
Test Case Prioritization Algorithm Based on
Improved Code Coverage

Yanan Zhu, Feng Liu

Abstract—The objective of test case prioritization is to im-
prove failure detection rates by executing more important test
cases earlier. Due to its simplicity and effectiveness, the greedy
algorithm based on code coverage is widely utilized. However,
when adopting the coverage information, the current technology
only considers the number of code units covered by test cases,
regardless of the importance of the code units. This paper
employs the approach as the coverage granularity to construct
a method weight definition model (MWDM), which extends the
traditional coverage algorithm model and proposes an improved
greedy algorithm based on MWDM (MWDM-IGA), in order to
address the aforementioned issue. At the same time, to utilize
the project change history, a file-level defect prediction model
is introduced into the above algorithm. Experimental valida-
tion on the real-error dataset——Defects4j demonstrates that
MWDM-IGA outperforms other algorithms based on overlay
information in terms of average failure detection rate (APFD)
and the introduction of defect prediction into TCP will further
improve the performance of the algorithm. During prioritization,
the occurrence of ’ties’ caused by multiple test cases covering
the same number of code units decreases, thereby significantly
enhancing the efficiency of the algorithm.

Index Terms—test case priority, coverage granularity, method
weight, greedy algorithm, defect prediction.

I. INTRODUCTION

IN the contemporary software development process, agile
development is gradually gaining a foothold, and con-

sequently, continuous integration is becoming increasingly
prevalent. When updating and iterating software, regression
tests are conducted. Nonetheless, regression testing is a time-
intensive endeavor. To improve the cost-effectiveness of re-
gression testing, various techniques have been proposed, in-
cluding test case selection [1], test case reduction [1], and
test case prioritization [2]. The first two methods, as their
names imply, will discard test cases and may overlook crucial
ones. Therefore, test case prioritization techniques provide the
optimal balance between security and cost-effectiveness.

Test Case Prioritization (TCP) seeks to determine the ex-
ecution order of test cases to achieve intermediate goals,
thereby maximizing test efficiency and system reliability at
the fastest possible rate. These intermediate objectives include
achieving maximum code coverage as quickly as possible
[3]–[8], maximizing test case diversity [9]–[12], balancing
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costs and benefits [13]–[16], and detecting faults as soon as
possible [17]–[19], etc. According to the statistical results
[20], coverage-aware prioritization methods prevail, and such
algorithms utilize structural coverage as a criterion with the
assumption that test cases with greater coverage may exhibit a
higher probability of detecting faults. Greedy strategies excel
in the process of prioritization [21], ranking test cases by
the number of code units covered. The commonly employed
greedy strategies can be categorized as either total strategies
or additional strategies. The total strategy sorts the test cases
by the number of code elements they cover in descending
order. While the additional strategy is an overall strategy that
introduces a feedback strategy and iteratively determines the
next test case that provides the maximum coverage of code
units not yet covered by previously prioritized test cases. Ex-
isting prioritization algorithms based on coverage information,
however, default to assigning all code units the same level
of significance, which is frequently inconsistent with reality.
In addition, [22] demonstrated that when traditional coverage
information is employed to rank test cases, it is easy to have
a ’tie’ phenomenon, i.e., multiple test cases covering the same
number of code units. In contrast, if they are not processed
further, a random algorithm will be used to select the next
test case, which will significantly reduce the efficiency of the
algorithm.

Based on the above problems, the method will serve as
the coverage granularity, based on the dependency relationship
between methods, a weight definition model is created first.
The concept of weight is then introduced into the traditional
coverage model and applied to the two greedy algorithm
strategies. Finally, we introduce file-level defect prediction
models into TCP to continue to enhance the defect detection
capabilities of the ranking algorithm; The paper is organized
as follows: in section II, we present the work of others that
is relevant to this article. Section III describes our proposed
MWDM-GA method in detail and combined with defect
prediction to guide test case sequencing. In section IV, we
demonstrate the experimental outcomes of our methodology.
We conclude with a summary of this paper in the final chapter.

II. RELATED WORK

A. Test case prioritization based on coverage information
Coverage-based ranking techniques aim to maximize the

coverage of program code units, such as statements, branches,
and methods, by executing test cases with high coverage as
soon as possible. Maximum code coverage is a secondary
objective; the ultimate objective is to increase the fault detec-
tion rate. In recent years, numerous coverage-based ranking
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methods have been proposed. Huang et al. address the issue
of the detrimental effects of considering code units separately
and in isolation in [5] and suggest a new coverage criterion,
code combination coverage, which is applied to the ranking
algorithm to increase the fault detection rate. To boost user
satisfaction with high-quality software and ultimately to in-
crease the rate at which serious vulnerabilities are discovered,
Krishnamoorthi et al. [23] proposed a system-level test case
prioritization model starting from the specification of software
requirements. Mei et al. [24] address the issue of missing or
inaccurate data when collecting dynamic coverage by utilizing
the dynamic call graph of the program in the Junit test suite.
This accomplishes the estimation of each test case’s ability
to obtain code coverage and demonstrates that using static
coverage does not significantly reduce the efficacy of fault
detection. zhang et al. [25] decompose the test requirements
into test points, propose a new evaluation strategy, Average
Percentage Test-point Cover(APTC), and apply it to the fitness
function of the genetic algorithm to guide the process of TCP.
Fu et al. [26] proposed a new test case prioritization algorithm
based on program changes and method invocation relation-
ships, demonstrating that changed methods and methods with
more invocations are riskier and simpler to detect failures.
According to the evidence of Hao et al [27], the simple
additive coverage-based technique’s final ranking results are
only marginally inferior to the optimal technique.

The majority of the literature, however, applies prioritization
methods to code units of different granularities or proposes
new evaluation methods without considering the possibility
that different code units feature varying levels of importance.

B. Test case prioritization based on defect prediction

In order to take advantage of the project’s change history,
many algorithms have introduced various defect prediction
algorithms into the prioritization of test cases.Wang et al.
[28] considered the distribution of errors in the source code,
and first proposed a quality-aware test case prioritization,
that is, using code inspection techniques such as statistical
defect prediction models and static error finders to detect
error-prone source code, Then adjust the existing coverage-
based TCP algorithm by considering the weighting of the
source code.Inspired by this work, Mahdieh et al. [29] used
the defect history of software to introduce defect prediction
methods to learn neural network models, use this model to
estimate the failure propensity of each code unit of source
code, and then incorporate these estimates into coverage-
based TCP method.Mahdieh et al. [11] recently proposed a
TCP technique that considers test case coverage data, error
history, and test case diversification, first based on using
a clustering method to group similar test cases, and then
grouping test cases between clusters Prioritized, and finally
achieved performance optimization.To leverage test history,
Engstrom et al. [30] propose to exploit previously fixed bugs to
select a small subset of test cases for regression test selection.
Laali et al. [31] proposed an online TCP approach that exploits
fault locations revealed by executed test cases in order to
prioritize unexecuted test cases. Kim et al. used methods from

fault localization to improve the prioritization of test cases, and
they exploited the observation that defects were fixed after they
were found, proposing that test cases that covered previous
faults were less likely to find faults [32].

However, as mentioned in the related work mentioned
above, the defect prediction used in TCP always uses methods
such as machine learning to predict the number and types of
defects in software projects, but due to the extreme imbalance
of positive and negative samples in the Defects4j dataset, using
Machine learning algorithms to predict defects in code units
can lead to severe bias and inaccuracy in predictive models.
Therefore, we employ a time-weighted risk algorithm as a
predictive model, which is simple but has been shown to
perform similarly to more sophisticated methods [33], which
is consistent with the idea of Occam’s razor. At the same
time, various indicators are used in the forecasting algorithm
to enhance the robustness and robustness of the model.

C. Commonly used evaluation indicators

The average percentage of fault detection (APFD) is the
most significant processing priority indicator. The APFD [34]
is determined as follows:

𝐴𝑃𝐹𝐷 = 1 − 𝑇𝐹1 + 𝑇𝐹2 + · · · + 𝑇𝐹𝑚

𝑛𝑚
+ 1

2𝑛
(1)

where 𝑛 is the number of test cases in the test case set, 𝑚 is
the number of errors that can be detected in this test case set,
TF𝑖 denotes the order of the test cases in the sequence in which
defect 𝑖 is first found in the sorted set of test cases 𝑇 ′. APFD is
a non-negative value, and a higher APFD value indicates faster
error detection for this test sequence. Additionally, there are
variants of APFD metrics, such as 𝐴𝑃𝐹𝐷𝑐 [35] and NAPFD
[36]. They are described respectively in equations (2) and (3).

𝐴𝑃𝐹𝐷𝑐 =

∑𝑚
𝑖=1 𝑠𝑒𝑖 ×

(∑𝑛
𝑗=𝑇𝐹𝑖

𝑡𝑖𝑚𝑒 𝑗 − 1
2 𝑡𝑖𝑚𝑒𝑇𝐹𝑖

)∑𝑛
𝑖=1 𝑡𝑖𝑚𝑒 𝑗 ×

∑𝑚
𝑖=1 𝑠𝑒𝑖

(2)

𝑁𝐴𝑃𝐹𝐷 = 𝑝 − 𝑇𝐹1 + 𝑇𝐹2 + · · · + 𝑇𝐹𝑚

𝑛𝑚
+ 𝑝

2𝑛
(3)

where 𝑛 is the number of test cases in the test case set, 𝑚
is the number of errors that can be detected in this test case
set, TF𝑖 denotes the order of the test cases in the sequence
in which defect 𝑖 is first found in the sorted set of test cases
𝑇 ′,se𝑖 denotes the severity of the 𝑖-th fault, time 𝑗 represents
the execution time of the 𝑗-th test case, 𝑝 is the ratio of the
number of faults detected in the sorted test case sequence 𝑇 ′

to the total number of faults in the program. According to
the formula, it can be noted that 𝐴𝑃𝐹𝐷𝑐 takes into account
both the execution time of the test cases and the fault severity.
NAPFD considers that the set of test cases may not detect
all faults or may not be able to execute all test cases due to
resource constraints.

Scholars have also proposed a metric APxC [37] capable of
covering all code units faster, where x refers to the granularity
of code units, which can be statements, branches, code blocks,
methods, loops, etc. APxC is calculated as shown in (4).
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𝐴𝑃𝑥𝐶 = 1 − 𝑇𝑋1 + 𝑇𝑋2 + · · · + 𝑇𝑋𝑚

𝑛𝑚
+ 1

2𝑛
(4)

where 𝑛 is the number of test cases in the test case set, 𝑚 is
the number of errors that can be detected in this test case set,
TX𝑖 is the first test case in order 𝑇 ′ of 𝑇 which covers code
unit i. APxC measures the weighted average of the percentage
of code units that have been tested over the lifetime of a test
suite.

III. IMPROVED GREEDY ALGORITHM BASED ON METHOD
WEIGHT DEFINITION MODEL AND DEFECT PREDICTION

In this section, we introduce coverage with weights-based
information and fault prediction to guide the TCP process.

An overview of our improved greedy approach is given
in Fig.1, which contains three stages: Obtain the dependency
relationship and dependency depth between methods, Assign
Weights to Methods, and Prioritization. The first two stages
are MWDM’s process, where we perform static analysis of the
source code, get a list of methods and extract dependencies,
and then analyze the dependency hierarchy of the functions,
assigning weights to all methods according to the dependency
depth. The third stage is to obtain the weighted coverage
information of the test cases and guide the formation of the
final sorted sequence.

The Fig. 2 is the process of introducing defect prediction
into TCP to jointly guide sequencing. First, use the defect
prediction algorithm to sort the error probability of the file in
descending order, and use the MWDM-IGA algorithm to sort
the corresponding test cases inside the file.

A. Method Weight Definition Model (MWDM)

In this paper, we argue that it is unreasonable for the default
level of importance for different methods in the prioritization
algorithm to be the same because software unit faults are
not distributed evenly. Therefore, we intend to assign varying
weights to various methods. In this paper, we simply use inter-
method invocation data to determine the relative importance
of each method i.e., we assume that the importance of a
method increases if it is considered directly or indirectly by
more methods. We first obtain the direct dependencies between
methods using an analysis tool for code. Then we obtain the
indirect dependencies between methods. Afterward, we can get
the number of invocations of each method. The final step is
to normalize the number of invocations of each method as its
weight. We set the normalization interval to [0.1, 0.9] since we
can conceive of a method that is ineffective for fault detection.
As a result, the lower limit is set to 0.1 and the upper limit is
taken freely. Algorithm 1 provides the MWDM pseudocode.

B. The Improved greedy Algorithm Based on MWDM
(MWDM-IGA)

In the traditional greedy algorithm for sorting test cases,
the number of methods covered by the test cases influences
the final sequence; that is, if two test cases cover the same
number of methods, they are considered to have the same

Algorithm 1: Main process of MWDM
Input:

Direct Dependency Matrix [C(𝑖, 𝑗 ) ]𝑚×𝑚
1. Initialization:

weight vector wv← [0, · · · , 0]𝑚,rech_matrix←C
2. while rech_matrix × C ! = rech_matrix do
3. rech_matrix←rech_matrix × C
4. end while
5. for i← 0 to 𝑚 − 1 do
6. 𝑤𝑣 [𝑖 ] ← 𝑠𝑢𝑚(𝑟𝑒𝑐ℎ_𝑚𝑎𝑡𝑟𝑖𝑥 [ ] [𝑖 ] )
7. end for
8. for i← 0 to 𝑚 − 1 do
9. 𝑤𝑣 [𝑖 ] ← 0.1 + (0.9 − 0.1) × 𝑤𝑣 [𝑖 ]−𝑚𝑖𝑛(𝑤𝑣)

𝑚𝑎𝑥 (𝑤𝑣)−𝑚𝑖𝑛(𝑤𝑣)
10.end for
Output: 𝑤𝑣 [𝑖 ]1×𝑚.

ability to detect failures, resulting in a ’ties’ situation. Without
additionally addressing this ’tie’ situation, the algorithm is
randomly ordered, which drastically reduces the algorithm’s
efficiency. In this paper, method weights are incorporated into
the ranking procedure. Consequently, the final sequence is
affected not only by the number of methods covered by the test
cases, but also by the weights corresponding to those methods.

MWDM-IGA consists of the MWDM-based conventional
greedy algorithm (MWDM-TGA) and the MWDM-based ad-
ditional greedy algorithm (MWDM-AGA). The pseudocodes
for MWDM-TGA and MWDM-AGA are shown in Algorithms
2 and 3, respectively.

C. TCP merging MWDM-IGA and Defect Prediction

In order to apply project change history, we want to intro-
duce defect prediction models into TCP. This idea is supported
by experiments by Lewis et al. [38], who demonstrate that
defect prediction methods can be used to automate tasks such
as prioritization of test cases prioritization. The TCP process
of fusing defect prediction and coverage information is shown
in the Fig. 2.

The time-weighted risk algorithm used by Google only
checks files related to bug fixes. However, new submissions
of projects may sometimes add new features even though they
are not intended to fix bugs. At this time, we cannot ignore
them. Evidence shows that for files modified by multiple
developers, the probability of errors becomes greater [39],
and the two best predictors of errors are a priori errors
and previous changes [40]. So we expand the factors that
affect the occurrence of defects, we pay attention to each
code submission and multi-developer modification instead of
only focusing on defect fixes, and simplify the standardized
timestamp used in the original model to the version number
of the project. The improved file risk score calculation method
is shown in equations (5)-(7).

𝑆𝑐𝑜𝑟𝑒 = 𝑟𝜔 ×𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠+𝑑𝜔 ×𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑠+𝑎𝜔 ×𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 (5)

𝑇𝑊𝑅(𝑡𝑖) =
1

𝑒−12𝑡𝑖+12 (6)

𝑡𝑖 =
𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑜𝑚𝑚𝑖𝑡

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙
(7)
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where 𝑟𝜔 , 𝑑𝜔 , and 𝑎𝜔 respectively represent the weights
of the three factors(Changes to the file, files modified by
multiple developers, whether the file was pulled in on an
update) affecting the final risk score of the file, and the
sum of their weights is 1. revisions is the twr value based
on the number of times the file has been changed in all
submissions, develops is the twr value based on the number of
times the file has been modified by multiple developers in all
submissions, and arrivals is based on the twr value calculated
when the file is newly introduced. 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑜𝑚𝑚𝑖𝑡 represents
the current version number when the code submission occurs,
and 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙 represents the total version number of the
project.

IV. EXPERIMENTS OF MWDM-IGA

Hao et al. [27] demonstrate that intermediate goals cannot
be pursued excessively and that the optimal backpack strategy
based on coverage test case prioritization is not as competitive
in terms of the ultimate goal as the additional greedy strategy
(fault detection rate). However, it is impractical to apply a
fault detection rate to guide the prioritization process as it

Algorithm 2: Main process of MWDM-TGA
Input:

coverage Matrix [M(𝑖, 𝑗 ) ]𝑛×𝑚,weight vector wv[0, · · · , 𝑚 − 1]
1. Initialization:

Prioritized Suite PS← {} ,ties number N← 0 ,
coverage rate cv← [0, · · · , 0]1×𝑛

2. for 𝑖 ← 0 to 𝑛 − 1 do
3. 𝑐𝑣 [𝑖 ] ← the inner product of the 𝑖−th row of M and wv
4. end for
5. while 𝑖 ← 0 < 𝑛 − 1 do
6. if the maximum value in 𝑐𝑣 [𝑛] is not unique then
7. 𝑁 ← 𝑁 + 1
8. end if
9. select a highest value 𝑐𝑣 [𝑙 ] in cv
10. 𝑃𝑆 ← 𝑃𝑆

⋃ {𝑙}
11.end while
Output: 𝑃𝑆, 𝑁 .

is impossible to determine whether a test case can detect a
fault until it is executed and a fault is discovered. Therefore,
we decided to optimize the coverage-based greedy strategy
further and combine it with defect prediction models to guide
the ranking process. Since there is a one-to-one or one-to-many
relationship between source files and test cases in defects4j,
it is logical to apply file-level defect prediction algorithms to
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Algorithm 3: Main process of MWDM-AGA
Input:

coverage Matrix [M(𝑖, 𝑗 ) ]𝑛×𝑚,weight vector wv[0, · · · , 𝑚 − 1]
1. Initialization:

Prioritized Suite PS← {} , Uncovered method Set UcS,
ties number N← 0 , Covered method Set CS← {}, vec← 𝑤𝑣

2. UcS ← all methods
3. while The number of elements in the set PS < 𝑛 do
4. for 𝑖 ← 0 < 𝑛 − 1 do
5. 𝑐𝑣 [𝑖 ] ← the inner product of the 𝑖−th row of M and vec
6. end for
7. if the maximum value in 𝑐𝑣 [0, · · · , 𝑛 − 1] is not unique then
8. 𝑁 ← 𝑁 + 1
9. end if
10. if 𝑐𝑣 [𝑙 ] = 𝑚𝑎𝑥𝑖𝑛𝑢𝑚(𝑐𝑣) and l not in Set PS then
11. 𝑃𝑆 ← 𝑃𝑆

⋃ {𝑙}
12. CS ← 𝐶𝑆

⋃
all methods covered by the 𝑖-th test case

13. UcS ←𝑈𝑐𝑆 − 𝐶𝑆

14. Set the 𝑙−th row of matrix M to 0
15. Set the weights of all methods covered by the 𝑙−th test case

in vec to 0
16. end if
17. if Number of elements in the set UcS = m then
18. 𝑈𝑐𝑆 ← {}
19. end if
20. if vec = 0 then
21. 𝑣𝑒𝑐 ← 𝑤𝑣

22. end if
23.end while
Output: 𝑃𝑆, 𝑁 .

TCP.
We conduct experiments on the public dataset Defects4j

[41], which is a database and extensible framework that
provides Java source code and Junit test cases for various
projects. Moreover, this dataset stores in a database the actual
bugs discovered during each update cycle. Due to its integrity
and accessibility, this dataset is popular among software engi-
neering academics.

To demonstrate the effectiveness of the method, we compare
the MWDM-GA proposed in this paper with other TCP-based
algorithms based on coverage or different code granularity,
and Table I shows the different techniques we compaerd.
Afterwards, the effectiveness of introducing defect prediction
into MWDM-GA is further verified.

A. Experiment preparation

Since Defects4j does not provide the required direct depen-
dencies between methods, we utilize the code static analysis
tool UnderStand1 to obtain them and examine the methods
covered by each junit test case. After data collection was
complete, we chose as our evaluation metrics the most com-
monly used APFD values. In this paper, we only detect defects
in the latest version of each Java project, which contains
only one real bug; therefore, the APFD calculation has been
simplified to Equation 8. Consequently, our evaluation metric
corresponds to the proportion of test cases executed before a
fault is detected; that is, the smaller the value of 𝑇𝐹1/𝑛, the
faster the defect detection speed of the algorithm. In addition,
we intended to minimize algorithm inefficiency due to the
occurrence of random phenomena during the prioritization
process, so the rate of reduction in the number of ’ties’ is

1https://scitools.com/

included as an additional evaluation criterion. The calculation
is illustrated by Equation 9.

𝐴𝑃𝐹𝐷 = 1 − 𝑇𝐹1
𝑛
+ 1

2𝑛
(8)

𝐷𝑅 =
𝑁𝑢𝑚𝑜𝑙𝑑 − 𝑁𝑢𝑚𝑛𝑒𝑤

𝑁𝑢𝑚𝑜𝑙𝑑

(9)

where 𝑁𝑢𝑚𝑜𝑙𝑑 is the number of ’ties’ occurring in the algo-
rithm before the improvement, 𝑁𝑢𝑚𝑛𝑒𝑤 is the number of ’ties’
that occur in the improved algorithm.

All the experiments in this paper were implemented in
Python and run on a Windows system with a CPU(Intel(R)
Core I5-12500H @ 2.50GHz) and 16GB of RAM.

B. Experimental Results

We have designated five open-source Java programs from
Defects4j on Github: jfreeechart, jodatime, commons.lang,
commons.math, and the Closure Compiler. Each version of
these programs contains at least one real and exploitable bug;
each program corresponds to its own set of junit test cases; and
at least one test case exists to detect the bugs in each program.
The MWDM-GA experimental results are shown in Tables
II, III, and Fig.3. Further verification of the effectiveness of
introducing defect prediction into TCP is shown in the Fig. 4.

The values of 𝑇𝐹1/𝑛 for the different TCP technologies
are compared in Table II, the higher the value, the earlier the
defect was discovered. It can be seen in the table that the
MWDM-IGA proposed in this paper can detect defects earlier
than other algorithms. Table III depicts the reduction rate of
MWDM-TGA and MWDM-AGA compared to the average
number of ’tie’ times with other TCP technologies. Fig.3
depicts the APFD values for various TCP technologies. Based
on the boxplot, we can find that our method always stands
out in terms of average failure detection capability, whether
compared with technologies such as GTS, GAB, and GA-
APTC at different granularities or compared with GTM and
GAMS based on the same coverage criteria. Fig. 4 verifies the
effectiveness of introducing defect prediction into MWDM-
GA, where DPTGA and DPAGA are the algorithms after
introducing defect prediction in the two strategies respectively.

The preceding experimental results illustrate that, when
compared to traditional greedy algorithm, our proposed
MWDM-IGA performs better in terms of both faster fault
detection and a reduction in tie-breaks between test cases. At
the same time, the application of defect prediction in TCP will
make the sorting algorithm more superior.

V. CONCLUSION

In this paper, we propose a prioritization algorithm that uses
the weights of the methods in the coverage model and fault
prediction to direct the greedy algorithm in completing the
ranking. This strategy factors in the fact that actual defects
are not distributed evenly throughout the code units. We also
seek to reduce the incidence of random occurrences during
the prioritization process and want to take advantage of the
project change history. Experiments conducted on five open-
source projects containing actual bugs demonstrated several
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TABLE I: Studies TCP techniques

Tag Description

GTS Greedy total(statement-level)

GAS Greedy additional(statement-level)

GTB Greedy total(block-level)

GAB Greedy additional(block-level)

GTM Greedy total(method-level)

GAM Greedy additional(method-level)

GA-APTC Genetic algorithms based APTC

GTMS Greedy total based on static coverage(method-level)

GAMS Greedy additional based on static coverage(method-level)

MWDM-TGA Greedy total based on our improve coverage(method-level)

MWDM-AGA Greedy additional based on our improve coverage(method-level)

TABLE II: Percentage of test cases executed before the fault was detected for different technologies

Subject Programs jfreechart jodatime commons.lang commons.math commons.compiler average

GTS 28.03 25.92 41.89 45.55 27.31 33.73

GAS 27.69 23.67 35.44 41.32 29.89 31.60

GTB 32.76 25.99 36.54 39.26 26.11 32.13

GAB 30.07 31.24 33.56 39.06 28.57 32.50

GTM 31.73 26.81 40.3 38.19 28.42 33.09

GAM 38.47 22.49 42.03 31.61 20.17 30.96

GA-APTC 35.77 30.44 40.03 38.79 28.57 34.72

GTMS 30.59 28.92 35.87 39.22 25.69 32.06

GAMS 33.78 24.63 41.59 32.19 27.11 31.86

MWDM-IGA 31.78 21.55 38.62 32.46 22.87 29.46

MWDM-AGA 36.42 20.93 39.9 29.06 16.46 28.55

improvements in fault detection rate and tie reduction. These
scenarios arise when multiple test cases receive equal coverage
during the prioritization process.
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