
 

  

Abstract—This paper, we have improved the YOLOv6 object 

detection network to better detect high-density, small target 

objects in UAV aerial images. First of all, we designed a mixed 

data augmentation method which adds background samples to 

the training, so that the model can better identify falsely 

detected and falsely detected targets without changing the 

computational complexity. In addition, to prevent the loss of 

feature information caused by small target features in the 

upsampling stage, we have strengthened the Feature Pyramid 

Networks (FPN) with Feature Alignment Module (FAM) and 

Feature Selection Module (FSM). Finally, we have formed the 

Transformer Prediction Head (TPH) by using the Transformer 

Encoder Block to replace the prediction head of the original 

model. This ensures accurately locate targets in high-density 

scenes. The experiment used the Visdrone2019-DET drone 

aerial photography dataset. Compared with the original 

YOLOv6 network, the average precision (AP50) of the 

improved network on the verification set when the IoU is 0.5 

was 59.73%, which is 6.02% higher than before the 

improvement. Comparison results with other mainstream 

object detection algorithms show that the performance of our 

proposed algorithm is better than other detectors. Therefore, 

the algorithm proposed in this paper can effectively detect 

objects with high density and small targets in UAV aerial 

photography scenes. 

 
Index Terms—Object detection, YoloV6, Transformer 

Encoder Block, Visdrone2019-DET, IoU. 

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have a long history, 

dating back to World War I. In an effort to reduce casualties, 

the British developed small aircraft that were controlled by 

radio rather than human pilots, allowing them to fly to a 

certain target to complete specific tasks. UAVs possesses 

unique characteristics such as flexible maneuverability, high 

efficiency and speed, precision and accuracy, low operating 

costs, wide application range, and short production cycles. As 

a result, they are widely used in various fields including 

agricultural plant protection, disaster rescue, field monitoring, 

and power inspection [1].  
Computer vision refers to use of computers to replace the 

human eyes. Object detection, based on deep learning, is one 

of the core problems in the field of computer vision. It 

involves identifying all objects of interest in an image, 
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determining their categories and positions. A large number of 

excellent object detection methods have been developed as 

yet. The YOLO series algorithm [2]-[5], representing the 

One-stage detector, has attracted extensive attention of 

researchers due to its powerful detection performance and 

faster detection speed. The One-Stage detector initially used 

the Anchor-based mechanism to classify the target and 

determine the bounding box coordinate regression. However, 

scholars later proposed the idea of Anchor-free detection, 

which minimizes the computing power required by the model 

without loss of detection performance. 

Aerial image object detection is a vital technology 

combining UAV and deep learning, which plays an important 

role in civil and national defense. Nazia Attari et al. [6] 

artificially assessed the degree of damage after the PAM 

hurricane, and proposed the Nazr-CNN deep learning 

network model, which applied the deep learning of object 

detection and the fine-grained classification to images 

captured by drones. Nazr-CNN consists of two parts, the 

function of the first component is to locate objects (such as 

houses) in images by performing pixel-level classification. In 

the second component, Fisher Vectors (FV) of the fragments 

generated by the first component are encoded using a 

convolutional neural network (CNN) to help distinguish 

between different levels of damage. Seyed Majid Azimi [7] 

proposed ShuffleDet to detect vehicles in images captured by 

drones. Channel shuffling and grouped convolutions are used 

to reduce the computational cost of the model, and is 

evaluated on the CARPK and PUCPR+ datasets, running at 

14 frames per second on an NVIDIA Jetson TX2. The 

CenterNet proposed by Kaiwen Duan et al. [8] regarded the 

positioning task as the task of detecting the center point and 

its offset, and employed a predicted focal point-based 

regression method to derive the actual position information 

from the offset parameters regressed from the center. This 

method effectively enhanced the detection rate of small 

targets in images captured by UAV, but the high-resolution 

output also increased the reasoning delay. The breakthrough 

of Transformer in the field of computer vision has made the 

combination of CNN and Transformer a hot topic [9]. 

Xingkui Zhu et al. [10] introduced Transformer to YOLOv5, 

improving the network's performance in detecting small 

target objects. 

II. RELATED WORK 

A. YoloV6 Algorithm Principle 

Object detection algorithms can be broadly classified into 

two categories: One-Stage and Two-Stage. One-Stage 

algorithms require only a single pass of the original image 

through the network to predict all bounding boxes, while 
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Two-Stage algorithms generate candidate boxes for areas that 

may contain objects before classifying each candidate box. 

Therefore, One-Stage algorithms have an inherent advantage 

in detection speed, leading to a lot of research focusing on 

their improvement. The YOLO series algorithm is one of the 

popular One-Stage algorithms, widely used in 

industrial-level object detection applications. Following 

YOLOv5, the Meituan technical team has launched a new 

object detection algorithm YOLOv6 [11]. 

Compared to YOLOv5, YOLOv6 has improved in many 

aspects such as Backbone, Neck, Head, loss function, 

quantitative deployment, and training strategy. It provides 

five pre-training models for different industrial application 

scenarios, namely YOLOv6-N, YOLOv6-T, YOLOv6-S, 

YOLOv6-M, and YOLOv6-L. The overall network structure 

of YOLOv6 is shown in Fig. 1  

The first part in Fig. 1 is the EfficientRep Backbone 

network structure proposed by YOLOv6, in which four 

series-connected RepBlocks are used inside the network for 

feature extraction. The last three layers of the network output 

three branches of feature extraction results, respectively C3, 

C4 and C5, which are input into the Neck. RepBlock is one of 

the most important structures in EfficientRep Backbone and 

is inspired by the repVGG [12] network. It uses the 

advantages of multi-branch structure during the training 

phase to make the overall feature extraction phase has higher 

performance. In the reasoning phase, the multi-branch 

structure is equivalently converted to a single-path structure, 

resulting in memory savings during inference and improved 

efficiency. The network structure improves the performance 

of feature extraction on the basis of accelerating the 

calculation speed and saving the operation cost. 

During the training phase, the RepBlock structure is shown 

in Fig. 2. Each RepBlock comprises a three-branch structure, 

with an additional parallel 1 1  convolution branch and an 

identity mapping branch added into each convolutional layer, 

and finally performing element-wise addition. The 3 3  

convolution is highly efficient on mainstream GPUs and 

CPUs, thereby making the detection network faster and 

stronger. 
 

 
In the inference stage, to maximize hardware computing 

power utilization, the 3 3  convolution in the multi-branch 

model is fused with the BN layer, and converted into a new 

3 3 convolution single-path model with a ReLU activation 

function, which constitutes the RepConv module, is shown in 

Fig. 3. 

 
 

Fig. 2.  The structural re-parameterization backbone during training. 

 

 
 
Fig. 1.  YoloV6 network architecture. 
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The second part in Fig. 1 is the Rep-PAN network 

structure proposed by YOLOv6, and the Neck overall 

presents a "U"-shaped structure, with the left side comprising 

an upsampling of the feature map, gradually expanding its 

width and height. The right side is a bottom-up path, and the 

output feature map from the left side is channel-concatenated 

to facilitate two-way feature fusion. The CBS module 

comprises a convolution block, a BN layer, and a SiLU 

activation function. A size of 1 1  convolution block is used 

on the left side of the structure, whilst a 3 3  convolution 

block is used on the right side. 

The third part in Fig. 1 is the decoupled head structure 

proposed by YOLOv6, which is compared with the 

prediction head of other state-of-the-art object detection 

models, such as YOLOv5, FCOS [13], YOLOX [14], etc. 

Each prediction head in YOLOv5 is tasked with both 

classification and regression, which are realized through 

branch fusion sharing. However, as the regions of interest for 

these tasks differ, which is not conducive to the improvement 

of the effect. The decoupled head used in FCOS and YOLOX 

separates the classification and regression tasks, and used 

different branches to complete separate computing tasks. 

While multiple 3 3  convolutions are used inside the 

structure, this can lead to improved accuracy at the expense 

of increased network delay. YOLOv6 has streamlined the 

design of the prediction head, comprehensively considers the 

balance between the representational ability of related 

operators and the hardware computing overhead, and Hybrid 

Channels strategy is used to redesign a more efficient 

decoupled head structure. 

Furthermore, to accommodate the usage scenarios in both 

academy and industry, YOLOv6 has adopted several latest 

technologies, including self-distillation, TAL and SimOTA 

label allocation technology, Anchor-free, SIoU regression 

loss, RepOptimizer-QAT, etc. Overall, YOLOv6 far exceeds 

other object detection algorithms in terms of detection 

accuracy and speed. 

B. Vision Transformer Algorithm Principle 

Transformer was initially developed for natural language 

processing. In 2020, the Google team proposed the Vision 

Transformer (ViT) [15] algorithm, which applies the field of 

image classification. This breakthrough innovation attracted 

widespread attention from scholars at home and abroad. Fig. 

4 shows the Vision Transformer model structure diagram.  

The input of Vision Transformer draws on its ideas in the 

field of natural language processing, splits the 224 224  

input image into several small image patches, and expands all 

small image patches into 256-length vectors, forming a linear 

projection of flattened patches. After normalization by 

Multilayer Perceptron (MLP), a series of one-dimensional 

vectors will be obtained, which is the input. In order to 

prevent the split image patches from losing position 

information, position information is also embedded for each 

image patches, and finally the combined content is input to 

Transformer Encoder. 
 

 
The model structure of Transformer Encoder is shown in 

Fig. 5, which mainly consists of two sub-layer structures. The 

first sublayer is the multi-head attention mechanism sublayer, 

which consists of multiple attention mechanisms. Each 

attention mechanism structure generates three vectors Q, K, 

and V, where Q is a single vector, K and V are two sets of 

vectors. Its function is to map the Q vector into a new vector, 

obtained by weighting all the vectors in the V set. The 

weighting coefficient of each vector in the V set is calculated 

by the corresponding vector in the Q vector and the K set. 

The new vectors output by each attention mechanism are 

concatenated together to form the final multi-head attention 

mechanism structure. This structure can combine different 

features for learning, similar to the role of multiple 

convolution kernels in CNN. The second sublayer is 

composed of a MLP, which is mainly used to classify 

 
 
Fig. 3.  The structural re-parameterization backbone during inference. 

 

 
 
Fig. 5.  Transformer Encoder model structure diagram. 

 

 
 

Fig. 4.  Vision Transformer model structure diagram. 
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nonlinear problems. In a study by Yihe Dong et al. [16], they 

pointed out that without skip connect and MLP architecture, 

the expressive ability of the self-attention mechanism 

network decays with the increase of depth, and MLP plays a 

very important role in the process of preventing the 

degradation from happening. 

End Transformer Encoder, MLP Head is used to classify 

the output results. It is mainly composed of LaryerNorm and 

two fully connected layers, and it is linearly activated by the 

GELU activation function. 

Transformer can convert the object detection task into a set 

prediction task, without requiring a large number of 

pre-selected boxes or cumbersome NMS, and obtains the 

prediction result directly. 

III. IMPROVEMENT STRATEGY  

A. Background sample data augmentation method 

When using traditional deep learning object detection 

algorithm to detect aerial images, the situation of missed and 

false detection is extremely high. This is due to the wide 

shooting range and long distance of the drone camera, which 

makes it difficult for the model to detect small and dense 

targets. Dense small targets face many challenges such as low 

resolution, limited extractable features, scarce samples, and 

uneven distribution. The importance of data augmentation for 

small target objects is becoming increasingly significant. 

In YOLOv6, Mosaic [5] and Mixup [17] are utilized to 

perform data augmentation operations on images respectively. 

Mosaic draws on the practice of Cutmix, randomly selecting 

4 pictures from the training set each time, and then cutting 

and stitching them at random positions to form a new picture, 

which greatly enriches the detection background. Mixup is a 

mixed-class data augmentation algorithm, that combines the 

mixing coefficients calculated from the beta distribution of 

different classes of images to expand the dataset. 

During the training process using the original dataset, there 

are often many false detections, and the target result of the 

false detection is not what we need. To address this issue, we 

draw on the advantages of Mosaic and Mixup, and propose a 

mixed data augmentation of background samples method, 

called MDAB. As shown in Fig. 6, in the detection results on 

the left, the circle position is detected as the "van" target and 

the "car" target, but by zooming in on the area, we can clearly 

distinguish, the "van" target is actually the road, and the "car" 

target is actually the roof of the bus. Therefore, pictures that 

do not contain detection targets, such as those on the right 

side of Fig. 6, are suitable for training as background samples, 

allowing the network model to further learn which targets 

need to be detected and which targets need to be excluded. 

Recognizing the detection target can help the network model 

reduce the rate of false detection and improve the robustness 

of small target detection tasks. 

 
In summary, the main data source of the background 

sample set for MDAB is the area of the false detection in the 

cropped training image. This cropped area only contains the 

false detection targets and does not include the targets to be 

detected. The specific workflow of MDAB is as follows: first, 

4 pictures with targets are randomly selected from the 

training set, and 1 picture is randomly selected from the 

background sample set. Mosaic data augmentation is applied 

to the 3 pictures with targets and the background sample 

image, resulting in a new image as shown in Fig. 7(a). Then, 

Mixup data augmentation is performed on this new image 

and the remaining one with the target picture in Fig. 7(b), to 

obtain the mixed data augmentation of background sample 

shown in Fig. 7(c). 

B. Strengthen the Feature Pyramid Networks 

For the image detection of dense small objects, two 

solutions are currently available. The first is to use dilated 

convolutions, which expand the convolution filters to capture 

longer-distance information. The second is to use a pyramid 

structure to better integrate features of different scales and 

obtain more semantic information. 

 
 

Fig. 6.  Model false detection visualization results. 
 

 

   

(a) Mosaic data augmentation sample                 (b) A training sample                              (c) Mixed data sample 

 

Fig. 7.  Mixed data augmentation of background sample. 
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YOLOv6 uses the Rep-PAN pyramid structure to ensure 

that the model's prediction of features at different scales. 

However, it also continuously aggravates the loss of 

boundary details due to repeated downsampling operations. 

When upsampling, it can cause misalignment of contextual 

feature maps. Thus, directly using the fusion method of 

element-wise addition and channel-wise concatenation in the 

pyramid structure will further damage the prediction of 

boundary information, which ultimately results in 

misclassification of objects adjacent to the boundary. 

We borrowed the idea of Feature Alignment Pyramid 

Network (FaPN) [18] and integrated the feature alignment 

into the Rep-PAN pyramid structure of the YOLOv6 network. 

FaPN structure is shown in Fig. 8. Compared with the Feature 

Pyramid Network (FPN) structure, FaPN adds a Feature 

Alignment Module (FAM) to the upsampling process and a 

Feature Selection Module (FSM) to the skip connection. 

FAM aligns an upsampled feature map with learned 

parameters to a set of reference feature maps by learning each 

sampling location in the convolution kernel and a learned 

offset. FSM uses the principle of attention mechanism to 

explicitly establish the dependency between network 

evolution and feature channels to improve the quality of 

network prediction 
 

 
FAM consists mainly of two steps: the first step is to learn 

the spatial difference offset 
i  according to the upsampled 

and downsampled feature maps, as shown in (1): 

1
ˆ([ , ])u

i i if C P− =                           (1) 

u

iP  represents the offset value after upsampling at each 

spatial position. 
1

ˆ
iC −

 represents the correct spatial position 

information in Bottom-Up. Concatenate the 
1

ˆ
iC −

 and u

iP  

channels to obtain 
1

ˆ[ , ]u

i iC P−
, which is used to represent the 

difference between the upsampled spatial position and the 

correct spatial position. 

The second step is to act on the upsampling feature map 

ˆ u

iP  according to the deviation amount, as shown in (2): 

ˆ ( , )u u

i i iP f P=                                 (2) 

In (1) and (2), ( )f  represents the function of correct 

location feature alignment with the learned offset. It is mainly 

composed of deformable convolution, which adds an offset to 

each point on the receptive field, and then dynamically 

adjusts the position of the upsampling alignment. Defined as 

follows: 

1( ( , ))h wf F z z=                            (3) 

To improve feature selection efficiently, FSM abandons 

the practice of using only 1 1  convolutional compression 

channel, and adopts a new form of squeeze and excitation to 

achieve precise distribution of spatial dimension feature 

maps. 
 

 
FSM structure diagram is shown in Fig. 9. 

iC  represents 

the input three-dimensional feature map, and three branches 

are used to perform different operations on it. The branch 1 

pair will squeeze the input features first, as shown in (4): 

1 1

1
( , )

i iH W

i i

h wi i

z c h w
H W = =

=


                      (4) 

ic  represents the two-dimensional matrix of the i-th 

channel in the input feature. H  and W  are the width and 

height of the feature map, respectively. Through (4), a 

squeezed output result of 1 1 i   will be obtained. Next, the 

excitation is performed, and the weight of each feature after 

compression is recalculated using ( )mf , as shown in (5): 

( )m iu f z=                                    (5) 

In ( )mf , each squeezed feature weight is remodeled using 

1 1  convolution and Sigmoid activation function, and the 

importance vector u is output. Next, use channel-wise 

multiplication, multiply the importance vector u with the 

original features to form branch 2, as shown in (6): 

i iX u C=                                    (6) 

The output result 
iX  is very important. It is used to 

describe the importance of each feature channel 

automatically obtained by fusing the feature channels and 

recalibrating the weight of the original feature map. Branch 3 

makes element-wise addition of the original input features 

with 
iX  using skip connections, which is to avoid any 

specific channel response being over-amplified or 

suppressed. 

Finally, to improve efficiency, the output result is further 

rescaled, as shown in (7). 

ˆ ( )i s i iC f C X= +                             (7) 

A 1 1  convolution is used in ( )sf  to selectively keep 

important features and discard useless features for channel 

reduction. As a result, FSM is better applied to the Neck stage 

of the network, effectively enhancing multi-scale feature 

aggregation. 

 
 

Fig. 8.  FaPN structure diagram. 

 

 
 

Fig. 9.  FSM structure diagram. 
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C. Adjustment of Transformer Prediction Head 

The traditional CNN object detection method relies on 

regression and classification to predict the target frame, 

which includes eliminating a large number of pre-selected 

boxes, anchors design, etc. These post-processing tasks will 

affect the prediction effect of the model. The application of 

Transformer in the field of computer vision also faces many 

challenges. The size of digital images is not as fixed as the 

token size in NLP tasks. It is more difficult to use 

Transformer to detect targets with variable sizes. In addition, 

due to the high image resolution, the computational 

complexity of using Transformer increases exponentially 

with the input feature size. 

Regarding the shortcomings of the above two methods, we 

introduce the Transformer structure into the CNN, and use 

the CNN's feature map hierarchy to overcome the difficulty 

of the Transformer structure in predicting targets of varying 

sizes in images. The specific details of implementation are 

shown in Fig. 10. For the Rep-PAN network structure of 

YoloV6, each side can be divided into 3 layers, and we 

replace all RepBlock structures in the bottom-up path with 

the Transformer Encoder Block shown in Fig. 5. This is 

because the Transformer Encoder Block can capture global 

information and rich context information, and under the 

hierarchical feature map of the Rep-PAN network structure, 

it overcomes the difficulty of the Transformer structure in 

predicting targets of different sizes in the image. 

In addition, we use the Transformer Encoder Block to 

construct the Transformer Prediction Head (TPH). Each TPH 

accepts the sequence information output from the 

Transformer Encoder Block, and its interior is composed of a 

shared Feed Forward Networks (FFN). Different from 

ordinary fully connected networks, FFN calculates the 

elements of each input sequence separately, and directly 

outputs the prediction results, avoiding the computational 

waste that arise from post-processing tasks in the CNN 

network. 

IV. EXPERIMENT  

A. Dataset Selection 

Our experiments were carried out under the 

Visdrone2019-DET dataset [19], which was collected and 

marked by the AISKYEYE team of the Machine Learning 

and Data Mining Laboratory at Tianjin University. The 

dataset is captured by different types of drones in different 

scenes, different weather, and different lighting conditions, 

including outdoor scenes from 14 urban environments and 

rural environments separated by thousands of kilometers in 

China, sparse scenes and crowded scenes, etc. Fig. 11 shows 

the ratio distribution of the length and width of the annotated 

objects in the Visdrone2019-DET dataset with respect to the 

original image. It can be seen that the ratio of the length and 

width of most annotation objects to the original image is less 

than 0.1, so this dataset has rich small goals.  

 

 
In the Visdrone2019-DET dataset, 10 different categories 

of targets are marked, which contain some confusing targets, 

such as van and awning-tricycle. In addition, in terms of 

dataset division, the Visdrone2019-DET dataset is divided 

into a training dataset, a validation dataset and a test dataset 

all following the COCO dataset format [20]. Among them, 

the training dataset contains of 25447 image samples and 

their corresponding annotation files, while the verification 

dataset contains 1115 image samples and corresponding 

annotation files, and the test dataset samples 547 images. 

After statistical analysis, we aggregated the dataset category 

instances in Fig. 12. Notably, the uneven classification of the 

Visdrone2019-DET dataset is obvious, and the number of 

instances of the category "car" reached 267,470, ranking first. 

The number of instances of the category "awning-tricycle" is 

only 6648, which is at the bottom. Therefore, this makes the 

dataset extremely challenging. 

B. Implementation Details 

Our proposed algorithm was experimented on a Dell T790 

 
 
Fig. 11.  Distribution map of the ratio of the length and width of the 

annotated target to the original image in the Visdrone2019-DET dataset. 
 

 

 
 

Fig. 10.  TPH-YOLOv6 structure diagram. 
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graphics workstation based on the pyTorch1.8.0 deep 

learning framework. The hardware equipment used included 

an Intel Xeon(R) Bronze3104 processor, two NVIDIA 

TITAIN XP graphics cards, 128G of server memory and two 

4T solid-state drives. In terms of software, the experimental 

environment was set up with the Ubuntu 21.10 as the 

operating system, and CUDA 10.0 installed as the computing 

platform for parallel computing of NVIDIA graphics cards. 

Additionally, torchvision0.9.0, opencv4.1.2, numpy1.18.5, 

tensorboard2.7.0, PyYAML5.3.1, pycocotools2.0 and other 

Python libraries were also installed. Our improved model 

shares most of the Backbone with YOLOv6, and through 

transfer learning, many weights from YOLOv6 can be 

transferred to our model, saving a lot of training time. During 

training, start the multi-card training method and set the 

device to 0,1. Also, set the Batch Size to 8, the number of 

epochs to 200 rounds, and the number of worker processes to 

4. Before training, we converted the Visdrone2019-DET 

dataset to the YOLO dataset format. Training usually took 

around 35 hours. After training, the ‘best_ckpt.pt’ weight and 

‘last_ckpt.pt’ were generated in the ‘runs/train’ folder. The 

‘best_ckpt.pt’ is the weight model file with the best 

performance during training, and the ‘last_ckpt.pt’ contains 

the weight model from the final round of training.  

C. Experimental Results and Analysis 

To accurately evaluate the good detection performance of 

our proposed algorithm on the Visdrone2019-DET dataset, 

we used Intersection-over-Union (IoU) and mean Average 

Precision (mAP) as our evaluation metrics. IoU represents 

the degree of overlap between the candidate bound and the 

ground truth bound, that is, the ratio of intersection to union. 

When the value of IoU is 1, the effect is considered ideal, 

indicating that the candidate bound completely overlaps with 

the ground truth bound. mAP is the average calculation of AP 

calculated for 10 categories. These 10 categories will draw a 

curve according to the precision rate and recall rate, and the 

area enclosed by the curve and the coordinate axis is the value 

of AP. The definitions of precision (P) and recall (R) are 

shown in (8) and (9): 

TP
P

TP FP
=

+
                                (8) 

TP
R

TP FN
=

+
                               (9) 

TP is represented as a true positive, FP as a false positive, 

and FN as a false negative. In order to further optimize the 

results of the model, we re-evaluated the AP for different IoU 

value ratios and different detection target coverage areas. We 

taked 50AP  and 75AP  as evaluation metrics for under 

different IoU value thresholds. 50AP  means the AP value 

with IoU greater than 50%, and 75AP  means the AP value 

with IoU greater than 75%. SAP , MAP , and LAP  are used 

as the evaluation metrics for objects with different coverage 

areas. For objects with an area smaller than 32 32 , used 
SAP  as the evaluation standard. For objects between 32 32  

and 96 96  used MAP  as the evaluation standard, and 

objects with an area larger than 96 96  used LAP  as the 

evaluation standard. For the Visdrone2019-DET dataset, IoU 

greater than 50% is considered an effective prediction. 

Similar to YOLOv5, YOLOv6 also provides multiple 

versions, and we list 5 different versions in Table I. The ‘N’ 

in YOLOv6-N stands for Nano, which is the fastest version 

with depth coefficient and width coefficient of 0.33 and 0.25, 

respectively. It is suitable for devices and scenarios with 

limited resources. YOLOv6-T and YOLOv6-S have slightly 

higher detection accuracy than YOLOv6-N. By increasing 

the number of channels in the convolutional neural network 

with the same depth coefficient, the parameter size and 

computational complexity of the network model are 

increased, making it suitable for detecting medium-sized 

objects. Comparing YOLOv6-M and YOLOv6-L, both differ 

from the previous versions in the structure of the Backbone 

and Neck. The increase in network depth and width improves 

the model's accuracy but also slows down the speed 

compared to other versions, making it suitable for detecting 

small-sized objects in larger and more complex scenes. 

we trained the model based on the ‘M’ pre-trained model 

benchmark. Although YOLOv6-L has a deeper and wider 

network, its resource consumption increases the risk of 

overfitting, which affects the model's generalization effect. 

During which a verification was performed every 10 epochs, 

and the verification results were saved and visualized on the 
50AP  data, as shown in Fig. 13. 

 
TABLE I 

THE DIFFERENCE BETWEEN DIFFERENT VERSIONS OF YOLOV6 

Method Backbone Neck Head Depth Co. Width Co. 

YOLOv6-N EfficientRep RepPANNeck EffiDeHead 0.33 0.25 

YOLOv6-T EfficientRep RepPANNeck EffiDeHead 0.33 0.38 

YOLOv6-S EfficientRep RepPANNeck EffiDeHead 0.33 0.50 

YOLOv6-M CSPRepBackbone CSPRepPANNeck EffiDeHead 0.60 0.75 

YOLOv6-L CSPRepBackbone CSPRepPANNeck EffiDeHead 1.00 1.00 

 

 
 

Fig. 12.  Visdrone2019-DET dataset category instance total. 
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In the figure, the accuracy of the pre-improved model 

reaches its peak at around 150 epochs, and the average 

accuracy tends to slightly decline in subsequent epochs due to 

overfitting. The comparison of model detection results before 

and after improvement is shown in Table II. 

To further verify the feasibility of choosing the ‘M’ 

version as the baseline model, we compared the performance 

of different versions of improved YOLOv6, as shown in 

Table III. Although the speed of YOLOv6-M is lower than 

that of YOLOv6-T and YOLOv6-S, its accuracy is much 

higher than the two. Because the Visdrone2019-DET dataset 

contains numerous small-sized objects, resulting in poor 

detection performance. Comparing YOLOv6-M and 

YOLOv6-L, the mean Average Precision differs by only 

0.13%, but the speed gap is significant. Therefore, 

YOLOv6-M has a better balance between accuracy and speed, 

making it more suitable for detecting scenes with numerous 

small-sized objects. 
 

 
Fig. 14 shows the comparison results of the Visdrone test 

dataset before and after improvement. Fig. 14(a) is the 

visualization result before improvement, and Fig. 14(b) is the 

visualization result after improvement. Bounding boxes of 

different colors are used to represent different categories. In 

the high-density scene, the improved model detection results 

have been greatly improved, as shown in the first row of Fig. 

14, it better recognizes small targets in the distance, and 

identifies the target category in the near distance more 

accurately. The second row shows that our improved model 

can still accurately detect small objects in brighter light 

source scenes. The third row shows that our proposed model 

still achieves superior performance in scenes with darker 

light sources. 

To validate the effectiveness of our approach, we 

compared and analyzed the detection performance on the 

Visdrone dataset with YOLO series algorithms, Anchor-free 

detection series algorithms, Transformer series algorithms, 

etc., as shown in Table IV. 

The comparison found that among the YOLO series 

algorithms, YOLOv5-L’s 50AP  is the highest, reaching 

60.86%. Ranked second is YOLOv5-M, reaching 59.57%. 

Comparing the two, 50AP  of YOLOv5-L is less than 2% 

higher than that of YOLOv5-M, but the detection speed is far 

behind that of the latter, and the real-time performance is 

poor. CornerNet [21] and YOLOX [14] are the more popular 

Anchor-free detection series algorithms. From the 

performance point of view, the Anchor-free detector has low 

regression accuracy and poor effect. The backbone of 

MobileViT [22] uses the Transformer structure globally, 

which does not have an advantage in small target detection. 

D. Ablation Experiments 

Based on the original model, this paper proposes three 

improvement measures, and the impact of each improvement 

is listed in Table V. 

 

 
MDBA is a mixed data augmentation of background 

samples method proposed in this paper. When only this 

improvement is added to the model, the detection accuracy 

increases by 1.33%, which shows that the MDBA data 

augmentation method can better help the model learn which 

targets need to be detected, which ones are background 

samples. The model can maintain good detection 

performance in complex and changing conditions, such as 

rainy and snowy weather, haze weather, cloudy weather, too 

dark environment, too bright environment, etc. In particular, 

data augmentation is a model training technique oriented 

towards optimizing the dataset. When the computational 

complexity is guaranteed to remain unchanged, FLOPs and 

 
 

Fig. 13.  Evaluation indicator data visualization. 

 

TABLE V 
THE IMPACT OF EACH IMPROVEMENT ON 

THE MODEL DETECTION PERFORMANCE OF 

Method MDBA FaPN TR-Head mAP(%) 50AP  (%) 

YoloV6    33.40 53.71 

Ours √   34.23 55.04 

Ours  √  34.43 55.38 

Ours   √ 35.15 56.53 

Ours √ √  35.28 56.75 

Ours √  √ 36.11 58.06 

Ours  √ √ 36.32 58.40 

Ours √ √ √ 37.14 59.73 

 

TABLE III 

PERFORMANCE COMPARISON BETWEEN DIFFERENT  

VERSIONS OF YOLOV6 AFTER IMPROVEMENT 

Method mAP(%) 50AP  (%) FPS 

YOLOv6-T 32.71 52.54 19.6 

YOLOv6-S 33.68 54.16 18.3 

YOLOv6-M 37.14 59.73 15.7 

YOLOv6-L 37.27 60.47 6.8 

 

TABLE II 
COMPARISON OF MODEL PERFORMANCE BEFORE AND AFTER IMPROVEMENT 

Method mAP(%) 50AP (%) 75AP (%) SAP (%)  
MAP (%) LAP (%) 

Before 33.40 53.71 32.23 22.68 42.56 50.74 

After  37.14 59.73 37.18 29.01 47.11 43.18 
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Parameters will not increase, which also makes the FPS 

unchanged from the original model. 

When FaPN is added to the Neck structure of YOLOv6 

alone, the detection accuracy is 55.38%, which is 1.67% 

higher than that of YOLOv6. This method of feature 

alignment has certain effectiveness in the Visdrone dataset 

containing many small targets. It further learns the offset of 

each sampling position, thereby preventing the loss of small 

target features during the upsampling process. Adding a 

feature selection module with an attention mechanism to the 

skip connection of the pyramid structure can better 

emphasize the details before upsampling. 

When only the TR-Head improvement is added to the 

model, the detection accuracy increases by nearly 3 

percentage points compared to the original model. Among 

the three improvement measures proposed in this paper, the 

single improvement has the highest efficiency. By applying 

the Transformer Encoder Block to different levels of the 

upsampling process makes up for the lack of a single input 

size and maximizes its effectiveness. At the same time, it also 

  

  

  
(a) Before improvement                                                            (b) After improvement 

 
Fig. 14.  Visdrone test set visualization results before and after model improvement. 

 

TABLE IV 
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON THE VISDRONE DATASET 

Method mAP(%) 50AP (%) 75AP (%) SAP (%)  
MAP (%) LAP (%) FLOPs FPS 

YOLOv3 31.57 48.31 31.32 20.94 40.63 46.76 154.9G 27.8 

YOLOv4 32.88 51.37 32.54 21.37 41.65 48.78 119.4G 23.4 

YOLOv5-S 31.93 54.83 31.75 22.08 43.75 49.51 16.5G 10.6 

YOLOv5-M 36.52 59.57 37.21 28.56 48.23 52.57 50.4G 9.8 

YOLOv5-L 37.08 60.86 38.12 29.22 49.36 53.23 98.6G 4.8 

CornerNet 30.82 52.08 29.74 21.15 37.83 43.54 37.7G 6.8 

YOLOX-S 31.47 53.53 29.74 22.56 41.58 48.52 41.7G 5.1 

MobileViT 33.43 55.45 33.76 24.92 44.28 41.87 - 13.7 

TPH-YOLOv5 36.45 58.44 36.49 28.48 46.09 42.41 68.3G 18.3 

Ours 37.14 59.73 37.18 29.01 47.11 43.18 76.4G 15.7 
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plays a certain role in the detection of high-density objects 

and small target objects. 

V. CONCLUSION 

In this study, we propose a UAV object detection 

algorithm based on improved YOLOv6, which improves the 

ability to detect high-density, small target objects in UAV 

aerial images. First, we designed a data augmentation method 

in which background samples are added to the training. This 

enables the model to better distinguish between true positives 

and false positives without affecting the computational 

complexity of the original model. Secondly, to prevent loss of 

feature information caused by small target features during the 

upsampling stage, we added FaPN to the Rep-PAN structure, 

making the Neck of the detection network more powerful. 

Finally, we introduced Transformer into CNN, and used 

Transformer Encoder Block to form Transformer Prediction 

Head, which replaced the prediction head of the original 

model. Our proposed algorithm achieved an accuracy of 

59.73% on the Visdrone dataset, which is 6 percentage points 

higher than before the improvements. We also compared with 

different algorithms, our proposed algorithm achieved better 

detection accuracy and detection speed than other algorithms. 

The detection performance of our improved model is 

relatively impressive. In the future, we still need to pay 

attention to the impact of recalling on detection accuracy and 

the actual test deployment on UAV parallel equipment. 
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