. Example 1:Integers to Lattice

Fig 7. Example 2:Integers to Lattice

Fig 8. A two dimension lattice with two different
basis.

The constant values from 1
4 and 1 determines the ter-

mination of algorithm in polynomial time. The constant
chosen in this work is 0.75. Another important condition
is the ordering of the basis. Consider a basis b1, b2,ůůů, bn

in n-dimension space. This LLL algorithm reduces basis
as shown below:

Algorithm 1: LLL Algorithm
Input:b1, b2,······,bn

Continue both the steps until LLL reduced basis is found

Step 1: Gram-Schmidt Orthogonalization
for i = 1 to n do

for k = i1 to 1 do
m← closest integer of uk,i

bi¸bimbk

end for
end for

Step 2: Examine the II condition,if true then swap
for i = 1 to n1 do

if ||bi+1 + ui,i+1bi||2 ≥ 3
4 ||bi||2 then

swap bi+1andbi

go to step 1
end if

end for

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

To perform this attack on NIST P-256 elliptic curve we
use ECDSA and LLL library functions in python, as it
allows us to input our own nonces of size 64, 110, 128 ,
512 and 1024 in bits generated from bad random number
generators.

N 0 0 0
0 N 0 0

r1s
−1
1 r2s

−1
2 B/N 0

m1s
−1
1 m2s

−1
2 0 B

As infant steps we begin work with two ECDSA signa-

tures and then we increases the lattice dimensions to work
with multiple signatures.

The upper bound limit established for our nonce’s is
B in the aforementioned matrix, where N is the order of
NIST P-256 (Nonces used in our research study are of
64,110,128,512 and 1024,m1 and m2 are two input mes-
sages and (r1, s1) and (r2, s2) are the generated signatures
for the given input message. Once the matrix is obtained
it is given as input to black-box i.e LLL algorithm, which
will output matrix that contains nonce used multiple times
to sign the signatures.

Assume there are two signatures (r, s1) and (r, s2)
derived on messages msg1,msg2 respectively. These
messages are from same nonce k then r value will remain
same for both messages as the k value is same so one
can easily detect the ECDSA private key using below
formulations as follows:

1) sig1 = k−1(Hash(Msg1) + xr)andSig2 =
k−1(Hash(Msg2) + xr)

2) sig1–sig2 = k−1(Hash(msg1)–Hash(msg2))

3) k(sig1–sig2) = Hash(msg1)–Hash(msg2)

4) k = (sig1–sig2)−1(Hash(msg1)–Hash(msg2))

The public-key for the produced signature is accessible
to the attacker alone. Therefore, one might decide with
ease whether to compute the associated ECDSA public-
key or to find the matching ECDSA private-key, both of
which are easily accessible. This approach has a significant
failure rate for this form of attack, which is a big flaw.
By conducting the same attack with increasing number
of signatures, the failure rate can be reduced. Table-VIII
depicts the ECDSA private key using weak nonces on
NIST curves. Table-VIII discloses the ECDSA private
key using weak nonces on NIST curves. Table-VIII shows
disclosing the ECDSA private key using weak nonces on
NIST curves and Table- IX shows disclosing the ECDSA
private key using weak nonces on SECP curves with
LENSTRA–LENSTRA–LOVASZ (LLL) method respec-
tively.

TABLE I
ECDSA: Disclosing the private key, due to weak nonce

(NIST521p Recommended Parameters)

CurveFp=68647976601306097149819007990813
932172694353001433054093944634591855431833976560521
225596406614545549772963113914808580371219879997166

43812574028291115057151
a=-3

b=109384903807373427451111239076680556993
62075989516837489945863944959531161507350160137087
37573759623248592132296706313309438452531591012912

142327488478985984
h=1

Order: 686479766013060971498190079908139
3217269435300143305409394463459185543183397655394
2450577463332171975329639963713633211138647686124

40380340372808892707005449
Gx=266174080205021706322876871672336096

072985916875697314770667136841880294499642780849
154508062777190235209424122506555866215711354557

0916814161637315895999846
Gy=37571800257700204635455072244911836

03594455134769762486694567779615544477440556316
69123440501294553956214444453728942852258566672

9196580810124344277578376784
Message 1: The International Association of Engineers

Sig 1(R,S):1074448169452775448130114
2720965701097421845813271623063358170844267239
8386102723221068918047415751050159644896292707
6872569786061281361855683464475140689649646817
9348089551736026608183790315828300012584224362
2974737750474201050860686613102995026306787155
9410387816209048478131017966476166799364970240

1542492825901
Random value (k): 41747331298864425333

522831818903323854
Private Key:92521831048352635813262230

46137410501639368969208164087931040880239554854
00645743545584267322802825766995657657180977166

710162793965827688197415351115272467
The private key is found:92521831048

352635813262230461374105016393689692081640879
310408802395548540064574354558426732280282576
699565765718097716671016279396582768819741535

1115272467

Unpredictable damage to a signature might result from
leaking fractional parts of nonce. The work carried out
by N.A. Howgrave-Graham, N.P.Smart showed the ap-
plication of lattice attacks to break DSA from partial
nonce leakage [6]. Nguyen and Shparlinski extended their
work after this to extract a secret key from a 160-bit
DSA, and from every 100 signatures in an ECDSA, a
secret key was retrieved by only understanding the first
three bits of each nonce [7]. Mulder et al. continued
their study by performing additional attacks on partial
nonce leakage using a Fourier transform-based attack and
re- covered secret keys from 384-bit ECDSA with only
a 5-bit knowledge of each nonce from 4,000 signatures
[8]. Most of us are aware of lattice attacks and Minerva
attacks, which use a number of temporal side channels
to recover partial nonce leaking [9]. Even if the size of
the nonce was exposed, they were still able to retrieve
the private key by using enough signatures. In the most

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

recent attack, dubbed the ”Ladder Leak Attack,” which
is considerably worse than the ”Fourier Analysis Attack,”
one might retrieve secret keys only by having a one-bit
nonce that has been published [10] [11]. Further, even
if one is successful in keeping his nonce a secret, never
divulge any information about it and never use the same
nonce twice. The contribution of Heninger and Breitner
shows the use of lattice attacks has the potential to attack
signature schemes that use flawed random numbers [12]
[13]. If a bias of 4 bits is applied using 256-bit ECDSA on
nonce, even though you are unaware of the biased values,
your signature scheme is entirely broken [14].

Case 3: Disclosing private key, from multiple signed
messages and shared nonces
In some cases secret keys leak even if same nonces are
not reused with secret keys. For instance two private keys
x1, x2 are used with two nonces k1, k2. Here nonces are
not repeated twice with same key, but nonces are reused
across the keys k1, k2. The system has four solvable
independent linear equations with four unknowns. The
problem can be simplified as an attacker extracts a set
of signatures from bitcoin block chain to leak as many
possible keys or nonces there by solving system of liner
equations. In this setup sender has two private keys x1,
x2 and two nonces k1, k2 and four messages m1 m2 m3
m4 to sent. Message m1 is signed using x1 and nonce k1
, message m2 is signed using x2 and nonce k1, similarly
m3 is signed using x1 and nonce k2, m4 is signed x2 and
nonce k2 as shown in fig.9 The hashes for all the messages
are as follows:
h1 = Hash(m1)
h2 = Hash(m2)
h3 = Hash(m3)
h4 = Hash(m4)

The generated signatures for all the messages are
(s1, r1),(s2, r1),(s3, r2) and (s4, r2) where

s1 = k1
−1(h1 + r1.x1)MODP

s2 = k1
−1(h2 + r1.x2)MODP

s3 = k2
−1(h3 + r2.x1)MODP

s4 = k2
−1(h4 + r2.x2)MODP

private keys can be easily recovered using Gaussian
eliminations,

x1 = h1r2s2s3 − h2r2s1s3 − h3r1s1s4 + h4r1s1s3

r1r2(s1s4 − s2s3) (10)

x2 = h1r2s2s4 − h2r2s1s4 − h3r1s2s4 + h4r1s2s3

r1r2(s2s3 − s1s4) (11)

Table-VII shows disclosing the ECDSA private key due
to weak nonces from multiple signed messages and shared
nonces using SECP curves on multiple signatures

Fig 9. Disclosing private key from multiple signed
messages and shared nonces

D. ECDSA-Disclosing the private key using
Lenstra–Lenstra–Lov´asz(LLL) method: for nonce
known with real-world ECDSA bugs:

If generated signatures are made from nonces upto 82
fixed bits, the secret key can be easily extracted from
generating five to six signatures. We constructed the
required matrix with N=6 to decrease the error rate.
The nonce of 82 fixed-bit generation is sparse in the
actual world.This kind of attack is far more powerful
when employed with 256-bit elliptic curves and remains
successful even when the nonce’s first four bits are fixed.
The attacker only needs to increase the size of the
lattice or increase the value of N and repeat the attack;
the implementation does not become challenging. The
algorithm will take longer to execute using this technique
without becoming more difficult. We computed the value
of N empirically by trying to carry out an attack using a
different number of signatures on a different number of
fixed bits. N in our tests stands for the total number of
signatures required to obtain the secret key. N=2 when
the first 128 bits of the nonce were fixed to 0, and N=3
when the first 128 bits were fixed but their fixed values
were unknown. When the nonce’s 80 fixed bits were
randomly selected, N=5. Using the formulae below, one
can discover the secret key:

1) Sig1 = k−1
1 (Msg1 + xr1)andSign =

k−1
n (Msgn + xrn)

2) Sig1k1 = Msg1 + xr1andSignkn = Msgn + xrn

3) k1 = Sig−1
1 (Msg1 + xr1)andkn = Sig−1

n (Msgn +
xrn)

4) k1–kn = Sig−1
1 (Msg1 + xr1)–Sig−1

n (Msgn + xrn)

5) Sig1Sign(k1–kn) = Sign(Msg1 +xr1)–Sig1(Msgn +

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

xrn)

6) Sig1Sign(k1–kn) = xSignr1–xSig1rn +
SignMsg1–Sig1Msgn

7) x(Sig1rn − Signr1) =
SignMsg1–Sig1Msgn–Sig1Sign(k1–kn)

8) Secret key x = (rnSig1–r1Sign)−1(SignMsg1–
Sig1Msgn–Sig1Sign(k1–kn))

TABLE II
ECDSA: Disclosing the private key using

Lenstra–Lenstra–Lovász (LLL) method, with bad nonce

Message 1: The International Association of Engineers
Message 2: IEEE Journal

Sig 1(R,S):953737520397255304289688404729434050245088
4664592596448810952609652785333256086011033843795976440

015487764496400715937069611525263157420439911334141168816
Sig 2(R,S):79937594961494168954501398582580902762471405

121278159831627793097261654947217940034597301294531782880
92796796919572417099036596939965605373224753772146104

Random value (k1):544079690520661127105791673855
Random value (k2):51894268455819342715039874460607282054

Private Key:2146392142222987990140946176957556858
3853786173485411408350838442455737947355

The private key is found:
2146392142222987990140946176957556858385378617348541140835

0838442455737947355

E. ECDSA: X-of-Y threshold signing algorithm
using GG20 with Kryptology:

Several independent nonce vulnerabilities were
computed to find ECDSA private keys in section
III-A and III-B. In this section we will discuss ECDSA
threshold multiparty case which enables us to have the
nonce k distributed across Y parties than having with one
single party using coin-base kryptology on SECP256k1
curve and generate the private key. In this method, a
minimum of X shares are needed to compute the signature
for Y parties. Then a create the private key that helps
in signing the message using them. A valid signature
requires the participation of X persons or more once the
generated private key is divided into multiple shares (Y).
In this manner we construct an ECDSA signature using
multiple Shamir shares there by not revealing the private
but but rather is split over multiple parties.We do not
store the private key on parties and is deleted once the
shares are distributed. Later stage the public key can
be generated and split the key into multiple shares. The
signatures created by parties are verified by public key.

Elliptic curves are basically defined as equation of form
y2 = x3 +ax+ b over prime field P and all points that are
generated on elliptic curve are within the prime field P.
Each of the selected NIST curves have predefined curve
parameters such as generator point G, prime P>3 and

variables a, b where a,b Galois field (p). Elliptic curves can
be defined over either NIST or SECP curves. An elliptic
curve is a tuple (G, G,q), where G is the generator point
for the group, G is order q number of points on the elliptic
curve. An ECDSA signature for message M over a secret
key SK is composed of a set of integers (SIG, rx) in Zq

such that

SIG = H(M) + SK ∗ rx

k

Here rx is the x coordinate of the elliptic curve point
R=k * G. We use a setup protocol to construct
a multiparty computational framework in which
participating parties will obtain one time initialization
of additive shares of signature by having secret key SK
as input. The setup protocol used here is Doerner with
small changes to ascertain the security against fraudulent
participants. On termination of setup protocol, all the n
participating parties will receive a point on a polynomial
of degree (t-1). As per Shamir’s scheme the y intercept
form of this polynomial is the secret key SK [15] [16].
Therefore a group of X parties will obtain an additive
sharing of SK using Lagrange coefficients. The input to
our signing protocol generated additive sharing. On the
other hand the signing protocol deviates from Doerner.
This is explained in below three phases[17].

1. Multiplication and Inversion: Initially a group
of P parties will agree to sign a message such that
|P = t|, a inverse sampling protocol is used by them to
sample k. From this every participating party will get an
additive share of k and value R=K*G. Then they use
GMW multiplication protocol to compute SK from their
additive sharing of 1/k and sk.

2. Consistency Check: In order to ensure that correct
and consistent inputs were used in previous phase the
participating parties will use PK=SK * G and R=k*G.
The consistency check employed here is similar to Doerner
but it works in distributed fashion. All the parties in
broadcast use a set of values whose cumulative values is
equal to predictable target if all the participating parties
have used GMW style input multiplier that are consistent
with the outputs of the inverse-sampling protocol.

3. Signing: With consistency verification of previous
steps each party i in group of participants P is assured
that for some value k he holds vi, wi, and R.

∑
i∈P

vi = 1
2

∑
i∈P

wi = SK

k
and R=k.G

The participating parties locally compute their signa-
ture share and broadcast them SIGi := vi ∗Hash(msg)+
wi∗rx. Finally signature is reconstructed and verified using
the standard verification algorithm SIG :=

∑
i∈P SIGi.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

TABLE III
ECDSA: 5 of 7 threshold signing algorithm

Message:International Association of Engineers
Sharing scheme: Any 5 from 7

Random secret:=(bd1d82a745196ce6ef7c89956b
24cd029d624a3f7a53145f3caa7d34e34fbe1c)

Public key: (108093126856915364035593825
3738320084911312798849265839221184834693132008082
147194793155527417703478803271760712718191920311

7870754804489898947363599031100)
Share 1:=000000054dfdbebf091a3217d6dd6d7d
2b30bec0383df962126b5ebc4e6907b30ec7b3b6
Share 2:=00000001c2deaf8f221d96d1113eaa9
6b90647524a29a65287667908005accc89417a01f
Share 3:=0000000215aa5a11e2be7cb33b50dc
4f419481b76149fc371e387d5be84cfcd77ff0a957
Share 4:=0000000382785a618d05299a3993052
deb8afd6617e97606ef38faa9a466aed8c0cf9b35

Share 5:=00000004eca789000444b1a8d5a329e
8ccf5a23cccc5386eab73ef2bd5cfad5ca199c106

Overall signature:(114060822406062602393922600
324194968042866397563794567375311073503214611051
483 109626789768983726033886932100987302725628901

0353747758934566376198446524494)
Signature Verified: True !!!

IV. Performance Analysis

In this section, compute bitcoin and ethereum private keys
that were generated due to biased nonces, by applying
crypt analytics attack in opposition to digital signatures
discovered in public block chains. We apply lattice based
algorithms to solve to unhide ECDSA private keys that
were generated using biased nonces. Both bitcoin and
ethereum use elliptic curve SECP256k1. The elementary
attack done on ECDSA crypto currencies are based on
following vulnerabilities on already generated cryptocur-
rencies in wild,

1) Leak of nonce used to generate the signature
2) Use of same nonce to sign different messages
3) Implicit prefixes and implicit suffixes in nonce

Bitcoin data collection:
Bitcoin: The modified official client was used to collect
bitcoin signatures and hash values. We used the instance
of block chain from april 07 2022. At this instance block
chain had 11,795,065,208 signatures from 31,644,506,974
distinct keys. Out of these keys 83,794,257 has been used
to generate more than one signature. 27% of signatures
in our instance are generated by one of these keys.
Crypt analysis test beds for biased nonces: Public
key clusters were formed by eliminating duplicated
signatures, i.e., keys that had same signature (r, s)
and hash h. Following randomized tests were ran on
the signatures for the keys that had m > 1 distinct
signatures. The selected parameters are chosen so that
the computational times for tests are reasonable for most
common key.
- Verify if this key has generated a set of distinct
signatures that has redundant r values. Then compute
the private key and required signature nonces using case

1 and case 2.1.
- Randomly select any two signatures and verify length
of nonces less than 128 bits and test is repeated for 2m
times for every key.
- Randomly select any four signatures and verify the
length of nonces less than 172 bits and test is repeated
for 2m times for every key.
- Randomly select any four signatures and verify nonces
sharing 172 least significant bits and test is repeated for
2m times for every key.
- Randomly select any two signatures generated from the
pair (r,s) and verify nonces sharing 128MSB and test is
repeated for 2m times for every key.

Implementing the cryptanalysis: All the test cases
stated were implemented on sage using built in BKZ
library for lattice based reduction. The computations
were for heterogeneous cluster on Raspberry pi. The
computations ended by running twice, firstly without
signature normalization on a block chain from April 2022
and secondly with signature normalization on a block
chain from may 2022. The computational bottleneck we
found was intensive elliptic curve multiplications needed
to ascertain whether the private key found is correct.
The cumulative running time for both jobs was 15 days
where a a single key could generate 1,021,572 signatures
in April 2022. After applying elementary attacks we
could compute 43 private keys were compromised via
nonces with shared suffixes / prefix and small nonces. We
encountered 132 signatures with these vulnerable nonces
block chain. The figure 10 and 11 shows signature from
biased and repeated nonces over period of time, large
circles denote more signatures over the years. Most of the
compromised nonces fell into different classes depending
on length of variable portion of nonce. We obtained
shorter nonces of length 32 bits, 64 bits, 110 bits, 128
bits and 160 bits and some nonces that shared suffix and
prefix of 64 bit variable length.

Ethereum data collection: Querying was done on
local Ethereum node via and RPC interface to collect
the Ethereum signatures. Analysis is done on ethereum
block chain instance on 14 May 2022, it had 143,457,786
distinct public keys that generated 831,811,259 signatures.
Totally 31,855,806 keys had generated multiple signature,
resulting in 592,229,478 signatures from such keys.
Crypt analysis test beds for biased nonces:
Public key signature clusters were formed and
verified that the keys had generated more than
one signature. Same test applied for bitcoin were
applied, computations were done twice, firstly with
normalized signatures from April 2022 block chain
instance and secondly without the May 2018 block
chain instance. The 296 private keys were responsible
for generating repeated signatures nonces and they used
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

a0, which is ((n− 1)/2) where n represents the order of
SECP56k1 curve.

Fig 10. Bit coin signatures with biased and small
nonces over the years.

Fig 11.Bitcoin signatures with repeated nonces
over time.

We extend our analysis to compute execution time of
algorithm to crack ECDSA by using NIST and SECP
curves. The reliability of elliptic curve cryptography
depends on hardness in computing elliptic curve discrete
logarithm problem (ECDLP). Edward Yin claims there
are no algorithms to solve ECDLP [17] and if there are
large number of ECC keys then a brute force technique is
not suitable to the ECC algorithm, our work contradicts
his statements. We have examined ECDSA security using
NIST and SECP curves. The security of ECDSA was
examined on three dimensions the rigidity of curve, safety
level curve, and security against multiplicative transfer.
If curve succeeds to resist all of the above methods then
we consider the curve to be safe else we term it as unsafe
curves. With our work we claim bitcoin curve SECP256k1
fails to resist leak-weak nonce attack and LLL attack
using private keys,nonces and signatures of varying bit
sizes of length 64, 128, 256, 512, and 1024-bits. The
results clearly demonstrate time to crack ECDSA grows
exponentially as bit sizes grow and cracking ECDSA
seems to be more feasible using leak-weak, shared nonces
than unlike LLL. Table V, VI, VII, shows average time to
crack ECDSA with leak-weak nonce and Table VIII, IX

shows average time to crack ECDSA using LLL algorithm
using multiple signatures. Fig. 12 shows security of
ECDSA with leak-weak nonces and LLL with NIST and
SECP curves.

Fig 12. Security of ECDSA with leak-weak
nonces and LLL with NIST and SECP curves

Fig 13. CRACK ECDSA BY WEAK NONCE
FROM MULTIPLE SIGNATURES ON NIST

CURVES USING LLL

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

TABLE IV
Compromised signatures and keys are classified based on type of nonce vulnerability that led to compromised private

key. Most of the compromised keys were found to be of multi signature address.

Type of Nonce
(Bits)

Multi
Signature Keys

Single
Signature Keys

Unique Keys

≤ 32 0 3 1
64 11 17 23
110 6 18 0
128 1 19 1
160 17 13 2

128 + Suffix 1 5 12
Prefix + 64 0 2 23

TABLE V
NODES FEATURE USED IN IMPLEMENTATION

Type of Node PROCESSOR CPU TYPE CPU
SPEED

RAM OPERATING
SYSTEM

Raspberry pi ARM CPU 64 bits 1.2GHz 1GB Rasbian 5.10
HP LAPTOP Intel Core i3 64 bits 1.99 GHz 4GB Windows 10

TABLE VI
DISCLOSE ECDSA KEY FROM LEAK OF NONCE FOR MULTIPLE SIGNATURE ON NIST CURVES

Private Key 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
No of Signa-
tures

100 100 100 100 100 AVG

NIST 192p 9.37 10.01 10.63 11.09 11.32 10.48
NIST 224p 9.49 10.28 10.91 11.66 11.63 10.79
NIST 256p 11.45 10.52 10.96 12.41 13.21 11.71
NIST 384p 11.63 11.51 11.85 13.87 14.49 12.67
NIST 521p 11.81 11.99 13.17 15.68 19.29 14.39

TABLE VII
DISCLOSE ECDSA KEY FROM LEAK OF NONCE FOR MULTIPLE SIGNATURE ON SECP CURVES

Private Key 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
No of Signa-
tures

200 200 200 200 200 AVG

SECP224k1 SAFE SAFE SAFE SAFE SAFE NA
SECP224r1 SAFE SAFE SAFE SAFE SAFE NA
SECP256k1 16.62 16.85 17.29 18.31 18.84 17.58
SECP256r1 SAFE SAFE SAFE SAFE SAFE NA
SECP384r1 SAFE SAFE SAFE SAFE SAFE NA

V. Conclusions

In this paper, we compute Bitcoin and Ethereum pri-
vate keys by performing cryptanalytic attacks on digital
signatures available in public block chains and we analyze
curves recommended by various standards. Each curve
applied on ECDSA algorithm can be cracked in two ways,
firstly with leaked nonce and secondly by performing lat-
tice attacks using Lenstra-Lenstra-Lovasz (LLL) algorithm
on bad nonces that were generated using faulty random
number generator. From comparative table its clear that
the computation times taken by each curves for both the
cases. From this result analysis, it is deducted that the
computation times to crack ECDSA using curves increases
as the field size increases. Due to this fragility, we advise
using EdDSA, in which nonces are created securely with-
out the need of a random number generator. To combat

side channel attacks, NIST has also standardised the usage
of EdDSA with Curve- 25519. Applying ECDSA should
be done with care, so that nonces used for ECDSA signa-
tures are not redundant and confidential. Also generated
safely. Finally we come to a conclusion that Elliptic Curve
Cryptography using the the NIST 192p,NIST 224p,NIST
256p,NIST 384p,NIST 521p and SECP256k1 curves over
leak-weak nonce are not safe for the transactions that are
confidential and are to be kept secured down the line.

Appendix

Table IX - shows ECDSA: Disclosing the private key
if nonce is known using NIST-256P recommended pa-
rameters Table X- shows ECDSA: disclosing the private
key if nonce is known using NIST-521P recommended
parameters.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

TABLE VIII
DISCLOSE ECDSA KEY FROM WEAK NONCE (SAME) FROM MULTIPLE SIGNATURES ON SECP CURVES

Private Key 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
No of Signa-
tures

200 200 200 200 200 AVG

SECP224k1 SAFE SAFE SAFE SAFE SAFE NA
SECP224r1 SAFE SAFE SAFE SAFE SAFE NA
SECP256k1 12.55 12.58 12.61 12.92 13.66 12.86
SECP256r1 SAFE SAFE SAFE SAFE SAFE NA
SECP384r1 SAFE SAFE SAFE SAFE SAFE NA

TABLE IX
DISCLOSE ECDSA KEY FROM WEAK NONCE WITH MULTIPLE NONCES ON NIST CURVES USING LLL

Private Key 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k1 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k2 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
No of Signa-
tures

50 50 50 50 50 AVG

NIST 192p 22.93 24.59 22.72 22.98 23.16 23.28
NIST 224p 27.56 29.05 26.24 29.39 27.29 27.91
NIST 256p 37.77 36.91 38.77 35.38 40.14 37.79
NIST 384p 66.14 66.86 68.11 70.91 70.24 68.45

TABLE X
DISCLOSE ECDSA KEY FROM WEAK NONCE WITH SINGLE NONCE ON SECP CURVES USING LLL

Private Key 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
Nonce k 64 Bits 128 Bits 256 Bits 512 Bits 1024 Bits
No of Signa-
tures

50 50 50 50 50 AVG

SECP224k1 SAFE SAFE SAFE SAFE SAFE NA
SECP224r1 SAFE SAFE SAFE SAFE SAFE NA
SECP256k1 31.42 32.59 33.80 34.84 35.28 33.58
SECP256r1 SAFE SAFE SAFE SAFE SAFE NA
SECP384r1 SAFE SAFE SAFE SAFE SAFE NA

Fig 14. CRACK ECDSA BY WEAK NONCE
FROM MULTIPLE SIGNATURES ON SECP

256k1 CURVE USING LLL

LLL Example: Applying LLL to the basis spanned
by (201,37) and (1648,297). We begin by choosing one of
these as our first basis vector, then using it to reduce the
second vector to a candidate basis vector.
Step 1: Let us consider our first lattice basis vector ~v1 as
first Gram-Schmidt vector ~v1

∗

~v1 = (201, 37), ~v2 = (1648, 297)and~v1
∗ = (201, 37)

Applying Gram-Schmidt reduction to reduce vector ~v2 :

~v2 = (1648, 297)− (1648, 297) · (201, 37)
(201, 37) · (201, 37) (201, 37)

≈ (1.133,−6.155)
Wehave :
~v1 = (201, 37), ~v2 = (1648, 297) ,
~v∗1 = (201, 37) and ~v∗2 = (1.133,−6.155)

Now we use ~v1 to reduce ~v2:

~v2 = (1648, 297)− (1648, 297) · (201, 37)
(201, 37) · (201, 37) (201, 37)

~v2=(1648,297)-8(201,37)
~v2=(40,1)

We have

~v1 = (201, 37), ~v2 = (40, 1)
~v∗1 = (201, 37) and ~v∗2 = (1.133,−6.155)

Next, We find the magnitude of Gram-Schmidt basis
vector || ~v∗1

2
|| and || ~v∗2

2
|| and check the Lavasz condition.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

TABLE XI
ECDSA: Disclosing the private key, if nonce known

(SECP256k1 Recommended Parameters)

CurveFp= p=11579208923731619542357098500868
7907853269984665640564039457584007908834671663

a=0
b=7
h=1

Order: 115792089237316195423570985008
687907852837564279074904382605163141518161494337

Gx=550662630222773436695787188951685
34326250603453777594175500187360389116729240

Gy=32670510020758816978083085130507
043184471273380659243275938904335757337482424

Message 1: The International
Association of Engineers (IAENG)

Sig 1(R,S):1090178978484625472626051
078590318298857972588647162614981421996289387
993138918265459205352446360663392410240856847

177744969239952673627391122796700593599
Random value (k): 485591326115238695376341987

57975587885
Private Key:5314440024801770386830700

5160578004559346968752187515812330620661442985198127
The private key is found:531444002480

1770386830700516057800455934696875218751581233
0620661442985198127

TABLE XII
ECDSA: Disclosing the private key, if nonce known

(NIST-521p Recommended Parameters)

Message 1:The International Association of
Engineers (IAENG)

Sig1(R,S):21282260673528067679653851489493224238747
7899349499537542138969641573994008752335865373966650
3930184035865240267411738520465568274624818894669233

688372748609
663438386533491789268917133775138412649914951989874
801838592660920313316815480643465176261181068257098

030508137971670535782630373768587344613216642037803918
Random value (k):8296449137264400342483307

9795788819303
Private Key:5244497444874146855767107190

6136351843786389355050900019426796390883083523326
0069220126970709579569455291147482078753981014349

0829397335285433794739421013412
Private Key:5244497444874146855767107190

6136351843786389355050900019426796390883083523326
0069220126970709579569455291147482078753981014349

0829397335285433794739421013412

|| ~v∗1
2
|| = 41770, || ~v∗2

2
|| = 39.16

µ2,1 =
(

(40, 1) · (201, 37)
(201, 37) · (201, 37) = 0.193

)
(

3
4 − µ

2
2,1≈ 0.713

)
So, || ~v∗2 ||2 �

(3
4 − µ

2
2,1
)
|| ~v∗1 ||2 and we should swap,

making ~v1= (40,1) and ~v2=(201,37)

Step 2:
We have: ~v1 = (40, 1), ~v2 = (201, 37) and ~v∗1 = (40, 1),

TABLE XIII
ECDSA: 2 of 3 threshold signing algorithm

Message:Hello
Sharing scheme: Any 2 from 3

Random secret:=(409dad2ef3aa49b1d5c3
52f0bd89e8a48f91f98e5abbab6e711367efdb42b6e9)

Public key: (10675422765967490806456
8671773753589121197269598565196958174158740459
77056690 8396744729915114064113011207640032635

4735315602294989779527406731720970330161)
Share 1:=00000001b0f8d63a0ee0470a9cf8a4

56edfe4bb2e190be7f19e6a10f847e531accdb7ecc
Share 2: =000000022153ff452a16446364

2df5bd1e72aec278e0a68929c8f674d816dfb8ee3e056e
Overall signature:(2153789211106830677015

92391463725066318619165236716778604529031621
71928870792 12259516882648318079446047637950

938085779642468911292651091164123787383339954)
Signature Verified: True !!!

Now apply the Gram-Schmidt reduction, using ~v∗1 = ~v1

~v2 = (201, 37)− (201, 37) · (40, 1)
(40, 1) · (401, 1) (40, 1) ≈ (−0.799, 31.956)

We have: ~v1 = (40, 1), ~v2 = (201, 37), ~v∗1 = (40, 1) and
~v∗2 = (−0.799, 31.956)

Using ~v1 to reduce ~v2

~v2 = (201, 37)− b (201, 37) · (40, 1)
(40, 1) · (401, 1) e(40, 1) = (1, 32)

We have: ~v1 = (40, 1), ~v2 = (1, 32), ~v∗1 = (40, 1) and
~v∗2 = (−0.799, 31.956)

Next, We find the magnitude of Gram-Schmidt basis
vector || ~v∗1

2
|| and || ~v∗2

2
|| and check the Lavasz condition.

|| ~v∗1
2
||=1601, || ~v∗2

2
||=1021.76

µ2,1 =
(

(1, 32) · (40, 1)
(40, 1) · (40, 1) = 0.193

)
(

3
4 − µ

2
2,1≈ 0.748

)
So, || ~v∗2 ||2 �

(3
4 − µ

2
2,1
)
|| ~v∗1 ||2 and we should swap,

making ~v1= (1,32) and ~v2=(40,1)

Step 3:
We have:
~v1 = (1, 32), ~v2 = (40, 1) and ~v∗1 = (1, 32),
Now apply the Gram-Schmidt reduction, using ~v∗1 = ~v1

~v2 = (40, 1)− (40, 1) · (1, 32)
(1, 32) · (1, 32)(1, 32) ≈ (39.93,−1.25)

We have:
~v1 = (1, 32), ~v2 = (40, 1) ~v∗1 = (1, 32) and ~v∗2 =
(39.93,−1.25)

Using ~v1 to reduce ~v2

~v2 = (40, 1)− b (40, 1) · (1, 32)
(1, 32) · (1, 32)e(1, 32)

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

~v2=(40,1)-0(1,32)
~v2=(40,1)

Next, We find the magnitude of Gram-Schmidt basis
vector || ~v∗1

2
|| and || ~v∗2

2
|| and check the Lavasz condition.

|| ~v∗1
2
||=1025, || ~v∗2

2
||=1595.94

µ2,1 =
(

(40, 1) · (1, 32)
(1, 32) · (1, 32) = 0.070

)
(

3
4 − µ

2
2,1≈ 0.745

)
So, || ~v∗2 ||2 ≥

(3
4 − µ

2
2,1
)
|| ~v∗1 ||2

and we can move on to the next basis vector. ~v1 = (1, 32)
and ~v2 = (40, 1) correspond to reasonably orthogonal set
of basis vectors.

References
[1] Chintan Patel, Nishant Doshi, “Secure Light Weight Key Ex-

change Using ECC For User Gateway Paradigm”, IEEE Transac-
tions on Computer, Volume: 70, Issue: 11, Pages 1789 - 1803,2021

[2] Cherkaoui “ Diffie-Hellman Multi-Challenge using a New Lossy
Trapdoor Function Construction”, IAENG International Journal
of Applied Mathematics Open Access, Volume 51, Issue 3,Pages:
736-742, 2021.

[3] Kuanyun Zhu, Jingru Wang, and Yongwei Yang “Lattices of
(Generalized) Fuzzy Ideals in Residuated Lattices”, IAENG In-
ternational Journal of Applied Mathematics, Open Access, Vol-
ume 50, Issue 3, Pages: 505-511, 2020.

[4] Zhang And Xuesong Wang ”Digital Image Encryption Algorithm
Based on Elliptic Curve Public Cryptosystem”, IEEE Access,
Volume: 6,Issue 2, Pages: 70025 - 70034, 2018”.

[5] Mohammad Ayoub Khan, Mohammed Tabrez Quasim, Norah
Saleh Alghamdi, Mohammad Yahiya Khan, ”A Secure Frame-
work for Authentication and Encryption Using Improved ECC
for IoT-Based Medical Sensor Data”, IEEE Open Access, Volume
: 8, Pages: 52018 – 52027, 2020.

[6] Nizar Ouni and Ridha Bouallegue “Performance And Com-
plexity Analysis of Reduced Iterations LLL Algorithm”, In-
ternational Journal of Computer Networks Communications
(IJCNC),Volume:8, Issue 3, Pages:09-27 , 2016.

[7] Yunju Park and Jaehyen “Analysis of the upper bound on the
complexity of LLL Algorithm”, Journal of the Korean Society for
Industrial and Applied Mathematics, Volume:20, Issue 2,Pages:
107–121, 2016.

[8] Michael Brengel and Christian Rossow “ Identifying Key Leak-
age of Bitcoin Users”, International Symposium on Research in
Attacks, Intrusions, and Defenses Open Access, Volume: 11050,
Pages: 623–643 2018.

[9] Mohammed Mujeer Ulla and Deepak S. Sakkari, “Application
of Elliptic Curve Crypto System to Secure Multi-Signature Bit-
coin Block Chain”, Journal of Computer Science, 2022 Open
Access,Volume 19,Issue: 1, Pages:112-125, 2023.

[10] Joachim Breitner and Nadia Heninger, “Biased Nonce Sense:
Lattice Attacks against Weak ECDSA Signatures in Cryptocur-
rencies”, Lecture Notes in Computer Science Springer Inter-
national Publishing - Financial Cryptography and Data Secu-
rity,Volume: 11598, Pages:3-20, 2019.

[11] Jack Doerner, Yashvanth Kondi, Eysa Lee and abhi shelat,
“Threshold ECDSA from ECDSA Assumptions:The Multiparty
Case”, IEEE Symposium on Security and Privacy, Pages:1051-
1066, 2019.

[12] Javed R. Shaikh, Maria Nenova, Georgi Iliev and Zlatka
Valkova-Jarvis “Analysis of Standard Elliptic Curves for the
Implementation of Elliptic Curve Cryptography in Resource-
Constrained E-commerce Applications”, IEEE International
Conference on Microwaves, Antennas, Communications and Elec-
tronic Systems,Pages: 1-4 2018.

[13] Shen Guicheng, Yu Zhen “Application of Elliptic Curve Cryp-
tography in Node Authentication of Internet of Things”,Ninth
International Conference on Intelligent Information Hiding and
Multimedia Signal Processing,IEEE, Pages: 452-455,2013.

[14] Ashwitha Naikoti and Ravi Kishore Kodali ”ECDH based Secu-
rity Model for IoT using ESP 8266” International Conference on
Control, Instrumentation, Communication and Computational
Technologies,IEEE,Pages:629-633, 2016.

[15] Deepak S. Sakkari Mohammed Mujeer ulla “Review on In-
sight into Elliptic Curve Cryptography”, Modern Approaches
in Machine Learning Cognitive Science: A Walkthrough
(LNCS),Springer, Volume 1027,Pages:81–93, 2022.

[16] Deepak S. Sakkari Mohammed Mujeer ulla “Design and
Implementation of Identifying Points on Elliptic Curve Effi-
ciently Using Java”, Modern Approaches in Machine Learning
Cognitive Science: A Walkthrough, Springer (LNCS),Volume
1027,Pages:95–105, 2022

[17] Deepak S. Sakkari Mohammed Mujeer ulla “Design and Im-
plementation of Elliptic Curve Digital Signature Using Bit Coin
Curves SECP256K1 and SECP384R1 for Base10 and Base16 Us-
ing Java” , Innovation in Electrical Power Engineering, Commu-
nication, and Computing Technology(LNEE), Springer, Volume
814,Pages:323–337,2021.

IAENG International Journal of Computer Science, 50:2, IJCS_50_2_44

Volume 50, Issue 2: June 2023

__

