

Abstract— Cloud computing platforms like OpenStack use

orchestration as a crucial component in the deployment and

administration of cloud services. For the deployment and

management of virtualized resources, these platforms mainly

rely on orchestration techniques. Cloud orchestration services

like Service Function Chaining (SFC) have benefited from

lower costs and increased scalability for cloud computing

platforms thanks to the introduction of technologies like

Software-Defined Networking (SDN) and Network Function

Virtualization (NFV). The use of gRPC APIs and an SDN

switch with P4 support is described in this research as an

innovative method for enhancing SFC orchestration service in

OpenStack computing platforms. The proposed approach uses

a P4 enabled SDN switch and gRPC APIs to enhance network

performance in data plane communication with the underlying

infrastructure and performance in terms of service creation

time between the SFC orchestration services. Our evaluation's

findings demonstrate that this strategy greatly boosts the

orchestration service's performance, making it more

appropriate for usage in extensive cloud-based deployments.

Additionally, the possibility of combining gRPC APIs and P4

switch to improve the efficiency and flexibility of orchestration

service in cloud computing platforms is demonstrated by the

performance analysis of the proposed approach on numerous

platforms across diverse use cases.

Index Terms— GRPC, Orchestration, OpenStack, P4, REST.

I. INTRODUCTION

loud computing platforms are utilized for offering

infrastructure-as-a-service (IaaS) and platform-as-a-

service (PaaS) capabilities. These platforms

empower cloud service providers to efficiently create and

oversee virtual machine (VM) instances, storage, and

networking resources within a cloud environment [1].

Through the provision of Application Programming

Interfaces (APIs) and Graphical User Interfaces (GUIs),

users are enabled to automate and control the process of

creating and managing cloud resources. The Software-

Defined Networking (SDN) architecture separates the

Manuscript received February 22, 2023; revised July 19, 2023.

Hari Krishna S M is an Assistant Professor and Research Scholar,

Department of Computer Science and Engineering, M S Ramaiah

University of Applied Sciences, Bengaluru, India (corresponding author,

phone: +918553935263, E-Mail: hk8892316082@gmail.com).

Rinki Sharma is a Professor and Head of the Department of Computer

Science and Engineering, M S Ramaiah University of Applied Sciences,

Bengaluru, India; (E-Mail: rinki.cs.et@msruas.ac.in).

control plane and data plane in a network. SDN aims to

deliver a highly flexible software-driven network that

supports dynamic and high-bandwidth applications, such as

cloud computing, while ensuring superior performance and

minimal overhead [2]. Network functions virtualization

(NFV) enhances networking flexibility and agility by

enabling the implementation of network functions in

software, which can run on standard servers instead of

relying on specialized hardware [3]. The combination of

cloud computing platforms and technologies like SDN and

NFV enables the establishment of more adaptable and agile

networking in modern data centers and cloud environments.

This empowers organizations to create and manage their

networking resources swiftly and easily.

A. SFC Orchestration on SDN and NFV Platform

The effective deployment of infrastructure or a platform

as a service in a cloud computing environment like

OpenStack [4] relies heavily on the concept of Service

Function Chaining (SFC) orchestration. SFC orchestration

utilizes the combined power of SDN and NFV technologies

to construct and manage intricate networking and computing

environments [5]. NFV simplifies the deployment and

configuration of instances by virtualizing network functions.

On the other hand, SDN, a networking architecture,

decouples the control and data plane, enabling the

implementation of complex SFC. Through well-defined

SDN APIs, the SDN controller acts as an abstraction layer

between the control and data plane. The utilization of both

SDN and NFV technologies contributes to enhancing the

flexibility and scalability of SFC orchestration, enabling

more efficient management of resources.

B. Components of SFC orchestration in OpenStack

Within the context of SFC orchestration in OpenStack,

two crucial components are Open vSwitch (OVS) [6] and a

REST (Representational State Transfer) API [7]. To execute

the intended SFC, OVS is crucial in the creation and

management of virtual switches. On the other hand, the

REST API enables programmatic access to the functionality

of the OVS-based network while facilitating communication

between the key orchestration components. One of the most

effective OpenFlow implementations is OVS, which is well

known for this. In many different scenarios, including

servers, hypervisors, and containers, it is widely used to

provide virtual networking. OVS performs the function of a

virtual switch for the installation of virtual networking in

Hari Krishna S. M, Rinki Sharma

Improving Orchestration Service Using gRPC

API and P4-Enabled SDN Switch in Cloud

Computing Platform: An OpenStack Case

C

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

mailto:hk8892316082@gmail.com
mailto:rinki.cs.et@msruas.ac.in

cloud computing environments like OpenStack. By utilizing

the OVS and REST APIs within OpenStack's Neutron

networking service, users can create VM instances and other

resources while enabling seamless communication between

these components [8].

C. Advancing OpenFlow to P4

Due to its drawbacks, such as fixed header fields and the

requirement to implement a newer version of the protocol,

the OpenFlow protocol has drawn criticism. Additionally,

the number of research contributions aimed at enhancing

OpenFlow has decreased because of the advent of the

Domain Specific Language (DSL) known as Programming

Protocol-Independent Packet Processors (P4) [9]. P4 is

becoming more popular as a competitive substitute,

especially in the field of programmable data planes [10].

Through capabilities like customization, stateful packet

processing, high programmability, and an efficient method

for introducing new protocols from SDN controllers to

switches [11], it provides more flexibility. The growing

popularity of P4 signifies its potential to address the

shortcomings of OpenFlow and provide advanced

capabilities for network programming.

D. Contributions of the Paper

The performance of REST API and OVS in OpenStack

cloud environments has raised concerns, especially when

deploying services like IaaS. However, the evolution of

networking components and APIs within OpenStack

indicates that integrating P4-based SDN solutions and gRPC

APIs could significantly enhance the performance of cloud-

based connectivity services. P4 offers greater

programmability and flexibility compared to OVS, enabling

more efficient and advanced network management. It can be

leveraged to implement advanced networking features and

achieve high-speed packet processing. On the other hand,

gRPC provides superior performance and efficient data

interchange, making it particularly valuable for building

high-performance, low-latency services.

The primary focus of this paper is to address the following

objectives:

1. Enhancing the network performance of the data

plane in SDN-enabled cloud computing platforms,

such as OpenStack, by utilizing a P4 software

switch.

2. Integrating gRPC API with the P4-based solution to

improve the throughput of SFC orchestration,

specifically reducing service creation time and

enabling faster orchestration.

3. Developing SFC use cases and implementing SFC

orchestration platforms using different

combinations, including REST API with OVS,

gRPC API with P4, REST API with P4, and gRPC

API with OVS.

This paper presents a performance analysis of an SFC

orchestration strategy developed using gRPC API and a P4-

enabled software switch within the OpenStack cloud

environment. To the best of our knowledge, this is the first

attempt to quantify the performance gains achieved through

SFC orchestration using gRPC API with P4-based SDN

switch solutions in OpenStack. The analysis aims to explore

the potential of gRPC API and P4 switch integration within

OpenStack, paving the way for the platform to evolve into

an integrated solution for NFV deployments at a production

level. This integration would contribute to achieving a fully-

fledged virtualized infrastructure management component.

E. Organization of the Paper

The rest of the paper is structured as follows: Section II

presents the related work, a brief background of

technologies and followed by related work with identified

research gaps. Section III describes the design of the

proposed orchestration strategy using gRPC API and P4

switch, including the procedure or algorithm used to

implement them. Section IV details the deployment

scenarios and subsequently covers the simulation results and

comparative analysis for orchestration time and network

performance. Section V concludes the paper by

summarizing the research findings and presenting proposed

future work.

II. BACKGROUND AND RELATED WORK

This section gives a brief explanation of the underlying

technologies before delving into a thorough analysis of

relevant research on the topic, as well as prior studies that

have addressed it. It also identifies any research gaps that

need to be filled.

A. Background

Open vSwitch (OVS): OVS is an open-source software

switch that is adaptable and scalable and may be utilized in a

variety of settings. Numerous technologies and protocols are

supported, including OpenFlow, which makes SDN

possible. OVS is a virtual switching system that has grown

in popularity in cloud environments and is widely used in

data centers across the world [12].

P4: P4 is a programming language used to define packet

processing in network devices. Its primary objective is to

offer a high-level language for flexible and programmable

packet processing pipelines. P4 has gained traction in

programmable networking and is utilized in diverse

environments such as data centers, service provider

networks, and enterprise networks [13].

OpenStack: OpenStack is an open-source platform for

building and managing cloud computing infrastructure.

Comprising several components, it provides IaaS

capabilities, including virtualization, storage, and

networking functionalities. OpenStack has gained

significant popularity and is adopted by various

organizations, including large enterprises, service providers,

and government agencies [14].

P4 Switch: P4 switches are network switches that can be

programmed using the P4 programming language. They

offer greater flexibility and dynamism compared to

traditional switches. P4 switches are widely employed in

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

different environments, including data centers, service

provider networks, and enterprise networks. They play a

crucial role in SDN and are often used alongside SDN

controllers to create highly programmable and flexible

networks [15].

gRPC: gRPC is a modern, high-performance Remote

Procedure Call framework that is open-source and platform-

agnostic. It combines efficient inter-process communication

with a simple, elegant design. The gRPC API enables

communication between clients and servers using HTTP/2

as the transport protocol. Protocol buffers, a high-

performance serialization mechanism, serve as the interface

definition language (IDL) for defining services and data

structures exchanged between the client and server [16].

B. Related Work

The discussion begins by focusing on the performance

evaluation of network virtualization in cloud computing

environments utilizing the OpenStack platform. Network

virtualization enables the creation of virtual network

infrastructure on top of a physical network, allowing for

isolated and shared virtual networks for multiple tenants or

users in the cloud. In a cloud computing system powered by

OpenStack, the performance evaluation of network

virtualization scenarios is presented in the research article

[17]. The study evaluates alternative virtual switch

implementations and looks at how different network

topologies affect performance.

In a different study [18], the authors do experiments to

evaluate the effectiveness of OpenStack's virtual

networking, specifically for applications involving NFV.

According to the findings, virtual networking in OpenStack

demonstrates positive performance traits, such as reduced

latencies and high throughput. The study also emphasizes

how virtual networking in OpenStack results in efficient use

of network resources and lessened network congestion.

Additionally, researchers [19] contend that incorporating

native SDN into OpenStack can improve the platform's

networking capabilities. Native SDN integration allows

advanced networking capabilities like load balancing and

Quality of Service (QoS) and promotes more effective use

of network resources. The authors assess the performance of

OpenStack with and without native SDN integration through

their evaluation, finding that native SDN integration results

in better network performance and less congestion.

Additionally, they discovered that native SDN integration

facilitates network management and configuration by

offering more precise control over network behavior.

The evaluation of network performance improvement

methods for cloud-native network functions (CNFs) is the

subject of another paper [20]. CNFs, or cloud network

functions, are software-based network services that are

implemented in cloud settings and include services like

firewalls, load balancers, and VPNs. The study investigates

several methods, including making use of multiple

processors (cores) for parallel processing, high-speed

networking interfaces, and offloading and batching to cut

down on packet processing overhead. The results show that

the performance of CNF is greatly enhanced by several

cores and fast networking interfaces. Depending on the

workload and system design, offloading and batching

strategies also show performance advantages. The research

provides several ways to improve CNF network

performance, with each method's success depending on

certain conditions and limitations.

Another study [21] investigates how using a high-

performance cloud infrastructure affects NFV performance.

The authors run tests to gauge NFV performance on a

powerful cloud platform designed for performance-critical

applications. The study contrasts the performance of NFV

on a high-performance cloud system with that of a regular

cloud system and finds that the high-performance cloud

environment exhibits noticeably increased performance. The

results demonstrate that resource-intensive applications or

those needing low latencies notably benefit from the high-

performance cloud infrastructure. According to the research,

using a high-performance cloud infrastructure can greatly

improve NFV performance, especially for applications that

require performance.

The survey report [11] gives a thorough summary of the

OpenFlow protocol and how SDN has progressed in favor of

more adaptable and programmable techniques like P4. The

authors examine numerous NFV, data center networking,

and IoT P4 applications and use cases within SDN. The

report summarizes the body of literature and provides

insightful analyses of the difficulties and possibilities for

further study. The authors also execute tests to assess the

effectiveness and performance of their suggested solution,

contrasting it with existing NFV implementation strategies.

For scholars and practitioners interested in the transition

from OpenFlow to P4 in SDN, this paper is a great resource.

The authors of the paper [22] talk about the drivers for

implementing hardware acceleration in NFV, highlighting

the demand for enhanced performance and scalability. To

offload packet processing work from the CPU, they discuss

their architecture and implementation, which makes use of

hardware acceleration technologies including FPGAs and

NPUs. Another investigation [23] contrasts several

orchestration techniques applied to the OpenStack cloud

computing infrastructure. The goal of the paper is to shed

light on the advantages and disadvantages of various

orchestration techniques, allowing readers to assess how

well they work in diverse environments or use cases.

An exploratory study assessing the design quality of REST

APIs in cloud computing is presented in the research on

cloud computing APIs in [24]. The authors evaluate the

design and point out any potential problems or areas that

may be improved.

Recently, [25] gave a thorough analysis of NFV and SFC

frameworks. The authors talk about the history and

inspiration behind NFV and SFC, describe the needs and

goals of these frameworks, and give an overview of the

current implementations, which include both closed-source

and open-source options. They highlight the utilization of

containerization and SDN in NFV and SFC, as well as well-

known open-source systems like OpenStack and ONOS.

The paper concludes by identifying open research

challenges in the field, such as better integration with cloud

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

and edge computing and the development of efficient

resource allocation algorithms.

C. Summary and Research Gaps in Existing Work

In the context of orchestration in cloud computing, there

are several research gaps that can be addressed:

1. P4-enabled SDN switch integration in cloud

computing platforms: Additional study is required

to examine the integration of P4-enabled SDN

switches, such as P4-based programmable data

planes, with cloud computing platforms like

OpenStack. By utilizing P4's skills for controlling

and processing network traffic, this research may

concentrate on improving network performance,

flexibility, and programmability.

2. Increasing REST API performance: REST APIs are

frequently used in cloud environments, but there is

little study on how to do so. Future research can

concentrate on increasing the throughput and

response time of REST APIs while considering

variables like network latency, scalability, and load

balancing strategies. This study has the potential to

boost the general effectiveness and responsiveness

of cloud-based services.

3. Exploration of alternatives to REST APIs: Research

may also investigate the viability of alternatives to

REST APIs as a replacement or addition in cloud

systems. Emerging technologies like gRPC, which

offer better performance and effective data

transmission, might be assessed as part of this

exploration. Comparing the functionality and

efficiency of various API solutions might shed light

on how well-suited they are to various cloud use

cases.

4. Addressing orchestration performance: The

evaluation points out a research hole about

improving orchestration performance, particularly

about cutting down on orchestration time. Future

research can concentrate on creating tactics and

algorithms to streamline the orchestration

procedure, cutting down on the amount of time

needed for service creation and deployment. This

study can help increase cloud orchestration

performance overall and resource management

efficiency.

The capabilities, performance, and scalability of REST APIs

and OVS in the OpenStack ecosystem can be improved by

filling in these research gaps. In the end, this will help meet

the changing demands of cloud computing by improving

administration and orchestration of cloud infrastructure.

III. DESIGN AND IMPLEMENTATION

A. Overview

Utilizing the gRPC API and a P4-based software switch,

the architecture depicted in Fig. 1 shows a high-level design

for implementing orchestration operations in the OpenStack

cloud computing platform.

Fig. 1. SFC Orchestration in SDN and NFV Platform

The OpenStack cloud computing platform serves as the

cornerstone of this architecture, offering the required

services and infrastructure for managing and running cloud

environments. Two essential elements, the gRPC API and a

P4-based software switch are integrated into this platform to

enable orchestration operations. As the communication

interface that allows for interaction and data exchange

between various system components, the gRPC API plays a

crucial role. It makes RPC between the various orchestration

entities effective and high performing. Another crucial

component of this architecture is the P4-based software

switch, which controls the virtualized networking features in

the OpenStack environment. To enable advanced

networking, it makes use of the adaptability and

programmability provided by P4, a domain-specific

language for packet processing.

By enhancing the orchestration processes within the

OpenStack cloud computing platform, the gRPC API and

the P4-based software switch enable greater performance,

flexibility, and programmability in managing virtualized

networks. To improve the orchestration capabilities in the

cloud environment, this architecture offers a combination of

the advantages of gRPC and P4 technologies.

When a cloud customer uploads their VM requirements via

the OpenStack dashboard, the process of deploying VMs in

an OpenStack environment gets started. The orchestrator

component, which oversees the deployment process, then

receives these requirements. The compute, network, image,

and identity services, as well as other services offered by the

OpenStack platform, are all in communication with the

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

orchestrator. Nova is the name of the main part of the

compute service. The orchestrator uses APIs made available

by Nova to get the data it needs from other services and

install the virtual machines on the cloud. To obtain network

information, the Nova component communicates with the

neutron-server component of the networking service.

Similarly, it retrieves image information from the glance-

repository component of the image service. The orchestrator

also requires authorization from the identity service

component called Keystone to access and authenticate each

service. Each of these services within OpenStack has its

own set of existing REST APIs and gRPC APIs, which are

used for inter-service communication. These APIs enable

seamless communication between the services and facilitate

the deployment of the virtual infrastructure within the cloud

platform. Once all the requirements are met and the

necessary information is obtained, OpenStack proceeds to

deploy the virtual infrastructure in the cloud platform based

on the user's specifications.

Fig. 2 illustrates a simple scenario depicting a deployed

single tenant virtual infrastructure with three VM Hosts. In

this scenario, two of the Hosts are implemented as VM

Hosts within the OpenStack cloud environment and are

interconnected. The third Host, referred to as the External

Host, is implemented as another VM located outside the

OpenStack cloud and is connected to the rest of the

infrastructure via a local area network (LAN).

Fig. 2. Single Tenet Virtual Infrastructure Connected using Virtual Switch

B. Virtual Network Infrastructure in OpenStack

OpenStack provides physical nodes and network nodes to

manage computing and networking resources. These can be

achieved by either web-based user interface or flexible API

designed based REST architecture. Fig. 3 illustrates a

typical deployment of nodes in OpenStack cloud. The

components are as follows:

i. Controller node: It is responsible for managing the

OpenStack components in the cloud platform.

ii. Network node: It is used to host networking services such

as internal connectivity for VM and external

connectivity for connecting to external network.

iii. Compute nodes: One of the core components of

OpenStack to execute the VMs.

iv. Storage nodes: It is used to store VM images and their

related data.

v. Management network: Controller nodes manage

OpenStack cloud services running in different nodes.

vi. Instance/Data network: It is used for connecting the

network and the computer nodes for deploying virtual

tenant networks with internal traffic and VM

connectivity to the cloud networking services running in

the network node.

vii. External network: It is used for enabling connectivity

outside the internal network.

Fig. 3. Deployment of Nodes in OpenStack

The Neutron component is essential to network management

in the OpenStack context. Neutron is made to provide users

and administrators with a versatile interface for managing

virtual networks. The hub of the Neutron component is the

Neutron server, which is installed on the controller node. It

supports the deployment of virtual network infrastructure in

a dispersed environment and maintains network information.

The management of multi-tenant networks across numerous

compute nodes is made possible by Neutron, enabling

seamless communication between VMs inside the

architecture. Neutron integrates with SDN technologies to

efficiently deliver and control network services. By offering

cutting-edge networking services and features, SDN

expands Neutron's capabilities. In the OpenStack

environment, Neutron and SDN allow effective and scalable

networking services.

C. Modification to Neutron using P4 Switch

The cloud user uses the OpenStack dashboard to create

VMs, networks, and subnetworks in the OpenStack

environment. The user can define the desired network and

subnet settings, choose from the available images

(Operating Systems), and describe the desired VM setup

using the dashboard. The OpenStack component Neutron

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

oversees conducting network-related operations. Neutron

generates a port on the designated subnet when constructing

a VM and connects the VM to that port. The network's

DHCP service then gives the VM a fixed IP address. Some

VM instances require external users to be able to access

them. This is accomplished by giving the VM a floating IP

address that permits external access. The network node is set

up with VM-specific forwarding rules to facilitate this. The

OpenFlow protocol is then used to push these rules to the

software switch, in this case the OVS.

Fig. 4. OpenFlow based Switch and Modified P4 Switch.

Fig. 4 shows how OpenFlow and a modified P4 method can

be combined in an SDN context. Although OpenFlow

allows for the dynamic addition of flow rules for network

traffic, its data plane capabilities are fixed. In contrast, the

P4 language allows for programmability of the SDN's data

plane, enabling customization of data plane protocols.

The proposed framework leverages a P4-enabled SDN

switch, which offers programmability to the data plane. It

exposes this programmability to the application plane

through gRPC APIs. This allows external applications to

interact with the dedicated data plane module via the gRPC

API provided by the SDN controller. It's worth mentioning

that the existing OVS, which is an OpenFlow-based switch,

has an API based on the REST architecture.

However, the proposed modification involves integrating P4

switches with external applications, enabling them to

interact with the data plane module using the gRPC API

provided by the SDN controller.

D. Integration and Implementation

To enable SFC orchestration using gRPC API and P4

switch in the OpenStack cloud computing platform, the

following algorithm outlines the necessary configuration

steps and workarounds for successful integration:

Step 1: Deploy the OpenStack infrastructure and its

components (Nova, Neutron, Keystone, Glance) in a virtual

environment.

Step 2: Configure the P4 switch by mapping IP addresses,

subnet masks, and default gateway settings to establish

connectivity with the deployed OpenStack servers.

Step 3: Install and configure the OVS with the appropriate

IP address and port settings to connect to the P4 switch.

Step 4: Install the gRPC library on the OpenStack server to

enable gRPC communication.

Step 5: Create gRPC services and configure the gRPC server

by defining the service address, service port, and gRPC

service proto file. This file generates the necessary support

files for the gRPC server and gRPC client.

Step 6: Create a gRPC client that can utilize the gRPC

services to create service functions with the required

parameters. Import the gRPC client library generated in step

5 for this purpose.

Step 7: Create a REST client that uses the existing

OpenStack native REST APIs to create service functions

with the necessary parameters.

Step 8: Create VMs using both the gRPC client (step 6) and

the REST client (step 7) on the OpenStack environment.

Test the connectivity between the VMs to ensure proper

integration.

Step 9: Deploy the SFC with the desired virtual network

topologies and configurations, leveraging the integrated

gRPC API and P4 switch.

Step 10: Monitor the performance of the P4 switch with

OVS and compare it with the performance of the gRPC-

based orchestration services and the REST-based

orchestration services in OpenStack.

By following these steps, the gRPC API and P4 switch can

be effectively integrated into the OpenStack environment,

providing enhanced functionality and performance for SFC

orchestration. It is crucial to carefully configure the

integration, considering compatibility and ensuring that the

right settings are applied to achieve optimal results within

the OpenStack cloud computing platform.

IV. PERFORMANCE EVALUATION

The performance evaluation of the implemented SFC

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

orchestration was conducted to assess two key aspects:

overall service orchestration time and network performance

with respect to the P4 switch. Additionally, a comparison

was made between the performance of the existing system

and the proposed solution.

1. Overall Service Orchestration Time: The length of

time required for the service functions to be

orchestrated within the SFC was measured and

contrasted between the current system and the

suggested solution. This comprises the time needed

for service function configuration, deployment, and

activation. Using the gRPC API and P4 switch, the

suggested method seeks to optimize and shorten the

total orchestration time.

2. Network Performance: Throughput, latency, and

packet loss were some of the metrics used to assess

the network's performance. To ascertain whether

the integration of the gRPC API and P4 switch had

any effect on network performance, the

performance of the proposed solution was

contrasted with that of the old system. This

assessment aids in determining how well the

suggested solution manages network traffic and

provides dependable connectivity.

3. Comparison of Performance: The effectiveness of

the current system and the suggested solution were

thoroughly compared. Analysis of variables such

overall service orchestration time, network

performance measurements. Comparing these

elements makes it feasible to spot any performance

enhancements or downsides made by the suggested

solution.

The performance evaluation sheds light on the advantages

and disadvantages of the suggested solution in comparison

to the current system. It helps assess whether faster service

orchestration and better network performance will result

from the combination of the gRPC API and P4 switch in the

OpenStack system. These findings aid in evaluating the

viability and efficacy of the suggested approach for SFC

orchestration on the OpenStack cloud computing platform.

A. Test Bed: Prerequisites and Simulation Parameters

The proposed orchestration model for the OpenStack

cloud computing server is tested using the following

parameters:

• Server image: Ubuntu 20 server

• Server image size: 1.45 GB

• RAM: 512 MB allocated per each server image

• Number of Virtual CPU (VCPU): 4

• OpenStack version: Wallaby

• OpenFlow enabled switch: OVS

• P4 software switch model: BMv2

• Network performance tool: iperf2

The system is deployed on a virtual machine (VM) with

Ubuntu 20 operating system, which has 12 GB RAM and

100 GB storage. The server image used is Ubuntu 20 server

with a size of 1.45 GB. Each server image is allocated 512

MB of RAM and has 4 virtual CPUs (VCPU) available.

The OpenStack version used for the deployment and testing

is Wallaby. The P4 software switch model chosen is BMv2,

which provides programmability to the SDN's data plane

and enables customization of data plane protocols.

For analyzing the network performance, the iperf2 tool is

utilized. This tool allows measuring the throughput and

performance of the network.

By conducting the testing and analysis with these

parameters, the proposed orchestration model can be

evaluated for its performance and functionality in the

OpenStack cloud computing environment.

B. Results: OVS and P4 Switch

The network performance of the OVS and P4 switch was

assessed by conducting experiments using the iperf2 tool.

The experiments focused on sending UDP packets and

evaluating the results for different scenarios involving

varying bandwidth allocation and session time. The findings

from these experiments are presented in Table I to Table IV.

The findings of the network performance analysis performed

on the OVS switch are presented in Table I: Network

Performance on OVS (UDP Packets, Varying Bandwidth

Allocation). The studies comprised delivering UDP packets

with changing bandwidth allotments while maintaining a

consistent session length.

The outcomes of the network performance assessment on

the P4 switch are shown in Table II: Network Performance

on P4 Switch (UDP Packets, Varying Bandwidth

Allocation). Similar to Table I, UDP packets were

transmitted with varied amounts of bandwidth while keeping

the session time constant.

The results of the network performance evaluation carried

out on the OVS switch are presented in Table III: Network

Performance on OVS (UDP Packets, Varying Session

Time). This time, the studies centered on transmitting UDP

packets while maintaining a steady bandwidth allotment.

The outcomes of the network performance analysis on the

P4 switch are shown in Table IV: Network Performance on

P4 Switch (UDP Packets, Varying Session Time). The tests

entailed delivering UDP packets with various session

lengths while keeping the given bandwidth constant.

These tables present valuable insights into the network

performance of both the OVS and P4 switch under different

scenarios, allowing for a comparison between the existing

system and the proposed solution.

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

Based on the results provided in the tables, here are some

insights:

Table I: Network Performance of OVS with Varying

Bandwidth

• As the allotted bandwidth increases from 10 Mbps to

100 Mbps, the achieved bandwidth (Bandwidth

Mbps) also increases accordingly.

• The amount of data transferred (Transfer Data GB)

increases with higher bandwidth allocations.

• Jitter remains relatively low across different

bandwidth allocations, indicating stable latency.

TABLE I

NETWORK PERFORMANCE OF OVS WITH VARYING BANDWIDTH

Time
Allotted

(Seconds)

Allotted
Bandwidth

(Mbps)

Bandwidth
(Mbps)

Transfer Data
(GB)

Jitter
(ms)

Datagrams
Sent (bytes)

Datagrams
Lost (bytes)

Packet Loss
(Percentage)

PDR (Packet
Delivery Ratio)

300 10 9.87 0.346 0.08 255102 2214 0.867888139 0.991321119

300 20 19.5 0.681 0.114 510206 12415 2.433330851 0.975666691

300 30 28.4 0.991 0.04 765307 41298 5.396265812 0.946037342

300 40 37.4 1.309 0.05 1020408 67017 6.567667051 0.934323329

300 50 46.5 1.62 0.037 1275511 89398 7.008798827 0.929912012

300 60 55.68 1.941 0.09 1530612 111159 7.262415295 0.927375847

300 70 64.79 2.259 0.08 1785714 134056 7.507159601 0.924928404

300 80 73.91 2.576 0.022 2040816 156953 7.690717831 0.923092822

300 90 83.03 2.894 0.106 2295918 179850 7.833485342 0.921665147

300 100 92.15 3.211 0.086 2551020 202747 7.947699352 0.920523006

TABLE II

NETWORK PERFORMANCE OF P4 ENABLED SWITCH WITH VARYING BANDWIDTH

Time

Allotted

(Seconds)

Allotted

Bandwidth

(Mbps)

Bandwidth

(Mbps)

Transfer Data

(GB)

Jitter

(ms)

Datagrams

Sent (bytes)

Datagrams

Lost (bytes)

Packet Loss

(Percentage)

PDR (Packet

Delivery Ratio)

300 10 9.89 0.345 0.088 255103 2720 1.066235991 0.98933764

300 20 19.7 0.688 0.097 510205 7037 1.379249517 0.986207505

300 30 29.7 1.04 0.083 765294 7050 0.921214592 0.990787854

300 40 40 1.4 0.082 1020409 961 0.094177923 0.999058221

300 50 50 1.75 0.036 1275511 247 0.019364788 0.999806352

300 60 60 2.101 0.041 1530610.4 232 0.015157352 0.999848426

300 70 70 2.453 0.029 1785712.4 198 0.011088012 0.99988912

300 80 80 2.805 0.017 2040814.4 151 0.007399007 0.99992601

300 90 90 3.157 0.005 2295916.4 136 0.005923561 0.999940764

300 100 100 3.51 0.03 2551018.4 120 0.004704004 0.99995296

TABLE III

NETWORK PERFORMANCE OF OVS WITH VARYING TIME

Time

Allotted

(Seconds)

Bandwidth

Allotted

(Mbps)

Bandwidth

Utilized

(Mbps)

Transfer Data

(GB)

Jitter

(ms)

Datagrams

Sent(bytes)

Datagrams

Lost(bytes)

Packet Loss

(Percentage)

PDR (Packet

Delivery Ratio)

300 100 95.7 3.34 0.0585 2550797 107679 4.221386492 0.957786

600 100 96.5 6.48 0.067 4908267 174957 3.564537137 0.964355

900 100 95.3 9.62 0.0755 7265737 242235 3.333935704 0.966661

1200 100 96.1 12.76 0.084 9623207 309513 3.216318635 0.967837

1500 100 95.9 15.9 0.0925 11980677 376791 3.144989219 0.96855

TABLE IV
NETWORK PERFORMANCE OF P4 ENABLED SWITCH WITH VARYING TIME

Time

Allotted

(Seconds)

Bandwidth

Allotted

(Mbps)

Bandwidth

Utilized

(Mbps)

Transfer Data

(GB)

Jitter

(ms)

Datagrams

Sent(bytes)

Datagrams

Lost(bytes)

Packet Loss

(Percentage)

PDR (Packet

Delivery Ratio)

300 100 100 3.49 0.082 2551030 123 0.004821582 0.999952

600 100 100 6.73 0.036 3762446 238 0.006325672 0.999937

900 100 100 9.97 0.107 4973862 353 0.007097101 0.999929
1200 100 100 13.21 0.095 6185278 468 0.007566354 0.999924

1500 100 100 16.45 0.113 7396694 583 0.0078819 0.999921

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

• The packet loss percentage (Packet Loss Percentage)

increases slightly with higher bandwidth

allocations.

• The packet delivery ratio (PDR) decreases slightly as

the bandwidth allocation increases.

Table II: Network Performance of P4 Enabled Switch with

Varying Bandwidth

• Like Table I, increasing the allocated bandwidth

results in a higher achieved bandwidth.

• The amount of data transferred increases with higher

bandwidth allocations.

• Jitter values remain relatively low across different

bandwidth allocations.

• The packet loss percentage is extremely low for the

P4 enabled switch, indicating excellent packet

delivery.

• The packet delivery ratio remains consistently high

across different bandwidth allocations.

Table III: Network Performance of OVS with Varying Time

• As the allotted time increases, the bandwidth utilized

(Bandwidth Utilized Mbps) remains relatively

stable.

• The amount of data transferred increases with longer

time allocations.

• Jitter values remain relatively low for different time

allotments.

• The packet loss percentage is relatively low across

different time allotments.

• The packet delivery ratio remains consistently high

for OVS.

Table IV: Network Performance of P4 Enabled Switch with

Varying Time

• Like Table III, the bandwidth utilized remains

consistently high for different time allotments.

• The amount of data transferred increases with longer

time allocations.

• Jitter values remain relatively low for different time

allotments.

• The packet loss percentage is extremely low for the

P4 enabled switch, indicating excellent packet

delivery.

• The packet delivery ratio remains consistently high

across different time allotments.

Overall, the results indicate that both OVS and the P4

enabled switch to perform well in terms of network

performance. The P4 enabled switch demonstrates lower

packet loss and higher packet delivery ratios compared to

OVS, showcasing its superior performance. Additionally,

increasing the allocated bandwidth or time generally leads to

higher achieved bandwidth and data transfer, while

maintaining low jitter and packet loss.

C. Results: SFC Orchestration Time

The SFC orchestration time was measured for both the

existing and proposed solutions, considering different use

cases in the OpenStack cloud platform. The use cases

represent various scenarios of SFC deployments, and the

service functions were implemented accordingly. The use

cases are as follows:

• Use Case 1: Multiple Ubuntu servers in the same

network.

• Use Case 2: Ubuntu servers and Load balancer in the

same network.

• Use Case 3: Ubuntu servers, Load balancer, and Firewall

function in the same network.

• Use Case 4: Ubuntu servers, Load balancer, Firewall, and

DNS function in the same network.

• Use Case 5: Two Ubuntu servers, one Load balancer, two

private networks, two subnet allocations, and one

router.

• Use Case 6 and Use Case 7: Increased number of users

simultaneously requesting SFC request for Use Case 5.

Table V presents the results of the orchestration

performance for the developed use cases. The overall

orchestration time is calculated by noting the start time

when the client sends the request and the stop time when the

SFC request is successfully deployed, along with verifying

that all the instances have reached the 'ACTIVE' status. The

SFC orchestration time is determined by calculating the time

difference between the stop time and the start time. Table V

provides the gRPC and REST-based SFC orchestration time

for both the OVS and P4 platforms.

TABLE V

SFC ORCHESTRATION TIME

 OVS P4 Switch

Use Case
Number

REST-SFC
(seconds)

gRPC-
SFC

(seconds)

REST-SFC
(seconds)

gRPC-SFC

(seconds)

1 9.88 8.33 8.4 6.88

2 15.65 11.82 13.49 8.66
3 21.32 14.31 18.58 10.44

4 28.43 17.8 23.67 12.22

5 27.43 13.49 23.61 12.62
6 58.67 28.22 50.87 26.84

7 120.81 58.71 104.26 54.06

Based on the results provided in Table V, we can derive the

following insights:

1. Comparison between OVS and P4 Switch: Overall, the

P4 Switch platform shows better SFC orchestration

times compared to OVS. Across all use cases and

communication protocols (REST-SFC and gRPC-SFC),

the P4 Switch consistently demonstrates lower

orchestration times. This suggests that the P4 Switch

platform offers better performance and efficiency in

SFC orchestration compared to OVS.

2. Impact of Use Case Complexity: The SFC

orchestration time rises along with the use case

complexity. The orchestration times for various use

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

cases within each platform and communication

protocol can be compared to see this. The orchestration

time for Use Case 1 is the shortest and Use Case 7 is

the longest. This demonstrates that the quantity,

complexity, and configuration of service functions

affect the orchestration time.

3. Comparison between REST-SFC and gRPC-SFC: In

comparison to REST-SFC, the gRPC-SFC

communication protocol often shows faster

orchestration times. Comparing the orchestration

timings for the same use case and platform using

various communication protocols will show this.

According to the difference in orchestration times,

gRPC-SFC appears to provide a more effective and

quick communication method for SFC orchestration.

4. Scalability Considerations: Use Cases 6 and 7, where

there are more simultaneous SFC requests, have much

longer orchestration durations than the previous use

cases. This emphasizes how crucial it is for SFC

orchestration systems to take scalability and resource

allocation into account. The orchestration time may be

impacted when the number of requests and concurrent

users rise, which could result in performance issues.

To develop and execute SFC orchestration systems with the

best performance and efficiency, it is important to carefully

consider the platform, communication protocol, and use case

complexity. The results show SFC orchestration time for

different combinations of platforms. The primary results

show that proposed solution (gRPC based orchestration on

P4 switch) is better than existing solution (REST based

orchestration using OVS).

D. Network Performance Analysis: OVS and P4 Switch

The network performance is compared in terms of

bandwidth utilized, transfer data, and packet delivery ratio

(PDR). The performance analysis is generated using results

obtained from Table I-IV.

Fig. 5 depicts the bandwidth utilization in both the OVS and

P4 platforms when sending UDP packets for a duration of

300 seconds with varying allocated bandwidth. The analysis

reveals that the P4 switch outperforms OVS in terms of

bandwidth utilization. Particularly, as the allocated

bandwidth size increases, the P4 switch demonstrates the

highest utilization. Similarly, Fig. 6 illustrates the bandwidth

utilization with a fixed allocation of 100 Mbps and varying

time. The results demonstrate that the performance of the P4

switch surpasses that of OVS significantly in terms of

bandwidth utilization.

Fig. 7 and Fig. 8 display the transfer data for varying

bandwidth and time in both the OVS and P4 platforms.

Initially, the bandwidth was kept constant at 300 Mbps, and

by varying the time, it was observed that the P4 switch

provided marginally higher transfer data compared to OVS.

On the other hand, when the bandwidth allocation size was

varied while keeping the time constant, it was evident that

the P4 switch consistently outperformed OVS as the

bandwidth increased.

Fig. 5. Bandwidth Utilization with Varying Bandwidth Allotted

Fig. 6. Bandwidth Utilization with Varying Time

Fig 7. Transfer Data with Varying Bandwidth Allotted

Fig. 8. Transfer Data with Varying Time

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

PDR measures the percentage of successfully delivered

packets to their intended destination. A higher PDR

indicates better network performance and effective data

transmission. Fig. 9 and Fig. 10 illustrate the PDR for

sending UDP packets in the OVS and P4 platforms.

Whether it is in varying time or varying allocated

bandwidth, the P4 switch demonstrates a superior PDR

compared to OVS, indicating improved network

performance and reliable packet delivery.

E. SFC Orchestration Performance Analysis

SFC orchestration systems play a crucial role in rapidly

creating and managing services in an efficient manner. The

time required for creating a service in systems is known as

Fig. 9. Packet Delivery Ratio with Varying Bandwidth Allotted

Fig. 10. Packet Delivery Ratio with Varying Time

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

service creation time. In Fig. 11, the service creation time is

depicted for each of the developed SFC use cases, utilizing

four different platforms. These platforms are categorized as

follows:

• Platform 1: REST-based SFC Orchestration using OVS

(Existing Solution).

• Platform 2: gRPC-based SFC Orchestration using OVS.

Fig. 11. Performance of Service Creation Time in SFC Orchestration for Developed Use Cases

Fig. 12. Performance of Service Creation Time with SFC Orchestration Platforms

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

• Platform 3: REST-based SFC Orchestration using P4

switch.

• Platform 4: gRPC-based SFC Orchestration using P4

switch.

The results presented in Fig. 11 indicate that the gRPC-

based SFC orchestration (platform 4) exhibits superior

service creation time compared to platforms 1, 2, and 3 (as

mentioned in Table V). To gain a better understanding of the

extent of improvement offered by the proposed solution, the

percentage improvement in service creation time is

calculated using the provided equation.

% Improvement = ((OT-NT)/OT) *100 (1)

By using equation (1) and the results from Table V, the

percentage of improvement in service creation time can be

calculated by comparing the old time (OT) and new time

(NT). The calculations yield the following results:

• In the OVS platform, gRPC-based SFC orchestration is

45.89% faster than REST-based SFC orchestration.

• In the P4 platform, gRPC-based SFC orchestration is

45.76% faster than REST-based SFC orchestration.

• REST-based SFC orchestration in the P4 platform is

13.93% faster than in the OVS platform.

• gRPC-based SFC orchestration in the P4 platform is

13.72% faster than in the OVS platform.

These percentages demonstrate the improvement in service

creation time achieved by the different orchestration

methods and platforms.

The results for the developed use cases are categorized

based on the number of services communicated in the SFC

request. They are divided into two groups: use case 1 to 4,

which represent SFC requests excluding network services,

and use case 5 to 7, which represent SFC requests including

network services. The classification of the results is shown

in Table VI.

TABLE VI

ORCHESTRATION TIME FOR SFC USE CASES

 OVS PLATFORM P4 Switch Platform

Use Case
Number

OVS-

REST

(seconds)

OVS-
gRPC

(seconds)

P4-REST
(seconds)

P4- gRPC

(seconds)

1 to 7 40.31 21.81 34.69 18.81

1 to 4 18.82 13.06 16.03 9.55

5 to 7 68.97 33.47 59.58 31.17

In summary, Table VI showcases the orchestration time for

different SFC use cases using both the OVS platform and

the P4 Switch platform.

1. Use Cases 1 to 7:

o In the OVS platform, the REST-based

SFC orchestration takes 40.31 seconds,

while the gRPC-based orchestration is

faster at 21.81 seconds.

o In the P4 Switch platform, the REST-

based SFC orchestration takes 34.69

seconds, while the gRPC-based

orchestration is even faster at 18.81

seconds.

2. Use Cases 1 to 4:

o When considering only the first four use

cases, the OVS platform with REST-based

orchestration takes 18.82 seconds,

whereas the gRPC-based orchestration

reduces the time to 13.06 seconds.

o Similarly, in the P4 Switch platform, the

REST-based orchestration takes 16.03

seconds, while the gRPC-based

orchestration achieves a faster time of

9.55 seconds.

3. Use Cases 5 to 7:

o Focusing on the last three use cases, the

OVS platform with REST-based

orchestration requires 68.97 seconds,

while the gRPC-based orchestration

decreases the time to 33.47 seconds.

o In the P4 Switch platform, the REST-

based orchestration takes 59.58 seconds,

and the gRPC-based orchestration further

improves the time to 31.17 seconds.

These results highlight that the gRPC-based SFC

orchestration performs better than the REST-based

orchestration for both OVS and P4 Switch platforms. The

P4 Switch platform shows improved orchestration times

compared to the OVS platform, regardless of the

orchestration method used.

Based on the provided information, the average

orchestration time for grouped SFC use cases is shown in

Fig. 12. Using equation (1), the average percentage

improvement in service creation time can be calculated. The

results are as follows:

• Excluding network services (Use Case 1-4):

o In the OVS platform, gRPC-based SFC

orchestration is 30.60% faster than REST-

based SFC orchestration.

o In the P4 platform, gRPC-based SFC

orchestration is 40.42% faster than REST-

based SFC orchestration.

o REST-based SFC orchestration in the P4

platform is 14.82% faster than the OVS

platform.

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

o gRPC-based SFC orchestration in the P4

platform is 26.87% faster than the OVS

platform.

• Including network services (Use Case 5-7):

o In the OVS platform, gRPC-based SFC

orchestration is 51.47% faster than REST-

based SFC orchestration.

o In the P4 platform, gRPC-based SFC

orchestration is 47.68% faster than REST-

based SFC orchestration.

o REST-based SFC orchestration in the P4

platform is 13.61% faster than the OVS

platform.

o gRPC-based SFC orchestration in the P4

platform is 6.87% faster than the OVS

platform.

The analysis concludes by highlighting the main findings of

the paper:

• Using the P4 switch, the network performance of

the data plane in the OpenStack network has

improved compared to OVS in terms of higher

bandwidth utilization, transfer data, and packet

delivery ratio.

• By utilizing P4 and gRPC API, the service creation

time is approximately 50% faster compared to

traditional orchestration using OVS and REST API

on the OpenStack platform.

• For SFC use cases:

o With P4 and gRPC API, SFC

orchestration including network

components is approximately 54.80%

faster than traditional orchestration using

OVS and REST API on the OpenStack

platform.

o Similarly, using P4 and gRPC API in SFC

orchestration excluding network

components is approximately 49.25%

faster than traditional orchestration using

OVS and REST API on the OpenStack

platform.

Considering all SFC use cases, the overall performance

indicates that gRPC-based SFC orchestration using the P4

switch is approximately 53.32% faster than REST-based

SFC orchestration using OVS.

V. CONCLUSION AND FUTURE WORK

This research paper introduced and evaluated the

utilization of gRPC API and P4 switch in SFC orchestration

within OpenStack. The findings demonstrate significant

enhancements in network performance and service creation

time. Specifically, the utilization of P4 switch resulted in a

notable 7% improvement in bandwidth utilization and a

corresponding 6% enhancement in packet delivery ratio

compared to OVS. Furthermore, the orchestration services

on the P4 platform exhibited a 13% improvement in creation

time for scenarios involving network services. The

combination of gRPC API and P4 switch outperformed the

REST API and OVS in terms of service creation time,

showcasing a remarkable 50% improvement. The study

concludes that both gRPC API and P4 switch offer superior

options for SFC orchestration in OpenStack. The gRPC API

enables faster and more efficient communication, while the

P4 switch enhances packet delivery. Incorporating the P4

switch with gRPC API into the orchestration strategy can

enhance communication in OpenStack, with a specific focus

on improving energy efficiency. The measures employed in

the SFC orchestration design using gRPC API with P4 can

also be adopted in other cloud orchestration systems to

enhance energy efficiency.

REFERENCES

[1] Carretero, J. and Blas, J.G., 2014. Introduction to cloud computing:
platforms and solutions. Cluster computing, 17(4), pp.1225-1229.

[2] Cox, J.H., Chung, J., Donovan, S., Ivey, J., Clark, R.J., Riley, G. and

Owen, H.L., 2017. Advancing software-defined networks: A survey.
IEEE Access, 5, pp.25487-25526.

[3] Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., De Turck, F. and

Boutaba, R., 2015. Network function virtualization: State-of-the-art
and research challenges. IEEE Communications surveys & tutorials,

18(1), pp.236-262.

[4] Sefraoui, O., Aissaoui, M. and Eleuldj, M., 2012. OpenStack: toward
an open-source solution for cloud computing. International Journal of

Computer Applications, 55(3), pp.38-42.

[5] Adoga, H.U. and Pezaros, D.P., 2022. Network Function
Virtualization and Service Function Chaining Frameworks: A

Comprehensive Review of Requirements, Objectives,

Implementations, and Open Research Challenges. Future Internet,
14(2), p.59.

[6] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J.,

Gross, J., Wang, A., Stringer, J., Shelar, P. and Amidon, K., 2015.
The Design and Implementation of Open {vSwitch}. In 12th USENIX

symposium on networked systems design and implementation (NSDI

15) (pp. 117-130)
[7] Petrillo, F., Merle, P., Moha, N. and Guéhéneuc, Y.G., 2016, October.

Are REST APIs for cloud computing well-designed? An exploratory

study. In International Conference on Service-Oriented Computing
(pp. 157-170). Springer, Cham.

[8] Kaur, K., Mangat, V. and Kumar, K., 2022. A review on Virtualized

Infrastructure Managers with management and orchestration features
in NFV architecture. Computer Networks, p.109281.

[9] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford,

J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G. and Walker,
D., 2014. P4: Programming protocol-independent packet processors.

ACM SIGCOMM Computer Communication Review, 44(3), pp.87-

95.
[10] da Costa Cordeiro, W.L., Marques, J.A. and Gaspary, L.P., 2017.

Data plane programmability beyond openflow: Opportunities and

challenges for network and service operations and management.
Journal of Network and Systems Management, 25(4), pp.784-818.

[11] Liatifis, A., Sarigiannidis, P., Argyriou, V. and Lagkas, T., 2022.

Advancing SDN: from OpenFlow to P4, a Survey. ACM Computing
Surveys (CSUR).

[12] Open vSwitch. (n.d.). Open vSwitch. [online] Available at:

https://www.openvswitch.org/ [Accessed 15 Jan 2023].
[13] P4 Language Consortium. (n.d.). P4 Language. [online] Available at:

https://p4.org/ [Accessed 15 Jan 2023].

[14] OpenStack Foundation. (n.d.). OpenStack: The open-source cloud
computing platform. [online] Available at:

https://www.openstack.org/ [Accessed 15 Jan 2023].

[15] P4.org. (n.d.). P4 Switch. [online] Available at: https://p4.org/p4-
switches/ [Accessed 15 Jan 2023].

[16] grpc.io. (n.d.). gRPC: A high-performance, open-source framework
for building remote procedure calls. [online] Available at:

https://grpc.io/ [Accessed 15 Jan 2023].

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

[17] Callegati, F., Cerroni, W., Contoli, C. and Santandrea, G., 2014,
October. Performance of Network Virtualization in cloud computing

infrastructures: The OpenStack case. In 2014 IEEE 3rd International

Conference on Cloud Networking (CloudNet) (pp. 132-137). IEEE.

[18] Callegati, F., Cerroni, W. and Contoli, C., 2016. Virtual networking

performance in openstack platform for network function

virtualization. Journal of Electrical and Computer Engineering, 2016.
[19] Foresta, F., Cerroni, W., Foschini, L., Davoli, G., Contoli, C.,

Corradi, A. and Callegati, F., 2018, May. Improving OpenStack

networking: Advantages and performance of native SDN integration.
In 2018 IEEE International Conference on Communications (ICC)

(pp. 1-6). IEEE.

[20] Huang, Y.X. and Chou, J., 2020. Evaluations of Network
Performance Enhancement on Cloud-native Network Function. In

Proceedings of the 2021 on Systems and Network Telemetry and

Analytics (pp. 3-8).
[21] Chung, W.C. and Wang, Y.H., 2022. The Effects of High-

Performance Cloud System for Network Function Virtualization.

Applied Sciences, 12(20), p.10315.
[22] Franco, D., Atutxa, A., Sasiain, J., Ollora, E., Higuero, M., Astorga, J.

and Jacob, E., 2022. Towards integrating hardware Data Plane

acceleration in Network Functions Virtualization. arXiv preprint

arXiv:2203.10920.

[23] Mandal, P. and Jain, R., 2019, December. Comparison of openstack

orchestration procedures. In 2019 International Conference on Smart
Applications, Communications and Networking (SmartNets) (pp. 1-

4). IEEE.
[24] Petrillo, F., Merle, P., Moha, N. and Guéhéneuc, Y.G., 2016, October.

Are REST APIs for cloud computing well-designed? An exploratory

study. In International Conference on Service-Oriented Computing
(pp. 157-170). Springer, Cham.

[25] Adoga, H.U. and Pezaros, D.P., 2022. Network Function

Virtualization and Service Function Chaining Frameworks: A
Comprehensive Review of Requirements, Objectives,

Implementations, and Open Research Challenges. Future Internet,

14(2), p.59.

IAENG International Journal of Computer Science, 50:3, IJCS_50_3_31

Volume 50, Issue 3: September 2023

__

