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Abstract—Alzheimer’s disease is a progressive neurodegener-
ative disorder that gradually deprives the patient of cognitive
function and can end in death. With the advancement of tech-
nology today, it is possible to detect Alzheimer’s disease through
Magnetic Resonance Imaging (MRI) scans. With MRI tech-
nology and image recognition, early diagnosis of Alzheimer’s
disease can be performed automatically using machine learning.
Although machine learning has many advantages, currently,
deep learning is more widely applied because it has more
robust learning capabilities and is suitable for solving image
recognition problems. However, several challenges must be
faced to implement deep learning, such as the need for large
datasets, computing resources, and careful parameter setting
to prevent overfitting or underfitting. In responding to the
challenge of classifying Alzheimer’s disease using deep learning,
this study proposes the Convolutional Neural Network (CNN)
with the Residual Layer (ResNet-18) architecture. Transfer
learning from ImageNet and weighting the loss function are
then applied so that each class has a weight depending on
its size. It is proposed to overcome the need for a large and
balanced dataset. Furthermore, this study experimented with
changing the network activation function to a Mish activation
function. From the results of the tests, the model’s accuracy of
88.30% is produced using transfer learning, weighted loss, and
the Mish activation function. This accuracy is better than the
baseline model, which only gets an accuracy of 69.10%.

Index Terms—Alzheimer’s Disease, Residual Network, Trans-
fer Learning, Weighted Loss Function, Mish Activation.

I. INTRODUCTION

Ver time, human health inevitably declines, making

individuals susceptible to disease. One part of the body
that is particularly affected by aging is the brain, which
undergoes changes in intellectual function such as difficulty
with memory and slow decision-making [1]. Alzheimer’s
disease is a progressive neurodegenerative disorder that
gradually robs patients of their cognitive function and can
ultimately result in death [2]. This disease is a leading
cause of dementia among the elderly, with the majority of
those affected experiencing symptoms such as memory loss,
changes in personality, mood swings, and difficulty with
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social interactions [3], which can last for three to nine years
[4].

With the advancement of technology, it is now possible
to detect Alzheimer’s disease through Magnetic Resonance
Imaging (MRI) scans [5]. MRI is the preferred modality
for the diagnosis and monitoring of Alzheimer’s disease
progression [6]. Early diagnosis of Alzheimer’s disease can
be achieved using machine learning algorithms with MRI
scans. In some cases, machine learning can even outper-
form medical personnel in predicting Alzheimer’s disease,
highlighting the need for computer-based diagnostic research
[7]. Although machine learning has many advantages, it is
not suitable for image recognition. Deep learning, a popular
method for image recognition, offers stronger learning ca-
pabilities and is better suited to solving image recognition
problems [8]. Many deep learning methods, such as Convo-
lutional Neural Networks (CNN) and sparse autoencoder [9],
outperform machine learning methods in image recognition.
However, deep learning also poses some challenges, such as
the requirement for large amounts of training data, which
can be costly and ethically protected between organizations.
Furthermore, training deep learning networks with large
amounts of image data requires significant computational
resources, and deep networks require careful hyperparameter
settings to avoid overfitting or underfitting [10].

Numerous methods have been applied to detect the results
of MRI images using deep learning, such as transfer learning
and image augmentation [11], [12]. Other studies have also
investigated class imbalance by using a weighted loss on
the CNN architecture to reduce its effects on the dataset
[13]. Building on these previous works, the proposed study
utilizes a CNN model with Residual Neural Layers (ResNet),
Weighted Loss, and Transfer Learning to train a classification
model for Alzheimer’s disease using MRI data, with the aim
of classifying it into three classes.

II. RELATED WORK

In 2011, Lucas R. Trambaiolli et al. [14] conducted re-
search on the classification of Alzheimer’s disease using the
machine learning method of Support Vector Machine (SVM)
to differentiate between Alzheimer’s patients and controlled
patients. Their approach achieved an accuracy of 79.90% and
a sensitivity of 83.20%. This study suggested using more
data and reconsidering the parameters of the SVM classifier
to improve performance.

In 2017, Aly Valliani and Ameet Soni [11] researched the
classification of Alzheimer’s disease in a study titled "Deep
Residual Nets for Improved Alzheimer’s Diagnosis.” They
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focused on overcoming the problem of limited data to train
the CNN model. Therefore, they used the Deep Residual Nets
(ResNet) architecture, which had previously been trained
with the ImageNet dataset that contains large image data. The
results of this study indicated that the use of transfer learning
from ImageNet and augmentation can improve classification
accuracy. As a result, the model obtained a test accuracy of
81.30% for binary classification and 56.80% for multiclass
or 3-way classification. This result was better than the model
that did not use transfer learning and augmentation, which
produced an accuracy of 78.80% for binary classification and
56.10% for 3-way classification.

In 2018, Aderghal et al. [12] studied the classifica-
tion of Alzheimer’s disease in a paper titled “Classifica-
tion of Alzheimer’s Disease on Imaging Modalities with
Deep CNNs using Cross-Modal Transfer Learning.” The
researchers stated that public data on Alzheimer’s disease
is limited, leading to overfitting during training. Therefore,
they proposed using transfer learning from larger datasets
to improve classification accuracy. The results of this study
indicated that the use of transfer learning on the CNN
model can improve the model’s performance, reduce the
overfitting phenomenon, and increase classification accuracy.
Furthermore, the classification can be leveraged to perform
multi-instance learning on Alzheimer’s disease datasets to
localize the benign and malignant parts of the brain [27].

In 2017, Songqing Yue [13] conducted a study titled
“Imbalanced Malware Images Classification: a CNN-based
Approach.” According to this study, CNN classification
performance decreases when the dataset has an unbalanced
number of classes. To overcome this problem, the loss value
weighting in the last CNN layer is used. With this weighting,
the misclassification of the minority class will be minimized,
and the majority class’s weight will be reduced so that
there can be a balance among classes. Therefore, we employ
the weighting term on the loss function to detect minority
organelles [28].

In 2020, Krit Sriporn et al. [15] conducted a study ti-
tled ”Analyzing Lung Disease Using Highly Effective Deep
Learning Techniques.” This study used the Mish activation
function to replace the ReLLU activation function in several
well-known architectures, such as MobileNet, Densenet-121,
and Resnet-50. The Mish activation function is the current
state-of-the-art activation function. The analysis results found
that the Mish activation function can increase classification
accuracy to 98.88% from the model that does not use Mish
activation or the baseline model with an accuracy of 97.25

III. RESEARCH METHOD AND MATERIALS
A. Deep Residual Network

According to Kaiming He [16], the deeper the neural
network structure, the more difficult it becomes to learn.
However, the Residual Neural Network (ResNet) provides a
residual learning framework to simplify the training process
even if a deep network structure is used. ResNet explicitly
reformulates the network layer into residual learning func-
tions that lead to the input layer. As the deeper layers of
the network begin to converge, degradation problems arise.
As the network depth increases, the accuracy saturates and
then rapidly decreases. The degradation can be caused by

vanishing gradients or overfitting as more layers are included
in the model, which leads to higher training error. The
architectural types of ResNet are distinguished by the number
of layers in the network. The architectures used in testing for
the ILSVRC competition are ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and ResNet-152.

B. Weighted Cross Entropy Loss

Cross Entropy is a measure in the field of information the-
ory, which builds on entropy and is typically used to calculate
the difference between two probability distributions. It is
often associated with and mistaken for logistic loss, which is
commonly referred to as log loss. While these two measures
come from different sources, they both calculate the same
quantity when used as a loss function for a classification
model, and can be used interchangeably [17]. The formula
for cross entropy loss can be seen in Equation 1 below.

M
- Zyo.c 1Og(Po.c) (1)
c=1

Where M is the number of existing classes. y,. is a
binary indicator (0 or 1) if the class c label is the correct
classification for the sample o, and p(o.c) is the predicted
probability sample o from class c. To address the class
imbalance in the dataset, Naceur et al. [18] suggest weighting
the loss function based on the number of samples from each
class. The formula for calculating the weighted cross-entropy
loss is shown in Equations 2 and 3 below.

M
- Z Wo.cyo.c 1Og(Po.c) (2)
c=1
Lc
o.c — 1—-—
Wo.c N 3)

Where W, . is the specific weight for each class c. z. is
the number of samples in class c, and N is the total of all
samples from all classes.

C. Proposed Method

Figure 1 shows that we utilized the main component
of the ResNet architecture for the training process, with
modifications. Specifically, we altered the activation function
in the last residual block before the pooling process. We
replaced the default ReLLU activation function of the ResNet
architecture with the Mish Activation Function. Mish is a
non-monotonic activation function that is smooth, continu-
ous, and self-regularized, inspired by the Swish Activation
Function. Mish employs the Self-Gating property, where the
non-modulated input is multiplied by the output of the non-
linear function of the input [19]. Equation 4 below displays
the formula for the Mish Activation function.

f(z) = ztanh(softplus(x)) = z.tanh(in(l +€%)) @)
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Fig. 1: An Overview of our approach

D. Data Acquisition and Preprocessing

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) [21]. The ADNI was
launched in 2003 as a public-private partnership led by
Principal Investigator Michael W. Weiner. MD. The primary
goal of ADNI is to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). These imaging data were
collected from 306 ADNI participants, including 133 with
mild cognitive impairment (MCI), 58 with Alzheimer’s dis-
ease (AD), and 115 with normal controls (NC). Each image
has the dimension of 256 x 256 x 256, then divided into 256
slices.

(b)

Fig. 2: Comparison between unpreprocessed and prepro-
cessed data sample: (a) Unpreprocessed Data. (b) Prepro-
cessed Data

(b) ©)

Fig. 3: Preprocessed dataset samples : (a) AD Sample. (b)
CN Sample. (c) MCI Sample

The dataset obtained is in the form of 3-dimensional
images in nifti format. Before it can be used for training,
preprocessing is necessary. The image data is first segmented
to remove the skull and other parts of the head, leaving only
the brain. This segmentation is essential to ensure that the
model focuses solely on the brain. The DeepBrain library
[22] is used for this purpose. After segmentation, the 3-
dimensional images are sliced into two dimensions using
the med2image library [23] to be used in network training.
The difference between the image data before and after
preprocessing can be observed in Figure 2.

Furthermore, the preprocessing results for each class can
be seen in Figure 3. Figures 2 and 3 demonstrate that the
preprocessed image data has brighter and sharper colors.
Subsequently, the preprocessed dataset is divided into train-
ing, validation, and test data. This dataset division process
uses K-Fold with K totaling 5. First, the dataset is split into
two parts with 20% test data and 80% training data. The
80% training data is further divided into 80% training data
and 20% validation data.

IV. RESULT AND DISCUSSION
A. ResNet Architecture Comparison

The capacity of a neural network to learn is determined
by its architecture. Thus, an appropriate architecture allows
the network model to learn data patterns better. The testing
scenario for the model’s architecture can be seen in Figure
4 below.

ResNet architecture comparison

0,6

0,4
m Accuracy

0,2

0

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

Fig. 4: ResNet architecture comparison by total layers

The results of the architecture tests on the accuracy of
the testing data show that as the network layer gets deeper,
the accuracy tends to decrease, although the decrease is not
significant. This is because of overfitting, as the architecture
becomes increasingly complex while the size and variation of
the training dataset remain the same, causing the accuracy to
decrease. The results of this test indicate that the ResNet-18
architecture performs better in this study.

B. Optimizer Comparison

The optimization algorithm, or optimizer, was tested three
times using Stochastic Gradient Descent (SGD), Root Mean
Square Propagation (RMSprop), and Adam Optimizer. For
the SGD optimization, we set the learning rate parameter to
0.001 and the momentum parameter to 0.9. For RMSprop
optimization, we initialized the learning rate parameter to
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0.01, alpha to 0.99, epsilon to 1e-08, and zero weight decay
and momentum. Finally, we used a learning rate of 0.001, a
beta of 0.9-0.999, epsilon of 1e-08, and zero weight decay
for Adam optimization.

Optimizer comparison

m Accuracy

SGD RMSprop Adam

Fig. 5: Optimizer comparison between SGD, RMSprop, and
Adam

The tests shown in Figure 5 indicate that the SGD op-
timization algorithm performs the best compared to other
optimization algorithms on the test data. However, for the
validation data, the highest accuracy is obtained by the Adam
optimization algorithm. Since the reference for this study was
the test data, SGD will be used as the optimization algorithm
in the next test.

C. Weighted Loss Function

The accuracy and loss results of the class weighting test
can be seen in Figures 6 and 7 respectively. The results
show that the network model with class weighting in the
loss function has better accuracy and lower loss values than
the network model without class weighting. This indicates
that the class weighting technique effectively handles the
problem of imbalanced datasets, resulting in better classifica-
tion performance. Therefore, in the final test, the ResNet-18
architecture with class weighting in the loss function using
the SGD optimizer will be used for evaluation.

Weighted loss precision comparison

m Baseline (w/o Weighted Loss)
0,4 Weighted Loss

AD CN MCI

Fig. 6: Comparison between baseline and weighted loss
usage on AD, CN, and MCI classes in terms of precision

Weighted loss recall comparison

m Baseline (w/o Weighted Loss)
0,4 Weighted Loss

AD CN MCI

Fig. 7. Comparison between baseline and weighted loss
usage on AD, CN, and MCI classes in terms of recall

The results of the tests in Figures 6 and 7 show that
applying class weighting results in better performance. The
increased precision values indicate that the model can better
distinguish between AD and CN classes. The F1 score
also shows that the number of correct predictions in each
class increases, indicating that class weighting improves the
model’s classification performance.

D. Transfer Learning

The results of the tests shown in Figure 8 and 9 in-
dicate that using transfer learning with pre-trained models
can improve classification performance. The accuracy, pre-
cision, recall, and F1 score values are higher than when
training from scratch. This indicates that the model can
better recognize AD and CN classes, which is important in
diagnosing Alzheimer’s disease. Therefore, transfer learning
can be considered as an effective technique in building neural
network models for medical image classification.

Transfer learning precision comparison

08
0,6 m Baseline (w/o transfer

learning)
0,4 Transfer Learning

0,2

AD CN MCI

Fig. 8: Comparison between baseline and transfer learning
usage on AD, CN, and MCI classes in terms of precision

Transfer learning recall comparison

0,6 m Baseline (w/o transfer

learning)
04 Transfer Learning

AD CN MCI

Fig. 9: Comparison between baseline and transfer learning
usage on AD, CN, and MCI classes in terms of recall
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The results of the tests carried out in Figure 8 and 9
above show that transfer learning significantly increases the
accuracy, precision, recall, and F1 score obtained.

E. Mish Activation

In this section, a test is performed by changing the activa-
tion function. The ReLLU function used previously is replaced
with the Mish function. The network layer whose activation
function is changed is divided into several conditions. The
first change is applied to the last convolution layer before
entering the fully connected layer. The second change is
applied to all activation functions in the network. These two
conditions will be compared with the initial architecture that
uses the ReLU activation function as the baseline condition.
The scenario for testing the effect of using the Mish activa-
tion function can be seen in Figures 10 and 11 below.

Mish Activation precision comparison
0,95

0,9
0,85

OVS I I
0,75

Fig. 10: Comparison between baseline and mish activation
usage on AD, CN, and MCI classes in terms of precision

m Baseline (w/o mish

activation)
Mish (last layer)

m Mish (all layer)

Mish Activation recall comparison

0,85
0,8
0,75
0,7

Fig. 11: Comparison between baseline and mish activation
usage on AD, CN, and MCI classes in terms of recall

m Baseline (w/o mish

activation)
Mish (last layer)

m Mish (all layer)

o

The results shown in Figure 10 and 11 above indicate
that the model combining weighted loss and transfer learning
with the Mish activation function on the last layer performs
better than the others in terms of precision. This means that
the model with the Mish activation function in the network’s
last layer improves the precision of the minority classes of
the AD and CN class.

FE. Best Scenario Result

For the best scenario, we have chosen the pre-trained
ResNet-18 model with Weighted Loss and Mish Activation
on the last layer of ResNet-18. Meanwhile, the baseline
model is vanilla ResNet-18 without Weighted Loss and Mish
activation. To comprehensively evaluate this scenario, we

have used the confusion matrix of the baseline and best
scenario model, as well as Grad-CAM, to present the results.

AD | CN | mcI 0
AD | 47 | 0 | 340
CN | 8 | 174 | 608
MCl | 17 | 38
1000

Fig. 12: Baseline Model’s Confusion Matrix

AD | CN | mCI 0
AD | 345 | 17 | 25
CN | 9 14
MCl | 42 | 133
1000

Fig. 13: Best Scenario’s Confusion Matrix

The confusion matrix consists of four types of values: True
Positive (TP), False Positive (FP), False Negative (FN), and
True Negative (TN). TP or TN represents the number of
correctly classified positive or negative data, while FP and
FN represent the number of misclassified data [20]. As shown
in Figure 13, the best scenario model can accurately detect
each label in 2159 test images. In comparison, as shown in
Figure 12, most of the data is classified as the MCI class.
Most of the misclassified data occurred for the MCI label
because it is biased towards the other two classes, which
increases the challenges [21]. However, the proposed model
detects more than 80% of MCI images correctly.

Precision of baseline vs best scenario model

0,8

0,6
m Baseline

0,4 Best scenario

0,2

AD CN MCI

Fig. 14: Comparison between baseline and best scenario on
AD, CN, and MCI classes in terms of precision
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Recall of baseline vs best scenario model

0,8

0,6

0,4

0,2

0
CN MCI

AD

m Baseline

Best scenario

Fig. 15: Comparison between baseline and best scenario on
AD, CN, and MCI classes in terms of recall

Figure 14 shows the precision of the baseline and the best
scenario model classification result. Significant increases in
precision are achieved in the minority classes of AD and CN
detection. It means that the best scenario model can mostly
classify input images into the correct class, even though there
is an insignificant decrease in the majority class of MCIL
Figure 15 shows a significant increase in recall for all classes,
with particular attention to the MCI class, which achieved a
considerable increase in recall compared to the baseline. It
means that the dominance of MCI is reduced by minimizing
the incorrect classification of AD and CN as MCL

(©

Fig. 16: Model visualization with Grad-CAM :
Sample. (b) CN Sample. (c) MCI Sample

(a) AD

Figure 16 presents a visual explanation of the classification
results using Grad-CAM, which is used to check the areas
of the brain that the model focuses on during classification.
Grad-CAM, which stands for Gradient-weighted Class Ac-
tivation Mapping, produces a coarse localization map high-
lighting the important regions in the image for predicting the
concept by using the gradients of any target concept flowing
into the final convolutional layer [24]. In this case, the focus
area of classification in brain images shows the exact location
in each class because the characteristics of each class can be
in the same part of the brain. For instance, the model in the
figure above can focus on three brain areas in classifying
Alzheimer’s disease, namely the hippocampus, ventricles,
and cortex, which are the locations of the most common
symptoms of Alzheimer’s disease [25]. Therefore, the model
can recognize and classify Alzheimer’s disease accurately.
Grad-CAM is typically used to distinguish between different
objects, but in this study, it helps to identify specific brain
areas and their importance in the classification process.

G. Comparison with previous study

TABLE I: Comparison with previous study

Author Architecture Accuracy

Trambaiolli et. | Support Vector Machine | 79.90% (multi-

al.. 2011 (SVM) class)

Valliani. 2017 ResNet-18 + Pretrain + | 56.80%

augmentation (multiclass).

and  81.30%
(binary)

Acharya et. al. | VGG-16. ResNet-50. | 75.25%

2021 Modified AlexNet (ResNet-50).
85.07% (VGG-
16).  95.70%
(Alexnet)
(multiclass)
88.30% (multi-
class)

Proposed
method

ResNet-18 + Weighted
Loss + Transfer Learning
+ Mish Activation

The research conducted by Trambaiolli et al. [14] was
used to compare experimental results between traditional
machine learning and deep learning. Moreover, we managed
to achieve a test accuracy of 79.90%. Although the proposed
research has succeeded in providing higher test accuracy,
the data used is not the same. Then, the research conducted
by Acharya et al. [26] used three models, namely VGG-
16, ResNet-50, and Modified AlexNet, with an accuracy of
85.07%, 75.25%, and 95.70%, respectively. The proposed
research outperforms two out of three architectures which
are VGG-16 and ResNet-50. The AlexNet architecture gets
a higher accuracy by making modifications such as using
only two of the five convolution layers and the Adam
optimizer. This study also uses a different dataset contained
in the Kaggle repository. Valliani’s research [11], which
used ResNet-18 enhanced by pretraining and augmentation,
achieved 56.80% accuracy for multiclass and 81.30% for
binary classification. The dataset and model settings used
are the same as the proposed research. Thus, using weighted
loss and Mish activation improves the model performance.

V. CONCLUSION

In this study, we were able to classify AD, CN, and MCI
data with an accuracy of 88.30%, and precision of 90% and
93% for AD and CN, respectively. Interestingly, increasing
the number of layers in the ResNet network did not improve
the model’s performance, and even slightly lowered the
accuracy. This can be attributed to the small amount of data
used, with only 10,794 images extracted from 306 subjects.
Using weighted loss, transfer learning, and Mish activation
function individually in the network model improved the
model’s performance by increasing the precision of the AD
and CN classes. However, when combining transfer learning
with weighted loss and Mish activation function, there was
no significant increase in accuracy due to the different
modalities between MRI and ImageNet.
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