
 

  Abstract—A new lightweight traffic sign detection algorithm 

based on YOLOv4 has been proposed to address the 

time-consuming issue of existing algorithms when training more 

parameters. The algorithm involves several key improvements 

to YOLOv4's backbone network and feature pyramid. 

Specifically, MobileNetv3 is used as the backbone feature 

extraction network, replacing standard convolution with 

depthwise separable convolution to reduce the number of 

parameters and computation in both the backbone network and 

feature pyramid. Furthermore, two SPP modules are added to 

the feature pyramid part to improve the detection accuracy of 

the model. The MobileNetv3 network is also improved by 

dropping the modules after layer 17 and performing PW 

(PointWise) convolution operations on feature layers to convert 

their dimensions and connect them with the detection layer. 

Finally, the a priori frame is initialized by applying the 

K-means++ algorithm to further enhance the detection 

accuracy of the algorithm. Experimental results on the 

CCTSDB dataset indicate that the proposed algorithm achieves 

a 1.7% increase in mAP (mean average precision), reduces the 

parameter amount by 197M, and increases detection speed by 

25% compared to YOLOv4. These results demonstrate that the 

improved lightweight algorithm performs exceptionally well in 

traffic sign detection.  

 
Index Terms—Lightweight algorithms, machine vision, 

intelligent transportation, traffic sign detection, YOLOv4 

 

I. INTRODUCTION 

S driverless technology matures, open road testing under 

limited conditions has become prevalent both 

domestically and internationally. However, the detection and 

localization of traffic signs remains a challenging research 

topic in the perception of driverless environments. 

Real-world environments are highly variable due to 

uncontrollable factors such as lighting conditions, damaged 

and faded signs, and occlusions caused by adverse weather 

conditions. These factors present significant obstacles to 

real-time traffic sign detection. Therefore, there are still 

many problems that need to be overcome in the field of traffic 

sign detection. Traffic sign detection techniques have been 

extensively researched, but they still face significant 

challenges. Traditional algorithms rely on color or specific 
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shape features, and their adaptability to different 

environments is limited. Deep learning-based approaches 

have achieved high accuracy, but they often lack real-time 

performance and are challenging to apply in practical 

scenarios. Recent advances in lightweight detection 

frameworks for mobile and embedded devices have 

significantly improved detection speed, but they often 

sacrifice accuracy. In order to develop an effective traffic 

sign detection method, it is crucial to balance accuracy, 

real-time performance, and robustness in complex scenarios. 

The YOLO series model represents a prominent 

end-to-end detection model that can predict object categories 

and generate bounding boxes simultaneously, achieving high 

detection efficiency and meeting real-time requirements. 

Ongoing improvements by researchers have led to significant 

increases in model effectiveness. For example, YOLOv2 [1] 

incorporates batch normalization to boost detection accuracy, 

while YOLOv3 [2] improved the backbone network and 

introduced a multi-scale fusion method to maintain high 

detection speed. YOLOv4 [3] further enhances accuracy and 

speed by integrating a CSPNet [4] into the backbone and 

adding SPPNet [5] and PANet [6] to the neck section. These 

improvements demonstrate the potential of the YOLO series 

in achieving high accuracy, speed, and adaptability in 

complex scenarios. 

The YOLO model parameters increase with the number 

of layers, leading to latency issues for real-time detection. 

Traffic signs constantly change position and size, and 

detection algorithms are sensitive to object resolution, 

making detection performance unpredictable. Low accuracy 

of lightweight models can limit detection tasks. Finding the 

right balance among efficiency and effectiveness is 

challenging. The paper proposes a traffic sign detection 

model that aims to ensure high accuracy while balancing 

real-time performance. The model also adopts a lightweight 

design to better address the aforementioned issues. It 

optimizes information exchange between feature layers, 

reduces information loss, and minimizes computational 

overhead to improve latency. The goal is to enhance 

detection performance while maintaining accuracy. 

This research focuses on improving the YOLOv4 model, 

which is used to solve the problem of long training time due 

to the large number of model parameters. The paper's main 

contributions include: (1) By adopting MobileNetv3-large[7] 

as the backbone network, the model reduces the number of 

parameters and computational complexity while significantly 

improving the inference speed. (2) Implementing depthwise 

separable convolution in the feature pyramid to further 

reduce the model's parameters, while adding the SPP module 

to enhance semantic information expression and algorithmic 

recognition accuracy. (3) This method improves the 

MobileNetv3 network by removing some layers after the 
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17th layer and applying PW convolution on three feature 

layers of different scales. These feature layers are connected 

to the detection layer to generate the final prediction box. The 

paper also employs the K-means++ technique to cluster 

experimental data and determine appropriate prior box sizes 

for the CCTSDB dataset [8] , resulting in further performance 

improvements for the YOLOv4 network. 

This paper is structured as follows: Section 2 provides 

an introduction to the YOLOv4 method and the MobileNetv3 

algorithm, which is the primary focus of this study. Section 3 

presents the proposed improved model, which mainly 

emphasizes the enhancements made to the MobileNetv3 

algorithm, the embedding of the PANet through the SPP 

module, and the use of K-means++ to determine the optimal 

anchor box size. In Section 4, we conducted experiments on 

the CCTSDB dataset to evaluate the performance of our 

improved algorithm and compared it with previous methods. 

The experimental results showed that the new model not only 

reduces the model size but also improves detection speed and 

accuracy. Finally, we summarized the experimental results 

and discussed future research directions in the conclusion 

section. 

II. RELATE WORKS 

Although general object detection methods perform 

well on many public datasets, traffic sign detection tasks are 

limited to specific scenarios. In practical applications, they 

face many challenges mainly due to the small size of traffic 

signs, the complexity of road scenes, and the high 

requirements for detection accuracy and speed. 

The distinctive colors and shapes of traffic signs make 

them distinguishable from other objects. However, sign 

detection presents a challenge due to the small size of signs 

and complex road scenarios. To address this challenge, 

researchers have developed specialized algorithms using a 

combination of color probability models, HOG features, and 

deep learning techniques. Yang et al. [9] used a rapid 

detection module to establish a color probabilistic model and 

HOG features for real-time categorization of traffic signs. 

Similarly, Xu et al. [10] developed a traffic sign detection 

model that extracts color and shape information from the 

Region of Interest (ROI) containing the extracted traffic sign 

features. In recent years, deep learning has become one of the 

popular techniques for traffic sign detection. Shen et al. [11] 

proposed a model based on an improved network structure 

that significantly improved the accuracy for small-sized 

traffic signs. Lee et al. [12] addressed the challenge of 

detecting traffic signs in complex scenarios by proposing a 

detection model based on image segmentation. Yuan et al. 

[13] introduced an attention-based detection approach to 

refine features of complicated backgrounds and reduce false 

detections. Moreover, Wang et al. [14] presented an 

improved fast R-CNN algorithm that uses a new sampling 

method to optimize the network for detecting small targets in 

traffic images. These techniques have demonstrated 

improved performance in traffic sign detection under 

different scenarios, highlighting the importance of 

specialized algorithms in addressing the unique challenges of 

sign detection. 

Gavrilescu et al. [15] used the Faster R-CNN algorithm 

to train and test 3000 traffic signs and found that it to be 

superior in accuracy and speed compared to the previous 

algorithm. Despite achieving high accuracy, the Faster 

R-CNN algorithm has a natural drawback of slow detection 

speed, making it unsuitable for real-time traffic sign detection. 

To address this issue, researchers have turned to one-stage 

detection algorithms, which have faster detection times. 

Zhang et al. [16] proposed an improved model based on 

YOLOv3 for traffic sign detection, which incorporates 

multi-scale spatial pyramid pool blocks in Darknet 53 to learn 

features more thoroughly, achieving real-time detection of 

signs. Wang et al. [17] upgraded the YOLOv4 algorithm by 

combining four different feature layers for detection, 

resulting in increased detection accuracy. As a result, many 

improved one-stage traffic sign detection algorithms have 

emerged, reducing the accuracy gap between one-stage and 

two-stage algorithms and making one-stage detection the 

mainstream of research. However, detecting traffic signs in 

real-time remains a significant challenge due to the long 

training times required when using large numbers of 

parameters. 

The widespread adoption of deep learning networks has 

brought about a revolution in the field of traffic sign detection. 

These networks have significantly improved the accuracy 

and speed of detection beyond traditional algorithms, making 

them an indispensable tool for modern traffic management. 

Moreover, deep learning-based detection methods have 

proven to be highly effective in identifying traffic signs in 

complex road environments, a feat that was previously 

considered challenging. 

This approach has enormous implications for the 

development of autonomous vehicles as it provides them 

with reliable decision-making tools. By accurately detecting 

traffic signs in real-time, self-driving cars can respond 

appropriately to changing road conditions, improving their 

safety and reducing the likelihood of accidents. 

To further enhance the robustness of the model, this 

study utilizes a one-stage deep learning approach to develop a 

lightweight, highly accurate, and robust detection model. 

This model is designed to accurately detect traffic signs in 

various lighting and weather conditions, as well as in 

scenarios where traffic signs may be partially obscured or 

have low contrast. The resulting detection model is a crucial 

step towards achieving safer and more efficient traffic 

management, and it has the potential to be implemented on a 

large scale to benefit society as a whole. 

III. IMPROVED YOLOV4 ALGORITHM 

In this paper, the YOLOv4-MobileNetv3 model is 

enhanced in three key areas, resulting in improved 

performance. Firstly, MobileNetv3 is utilized as the 

backbone network, which significantly reduces the number 

of parameters in the network without sacrificing detection 

accuracy. Secondly, the feature pyramid structure is modified 

with the integration of SPP, expanding the receptive field of 

the feature layer and capturing important contextual features, 

ultimately leading to improved detection performance. In the 

end, the model uses depthwise separable convolutions to 

replace some of the convolution operations in the feature 

pyramid and backbone network, further reducing the quantity 

of parameters in the model. The improved network structure 

is shown in Figure 1. 
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Fig. 1.  Improved-YOLOv4 structure. CBH stands for convolutional layer, 
batch normalization and h-swish activation function. MBN represents a 

feature extraction module based on MobileBottleNeck. 

A. Improved MobileNetv3 Feature Extraction Network 

MobileNetv3-large (Neural Architecture Search, NAS) 

combines the automatic neural network search and the 

NetAdapt algorithm.  The depthwise separable convolution 

of MobileNetv1 [18] , the inverse residual structure with a 

linear bottleneck of MobileNetv2 [19] , and the lightweight 

structure based on SE [20] of MnasNet are the three models 

that makeup MobileNetv3. The convolution operation in 

depthwise separable convolution is typically broken down 

into many phases. Let's consider a convolutional layer with a 

kernel size of 3×3, which takes 16 input channels and 

produces 32 output channels. It requires 4086((3316)32) 

parameters ((3316)32) for general convolution. The 

depthwise separable convolution only requires 656 

parameters (3316+(1116)32). Compared to 

CSPDarknet53, MobileNetv3 requires fewer parameters and 

lower operating costs to achieve the same effect. Therefore, 

MobileNetv3 can replace CSPDarknet53 as the network of 

YOLOv4 to complete feature extraction. 

The backbone feature extraction network in 

MobileNetv3 adopts the bneck structure, which is the first 

network to be passed through the input image. In Figure 2, 

the bneck structure is displayed. The low-dimensional feature 

map is easily losing information when it passes the ReLU 

activation function. The information loss is minimal when the 

ReLU operation is performed in high-dimensional. To 

balance the channel weights of each feature map, a bneck 

structure is introduced before the depthwise separable 

convolution and attention mechanisms. This structure 

increases the dimensionality of the feature maps and then 

performs upscaling and depthwise separable convolution on 

them. Using global average pooling to create the 11N 

feature map. Two fully connected layers are then applied to 

alter the weights of each channel. The dimensionality of the 

resulting feature is reduced and superimposed on the feature 

of the input bneck structure before outputting it. Multiplying 

the input feature map generates a feature map with the 

attention mechanism added. 

The detection layer outputs three branches at different 

scales, and feature extraction takes place in the bottleneck. 

The three layers are then connected by performing 

convolutional operations on their dimensions. The layers 

before average pooling are removed, and convolution is used 

to compute the feature maps to reduce latency while 

maintaining high-dimensional features. After feature 

generation, the layer is removed. The bottleneck mapping 

layer is no longer needed. This results in a 10ms reduction in 

overhead.  

Conv,1×1
NL

Dwise,3×3
NL

Pool

FC,

Relu
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hard-α
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Fig. 2.  It mainly implements channel separable convolution, SE channel 

attention mechanism and residual connection. 

 

B. Improvement of SPP Structure and PANet Module 

Different feature layers have different semantic content 

and contribute differently to the combined output features. 

The performance of the network suffers when features are 

extracted only at the output layer, which affects the detection 

of small objects. To accomplish the task of multi-scale 

detection, it is necessary to fully exploit the many layers of 

semantic information. The feature pyramid of YOLOv4 uses 

PANet and SPP structures, and Figure 3 shows the SPP 

module. The SPP obtains the output layer of the network. It 

then applies max-pooling operations with large kernels. The 

resulting feature maps are concatenated along the channel 

dimension, resulting in a threefold increase in both the size of 

the output feature maps and channels. The SPP structure is 

designed to enlarge the receptive field of the feature layer, 

capturing more comprehensive contextual features, and 

enhancing the model's recognition capability. 

The SPP structure receives the final layer output from 

the YOLOv4 network for upsampling. Based on the above, 

this paper uses SPP structure for three-layer output. It is 

integrated into the PANet model. This will improve the the 

representation of output feature messages. This expands the 

model's ability to perceive objects at different scales, 

improving its overall robustness. 

BaseLayer

5 9 13 1

FCLayer
 

Fig. 3.  SPP structure. The structure can increase the receptive field and 
dynamically change the size of the feature map, so that the model can adapt 

to images of different resolutions, taking into account both large and small 

targets 

Figure 4 shows the structure of the PANet. The original 

FPN is complemented by a bottom-up path aggregation 

network, which further improves the detection performance. 

This is because the three feature layers are drawn iteratively 

through the PANet. Thus, more abstract top-level features 
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and underlying features are fully combined. During forward 

propagation, horizontal links merge feature maps of the same 

size, fully leveraging the information from feature layers of 

various scales and significantly improving the model's 

detection capability. 
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(a)  PANet (b)  FPN  
Fig. 4.  Magnetization a Characteristic pyramid structure 

To improve the image feature extraction process. Both 

the PANet and the SPPNet combine five consecutive 

convolutions and three consecutive convolutions. Compared 

to regular convolution operations, separable convolution 

significantly reduces the number of parameters. To reduce 

the model's parameter and memory requirements, the regular 

convolutions in the SPPNet and PANet have been replaced, 

as shown in Figure 5. 
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Fig. 5.  Depthwise separable convolution instead of ordinary convolution 

C. Optimal Anchor Box Size. 

The difficulty of target detection in prediction can be 

reduced by using the anchor boxes generated by clustering. 

The PASCAL VOC dataset is applied to obtain the 

predetermined a priori frame of the YOLOv4 network. 

However, using the original pre-defined anchor frames from 

the CCTSDB dataset leads to the inability of Yolo Head to 

select the appropriate target bounding box. This has a 

significant impact on the ability to detect the target. As a 

result, the ground truth annotated boxes in the dataset are 

clustered first in this work. 

The YOLOv4 uses K-means to gather the target frames 

on the dataset. Performance is evaluated using the average 

Intersection over Union (IoU) between anchor boxes and 

ground-truth boxes, which measures the degree of overlap 

between the predicted and actual bounding boxes. The IoU 

calculation equation is utilized for this purpose. 

   ( )
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i j
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            ( ),
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In the equation,  denotes the number of centers, 

denotes the number of target boxes assigned to the kth cluster 

center, B represents the anchor box associated with the 

cluster center, and C represents the total number of target 

boxes assigned to the kth cluster. When K-means clusters 

ground-truth boxes, the number of cluster centers is 

predefined. However, in applications, the optimal k value 

cannot be known in advance, which greatly affects the 

efficiency of the algorithm. Additionally, k-means clustering 

requires manual determination of the original clustering 

centers, and varying initial centers can lead to entirely 

different clustering outputs. 

The K-means++ clustering algorithm was used in this 

study to cluster object bounding boxes in the CCTSDB 

dataset. This algorithm is an improvement over the traditional 

K-means algorithm as it optimizes the selection of initial 

points by choosing cluster centers more effectively. This 

reduces clustering bias and leads to better results. By utilizing 

prior bounding boxes that are suitable for the target dataset, 

we can enhance the accuracy of sign detection. 

The K-means++ algorithm starts by randomly selecting 

a data point from the dataset as the initial cluster center. Then, 

the distances between all the data points and the selected 

center are computed, and the data points are assigned to the 

closest center. The algorithm then determines the probability 

of each data point being selected as the next cluster center 

based on the minimum distance between the data point and its 

assigned center. The next cluster center is selected as the data 

point with the highest probability. 

( )
( )

( )

2

2

x X

D x
P x
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         (3)  

Iterate through the above steps until k cluster centers are 

chosen. Then, employ the K-means++ to compute the final 

results for the k cluster centers, continuing until there is no 

further change in the anchor box sizes. 

IV. EXPERIMENT AND RESULT ANALYSIS 

A. Experimental Environment and Parameters 

The PyTorch framework is utilized to construct the 

network models, which are run on a Windows 10 (64-bit) 

operating system equipped with an Intel i7-10750H CPU, 

16GB of memory, an NVIDIA GeForce GTX 2080 GPU, and 

CUDA version 10.0, as well as CUDNN 7.4. 

This experiment utilizes YOLOv4 as the detection 

algorithm framework and employs the transfer learning 

method, utilizing pre-trained weights as the fundamental 

feature extraction model. To ensure training convergence, the 

initial learning rate was 0.001, label smoothing was 0.005, 

and the batch size was set to 16. SGDM optimization method 

was utilized with a CIOU loss function. 

B. Dataset Processing 

The CCTSDB dataset consists of 15,723 photographs, 

which are annotated with three categories: directional signs, 

prohibition signs, and warning signs. During the experiment, 

the CCTSDB dataset's original photos are converted to the 

JPG format, while the annotations are transformed into XML 

files in VOC format, which the YOLOv4 network can read. A 

9:1 ratio is used to divide the dataset into training and testing 

sets. 

C. Experimental Process and Result Analysis 

(1) Validating the effectiveness of K-means++. To 

verify whether the detection accuracy of the CCTSDB was 

optimized by the K-means++ clustering technique. As shown 

in Figure 6, we choosed k = 2~12 as the cluster centers to 
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examine the association between k and the average IoU on the CCTSDB to determine the optimal number of cluster 

centers. The AvgIoU number increases as k steadily increases, 

indicating that the algorithm performs better as k increases. 

The fluctuation trend of AvgIoU steadily decreases when k is 

bigger or equal to 9. To achieve better clustering results and 

reduce the computational complexity of YOLOv4, the 

optimal value of k should be chosen at the inflection point of 

the curve, where k is as small as possible. In our study, we 

selected 9 anchor boxes for predicting the targets. The 

K-means++ clustering algorithm obtained the following sizes: 

(6,13), (9,19), (12,26), (15,38), (21,30), (29,44), (41,59), 

(59,79), (104,142). Figure 7 shows the clustering effect. The 

centers of each cluster are generally dispersed, and each 

cluster can be easily identified.  

With the same parameter settings, the K-means++ 

resulted in an average accuracy improvement of 0.9%, 

indicating a closer alignment between the anchor boxes and 

the actual targets. Consequently, utilizing the K-means++ 

clustering algorithm for anchor box determination enhances 

the accuracy and performance of object detection models. 

This improvement is presented in Table I. 

 

Fig. 6.  Curve of AvgIoU increasing with k. 

 

Fig. 7.  K-means++ clustering result graph. Clustering effect when k=9. 

TABLE I 

OPTIMIZATION RESULTS COMPARISON 

Model Backbone mAP(%) FPS 

YOLOv4 CSPdarknet53 93.9 19 

Improved CSPdarknet53 94.8 20 

(2) To test the effectiveness of the improved algorithm, 

a neural network model that integrates all the aforementioned 

enhancements is trained and tested on the CCTSDB dataset. 

The results of the experiments are shown in Table II, which 

showcases the performance of the proposed method. 

The proposed enhanced YOLOv4 algorithm achieved 

over 10% improvement in accuracy compared to the Faster 

R-CNN and SSD algorithms, while requiring significantly 

fewer parameters. This makes it a promising option for 

real-world applications with limited computing resources. 

The enhanced YOLOv4 algorithm achieved a modest 

average accuracy improvement of 1.7%, but offered 

significant advantages, including a 197M reduction in model 

size and a 25% increase in detection speed. These outcomes 

confirm the practicality and effectiveness of the improved 

algorithm, meeting the requirements for traffic sign detection. 

As a result, the proposed approach is superior in terms of 

accuracy, model size reduction, and faster detection speed, 

making it an advanced option for traffic sign detection. 

The performance comparison between YOLOv4 and 

Improved-YOLOv4 based on CCTSDB dataset is presented 

in Figure 8, showcasing various target detection and P-R 

performance curves. In Figure 8(a) and 8(b), the detection 

results of four traffic signs by both models are compared. The 

results indicate that Improved-YOLOv4 exhibits higher 

confidence in detection compared to YOLOv4, with more 

accurate and fewer missed or false detections, leading to 

higher detection accuracy. These results demonstrate the 

validity and effectiveness of the proposed approach, meeting 

the requirements of traffic sign detection. The performance of 

the improved-YOLOv4  is presented in Figure 8(c) and 8(d), 

showing higher detection accuracies and P-R curves than the 

original YOLOv4 model. The proposed approach achieves a 

mAP of 95.6%, while YOLOv4 achieves 93.9%. Moreover, 

the improved model outperforms YOLOv4 in terms of 

precision and recall rates. In the P-R curve comparison of the 

warning class, the improved model exhibits a larger area, 

indicating better performance than YOLOv4. 

 

(a).  CCTSDB detection results 

 

(b).  YOLOv4 traffic sign detection results 
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TABLE II 

IMPROVED ALGORITHM PERFORMANCE COMPARISON WITH OTHER NETWORKS 

Model Backbone Size mAP(%) Total Params FLOPs FPS AP-m AP-p AP-w 

Faster R-CNN Resnet50 522.9M 84.2 137,078,239 298.21G 10 77.6% 87.4% 87.7% 

YOLOv4 CSPdarknet53 244.3M 93.9 64,040,001 60.09G 19 95.9% 93.2% 92.6% 

SSD VGG16 99.8M 86.4 26,151,824 62.64G 23 81.6% 86.1% 91.7% 

Improved Mobilenetv3 47.3M 95.6 12,422,749 9.149G 25 96.1% 94.3% 96.3% 

 

(c).  Improved-YOLOv4 traffic sign detection results 

(d).  Comparative P-R curves of waring classes 

Fig. 8.  Example of improved-YOLOv4 and YOOLOv4 model target 

detection results 

(3) The CCTSDB dataset is used to train and evaluate 

two modified versions of YOLOv4: YOLOv4-M, which uses 

MobileNetv3 as the backbone network, and YOLOv4-S, 

which has an improved feature pyramid structure. The 

performance of these models is compared with the original 

target detection network, and the results are summarized in 

Table III. 

Based on the data presented in Table Ⅲ, the YOLOv4-S 

traffic sign detection network achieves a higher mAP value 

compared to the original network. Conversely, the 

YOLOv4-M traffic sign detection network exhibits a lower 

mAP value than the original network. Notably, the 

YOLOv4-M detection algorithm employs MobileNetv3 as its 

backbone network. Its detection accuracy is reduced by 2.1 

percentage points, but the model size is reduced by 199.8 M. 

This shows that MobileNetv3 has a simple structure and 

strong performance. It can effectively accomplish the feature 

extraction task, resulting in a significant reduction in 

parameter count and inference time. 

TABLE Ⅲ 

PERFORMANCE COMPARISON OF DIFFERENT IMPROVED ALGORITHMS 

Model Backbone Size mAP(%) FPS 

YOLOv4 CSPdarknet53 244.3M 94.8% 20 

YOLOv4-S CSPdarknet53 247.5M 97.1% 18 

YOLOv4-M Mobilenetv3 44.5M 92.7% 27 

YOLOv4-SM Mobilenetv3 47.3M 95.6% 25 

 

The YOLOv4-S detection approach, which utilizes an 

improved feature pyramid structure, demonstrates a 2.3% 

average accuracy improvement compared to the original 

network. The method employs the SPP network to expand the 

perceptual field of the feature layer, enabling the capture of 

useful contextual features and the enhancement of feature 

information through multi-scale feature fusion. These 

advancements lead to a significant improvement in the 

detection performance of the model. 

V.    CONCLUSION 

To tackle the practical issues of current traffic sign 

methods with long training time and limited real-time 

performance when there are many parameters. We propose 

an effective lightweight model. The model uses the 

Mobilenetv3+YOLOv4 algorithm to detect traffic signs, and 

combines multiple SPP modules and K-means++ to improve 

the accuracy of the model. In comparison to the original 

model, the improved model offers several key benefits, 

including rapid detection, enhanced accuracy, and reduced 

parameter count. The model achieves faster feature 

extraction by enhancing the performance of the backbone 

network. By employing depthwise separable convolution, the 

model significantly reduces the parameter count needed for 

convolution operations. The proposed method reduces 

computational complexity, achieving a mAP of 95.6% with 

fewer parameters and computational effort compared to other 

models. These results demonstrate that the algorithm 

surpasses existing models and meets the demands of traffic 

scene detection. 
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