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Intriguing Relationships among Eisenstein Series,
Borewein’s Cubic Theta Functions, and the Class
One Infinite Series

Harekala Chandrashekara Vidya and Badanidiyoor Ashwath Rao*

Abstract—This article focuses on the application of the
Ramanujan-type Eisenstein series to the formation of numerous
differential identities. In this paper, utilizing Alaca’s (p,k)
parametrization, we explore a few additional interesting links
between Eisenstein Series and Borewein’s cubic theta functions.
Further, we build a set of higher-order nonlinear differential
equations that include Ramanujan’s function k(). In addition,
we formulate identities relating the Class one infinite series
and Ramanujan’s k-function, using the relationship derived
between Eisenstein and the Class one infinite series.

Index Terms—Elisenstein series, Dedekind »n-function, Cubic
theta functions, Continued fractions.

I. INTRODUCTION

Differential equations help solve many scientific, engi-
neering, medical and business problems. They are also used
to solve several problems in computational fluid dynamics
and thermodynamics. In the medical domain, the segmenta-
tion of medical images and optimal investment strategies
are developed using differential equations.  Differential
equations are also essential in computational mathematics.
Ramanujan [8] cited several theta function-based differen-
tial equations in his book. The importance of constructing
differential equations involving 7-functions and Eisenstein
series was emphasized by B. C. Berndt [4]. Ramanujan
stated several formulas involving k-functions on page 56
and other scattered places in his lost notebook [8] and further
expressed the Roger’s-Ramanujan continued fractions (,/q)
and r(g*) in terms of k-functions. In his lost notebook [8],
Ramanujan also devised formulas for relating the Class one
infinite series T%.(q), r = 1,2,...6 to the Eisenstein series
L,M, and N. E. X. M. Xia and O. X. M. Yao [12] used
computers to develop series relations involving cubic theta
functions based on Ramanujan’s elliptic function theory and
the (p, k)-parametrization due to Alaca et al. [1].
Motivated by their work, we devise an expression for the
Eisenstein series in terms of the classical Class one infinite
series. We use this expression to develop exciting equations
relating the Class one infinite series with k-functions. It
is interesting to note that in this article, the Ramanujan-
type Eisenstein series have been represented in terms of
the product of cubic theta functions without the aid of a
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computer. Section 2 is devoted to documenting some prelim-
inary findings that will aid in achieving the main objectives.
In section 3, using (p,k) parametrization, we generate a
few fascinating identities relating the Eisenstein series and
Borwein’s cubic theta functions. In Section 4, we develop
some remarkable first and second-order nonlinear differential
equations with the help of Eisenstein series of level 10
that involve Ramanujan’s k- functions. In the final section,
we formulate a relationship between the FEisenstein series
and the Class one infinite series. Further, employing the
developed identities, we generate new expressions between
Class one infinite series and Ramanujan’s k-functions.

II. PRILIMINARIES

Definition 2.1: [3]

Ramanujan, in his notebook [3, p.35], defined general
theta function as follows: For any complex ¢, a and b with
lab] < 1,

fab) = 3 @iy
= (—a;ab)oc (—b; ab) oo (ab; ab) .
where .
(@; @)oo == [J(1 —ag’), gl <1.
i=0

The following are the special cases of theta functions defined
by Ramanujan [3, p.35]:

olq) = fla0)= Y. ¢

i=—00

= (=4:¢")% (0% ¢*) o>
it 2. g2 50
0(@) = fla ) = 3 = D)
=0

(45 4%) o
f(=q) = f(=q,—¢*) = Z (—1)igi3i=1)/2
= (¢;9)o0 = ¢~ Y Hn(7),

where ¢ = €2™7. We denote f(—q") = f,.

J. M. Borewein and P. B. Borewein [6] recorded the
following two dimensional theta functions in their work
on a cubic counterpart of jacobi and a cubic analogue of
arithmetic geometric mean iteration of Legendre and Gauss:
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oo o0
Z Z qO¢2+0t/3-&-/327

a=—00 f=—00

o0 (o)
Z Z yafﬁqa%aﬁwz 7

a=—00 f=—00

o0 o0 112 1 1 1\2
c(q):= S 3 glots) Hets)(B+3)+B+3)7
a=—00 B=—00
where y = exp(2mi/3) and ¢ € C, the set of complex
numbers.

Also, note that

a(0) = 1,b(0) = 1,¢(0) = 1.

The (p,k) parametrization of theta functions was initially
defined by Alaca et al. [2] in their remarkable study. It
is beneficial, especially for establishing duplication and
triplication principles and obtaining a certain sum to product
identities. The definitions of these variables p and k are as
follows:

p=p(q) = 207
93 (d?)
h=Ha):= ©(q)

Lemma 2.1: [1] The demonstrated parametric representa-
tions of a(¢™), b(¢™), c(¢™)(m € 1,2,3,4,6,8,12), as well

as a(—q) and ¢(—q) in terms of the parameters p and k are
given by
a(—q) = (=2p* = 2p + 1)k,
a(g) = (p* +4p + 1)k,
a(¢®) = (p* +p+ 1k,
P2 +4p+ 1)k
o(g?) = %

+ 22/3(1-p) (1 =p)(24+p) (1+2p))'/*)k
3 )

2
—p* 4+ 2p+ 2)k
a(gt) = CE 2P H Dk 5 *

a(¢®) = (P°+p+1+42"3 ((1—p) (2+p)(14+2p))*/*)k
3 b
b(q) = 27131 = p)((1 — p)(2 + p) (1 + 2p))/3k,
b(q®) = 27%/3((1 = p)(2 + p)(1 + 2p))*/?k,
C(q6) _ (+p+1-2722((1=p)(2+p) (1+2p)*/ )k
] .

Definition 2.2: [7] Ramanujan recorded infinite series
known as Ramanujan-type Eisenstein series:

«
L(q) —1—2421f _
a=1 q
=1+ 24qd% > log(1—¢'), (1)
j=1

M(q)

For simplicity, we denote L(¢") = L,, and M (¢") = M,.

Lemma 2.2: [1] For the above specified Eisenstein series,
the representations in terms of the parameters p and %k are

given by
L(—q) — L(q) = —3(8p + 12p* + 6p° + p*)k2,
L(q) — 2L( 2) = —(1+ 14p(1 + p?) + 24p? + p*)k2,
L(q) — 3L(¢%) = —(1 + 8p(1 + p?) + 18p? + p*)k?,
L(q) — 4L(q*) = —(3 + 18p(1 + 2p) + 24p®)k?,
L(q) — 6L(¢%) = —(5 + 22p(1 + p?) + 36p* + 5p*)k?,
Li,o (q) — (L(—‘Ii;L(‘I)) — (5 T 3% + % + 11%) k‘2,

Lo (q‘3) _ (L(—q )4; L(q°)) _ (;szr 116 >k:2

Definition 2.3: [5] The Ramanujan’s function k(q) is
given by
k1(q )= r(q)r®(¢%)

H (1 qloj 9 (1 qIOJ 8)(1 q10g 2)(1 qIOJ 1)
(1 qlog 7 (1 quJ 6)(1 qloj 4)(1 q10] 3)7

where

[SUE

q

¢ g ¢ ¢
1 4141 1

r(q) ==

is known as the Roger’s-Ramanujan continued fraction.
Let y1¢9 be the logarithmic derivative of k1,

d
Y10 = y10(q) = qdquOle-

Definition 2.4: The Class one infinite series introduced by
Ramanujan in his lost notebook [8], is given by

T2l =1 + Z |: )Ql{qr(&g—l)

r(3r+1)
2

+(6r+1) q H. 2)

Ramanujan further expressed the above infinite series in
terms of the Ramanujan-type Eisenstein series for [ =
2,...,6. Also, B. C. Berndt [4] established the relation

Ts(q)
2 _ L(g), 3
(43 9) o0 (@) )

where
7(37 1)

r(3r+1)
o =143 g,

is known as a famous pentagonal number theorem [3].

Lemma 2.3: [5] The following relation among Eisenstein
series and Ramanujan’s k-functions hold:

L(q) 4 1 -4 6 8+22§y10
L(¢?) 5 -2 L 3 %ym
CCCH T R ]
L(q") % 5 3 3 fy o

Lemma 2.4: [5] The following relation among Eisenstein
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series of level 10 and k-functions hold:

L(q) = 2L(¢*) — 25L(¢°) + 50L(q'°) = 2455,

L{q) — AL(¢%) - 5L(¢") +20LP(g"*) = 2y,

—3L(g) +2L(q%) — 5L(¢") + 30L(g"") = 2y,

L(q) +4L(q?) + 15L(q°) — 20L(q'%) = 24k %12,

Lemma 2.5: [5] The following relations hold:
1 — 4k — 4k3)3
M _ 2 ( 1
@) =¥ ((1 I+ e — RO
256k1 (1 + k1 — ki)3
(1= K2)2(1— 4y — K2)2
1 — 4k; — 4k3)3
M(a2) = 22 ( 1 1
@ = (TR R
16k1(1 + ky — k3)3
(L= K2)2(1— 4k — K22 )

M(qS) _ y2 (1 — k%)d
N+ kg — k2)2(1 — dky — k)

N 2567
(1= k2)2(L+ ky — k) (1 — ks — £7)* )

M(qIO) _ y2 (1 - k%)g
(1 + k= k2)2(1 — 4k — k2)

n 16k3
(1—k2)2(1+ ky — k) (1 — 4k, — k2)2 )~

Ramanujan gave a lot of attention to the construction and
application of the Eisenstein series in his notebook [3] and
provided a few fascinating identities relating these series
with theta functions. Using computer, E. X. W. Xia and O.
X. M. Yao [12] found several lovely correlations between
Eisenstein series and cubic theta functions of Borewein, as
well as the use of these identities in the explicit evaluation
of convolution sum. H. C. Vidya and B. Ashwath Rao [11]
recently built new identities associating Boreweins cubic
theta functions to Eisenstein series and used them to evaluate
specific convolution identities. Interestingly, without the help
of a computer, in this article, a few new sum-to-product
identities involving L(¢™),n = 1,2,3,6, and L(—q™) for
m = 1,3 have been generated. Further, B. C. Berndt [4],
D. Anuradha et al. [9], H. C. Vidya, and B. R. Srivatsa
Kumar [10] developed several differential equations and
stressed the need of using it in the construction of incomplete
elliptic integrals. Inspired by their work, in this article, a
few nonlinear differential identities have been constructed
by implementing FEisenstein relations of level 10. These
relations have been described in terms of Class one infinite
series.

III. RELATION AMONG EISENSTEIN SERIES AND CUBIC
THETA FUNCTIONS

Theorem 3.1: Few new identities relating Ramanujan type
Eisenstein series and Borewein’s cubic theta functions are
listed as follows:

1+12Z {1+3l G —)*

(1-— 2l)aq (5 + 120)ag*>
+ 1—qc  1—¢%

3aq3* 8lag*™
1= @B 11— gle
| 3ag® ] _ a(=q)b*(q)

1—qb b(g?)

2+ 84l1 — 9lz)a(—q)*

o= Z [ Sk

(7+ 11411 +18l2)ag®  108(ly — l2)avg®™

1— qa 1— q2a
9(1 + 201)ag®® B 72lpaqt®
1— q3a 1— q4a
1081, g5 2
—1_76& = (a(qs) - *b(Q))a(Q)-
q
6la(—q)* 6laq0‘
4
m —|— Z { 1 —
_(1 — 36l)aq 24laq B 3aq*®
1_q2a 1_q3a 1_q4a
R _ 6 2. 4 9
i qﬁa] ~ (a(d®) ~ 2b(a)ala?).

(iv 1+22 {Hiil)a)a

1+ 361)aq 6(1 + 360)ag*>
+ « o 2c
I—q I—q
Qag>* 144lag*®
1— an 1— q4a

a 6
- 18_ Zﬁa] = (e(¢®) + %b(qQ))a(q).
> [(181 — 1)a(—q)®
(0)1+4 Z_:l [(1_()_5)(])
6l — Dag®  3(120 — 1)ag®®  2dagte
- 1—q~ a 1— g2 +1_q4a
a 6
- 18_qq6a] = (3a(q®) — 2b(¢*))*.
(vi)1 + 12 Z:l [fa((—qq); L YZZ;S(IQ

3o

12lag®® 3aq
_1_q2a - ]__an

+flqu4z] — (3a(q") ~ 20(a))".

(vii) 1+2Z {1—&-31)@)

(7 12l)aq (3 —24D)ag*>  9ag®®

l_qa 1_q2a 1_q3a
27lag*®  18aq®™
1 _ q4a - 1 _ an = a’(_Q)a’(q4)
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Proof. Consider the relation

Ci(L(—q) — L(q)) + Ca2(L(q) — 2L(¢%))
+ C3(L(q) — 3L(¢%)) + Ca(L(q) — 4L(q"))
a(—q)*(q)

+ C5(L(q) — 6L(¢%)) = )

b(q?)
We formulate a system by incorporating Lemma 2.2
and expressing the above relation in terms of (p,k)
parametrization and then equalizing the coefficients of

kz,pkz,kaz,pSkz and p4k2 on either side,
o -1 -2 -3 =5 4 1
24 —-14 —-16 —-18 -—22 Cy —4
36 —24 —-36 —-36 —-36 Cs3l =1 3
18 —14 —-16 -—-24 -22 Cy 2
3 -1 =2 0 -5 Cs -2

Note that, the above linear system possess infinitely many
solutions,

5 1
:—1— = — R e ——
(oh 1,Cy 3l 4,03 X
1
C14 = laC5 = Za
where k € R.

The result follows immediately by substituting the above
statistic in (4) and simplifying using Definition 2.2.
Likewise, utilizing the same technique, the following
identities are deduced.

9 3
= (9% = 3l2)(L(q) — 2L(4*))

- (™) e -3

(2 L+ 2811) (L(—q) — L(q))

+12(L(q) — 4L(q") + L (L(g) — 6L(¢°))
= (ale’) ~ 3(a))a(a).

12
FILg) ~ 4L(*) — 75 (L () ~ 6L(d")
= (ala®) — Sb(*))a(a?)

12
FU(L(g) ~12(8") ~ 15(L(a) ~ 6L(a")
= (e(d®) + 3bla))ala)

(L)~ 4L(¢*) ~ 3(Ela) — 6L(¢"))
= (3a(¢®) — 2b(¢*))?

— U(L(—q) — L(q))

- 3U(L()  2L(¢*) ~ 5(La) — 3L(e?))

B %(L(q) —6L(¢°)) = a(—q)a(q").

Applying the Definition 2.2 to the above-mentioned relations
yields the identities (i7) — (vi).

Theorem 3.2: One has

Z [ (1+4Da(—q)*  3a(—q)*®
— —(=9)° L —(—q)3
(1 4 ag™ B 24log® B 3aq>®
l_qa 1_q2a 1_q3a
L L6la(@)™] _ (a(=q) — alg))al¢®)
1 — gt 6 '
i [ -1+ 41 Ja(—a)* 3a(=q)**
— —q)” 1= (—q)*
N 14 4l)aq 24laq 3aq3®
1— q 1— q2a ]_ _ q3a
16lag*™
1_4a:| = (a(q")(a(q) — a(—q)).
q
21
(i) (1 + 31) + 12 Z [O‘()a
(—a)
(1+2D)a(— )3a 12lag®>
1— (7 )304 1— q2a
3agi® 2lagt™
- 3« da | T a2(q)'
1-— q 1—gq
12(1 4+ 2D« @
()1 + Z { + g a)
3 36&(— )‘m (36 —lag®
1—(=q)* 1—q~
_144laq2°‘ _ 36aq>™
1— q2a 1— q3a
96lag*™ 9
1— q4a :| =a (_q)
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Proof. Consider the relation

C1L12(q) +CaLi12(q 3)
+ C3(L(q) — 2L(¢%)) + 04(L(q)

+ C5(L(q) — 4L(¢")) =

(&)

Now, the following system is generated by incorpo-
rating Lemma 2.2 and comparing the coefficients of

k2, pk?, p?k?, p3k? and p*k? on either sides,
0 0 -1 -2 =3 Ch 0
12 0 —14 —16 —18|]|cy 6
3/4 0 —24 —-36 —36 Cs|1=1-9
3/8 1/8 —14 —16 —24|]|cu 9
1/16 116 -1 -2 0 ) \Cs -3

The infinitely many solutions obtained after solving the
system are given by,

Cy=—12—481,Cy =
Cy=0,C5 =1,

—36,C3 = —3l,

where [ € R.

We complete the proof by replacing the above values in (5)
and then using Definition 2.2.

Likewise, utilizing the same technique, the following iden-
tities are deduced.

12(1 — 41) L1 5(q) — 36L1,5(¢°)
— 31(L(q) — 2L(¢*)) + I(L(q) — 6L(¢°))
= a(q")(a(q) — a(—q)).

— 48L1 5(q) — 3U(L(q) — 2L(¢%))
_ %(L(q) —3L(¢%) + I(L(g) — 4L(¢"))
= a*(q).

—24(1 +20)L12(q)
1

= 3I(L(g) = 2L(¢*)) — 5(L(9) = BL("))

+1(L(q) — 4L(¢")) = a*(~q)-

Applying the Definition 2.2 to the above-mentioned relations

yields the identities (i) — (iv).

+72L1 5(¢%)

IV. CONSTRUCTION OF DIFFERENTIAL EQUATIONS

Theorem 4.1: If
S(q) = ¢*(=4°) — ¥*(~a),
then the following differential identity holds:

045G — 3 [“5?5;55(3 Z())) Y10 + w} S =0,

5 (15)° 05

NGz~ 5 4 ) T

[ (w  u(2vu? —5v — 10)
2“2+ (vt (v —4) y)
1 [ 2u?(275u* + 2640u? + 13361)
144 ( v2(v+1)%2(v —4)2

v(1600v* —567v2—1381)—12164\ 2 .
+ 02 (v+1)2 (v—4)2 ) ?/10} S =0,

+

where ki + k% =u,

—k1 + ,%1 = v and
kil dylo

= w.

Proof: We note from [5, pp. 525] that

3
S(q) = P*(—¢°) — P*(—q) = 410,

275
Using theta functions, S(¢q) may be reformulated as
f fi
S(q) =4q7=0
f2f5

Employing Definition 2.1 and logarithmically differentiating,
we arrive at

1dS 1 =g =\ 2rg*"
- 21 =
LS|, oy

4 r=1 r=1 q
= 5rg°” = 10rg'0"
-3 —.
+TZ:11_q5'r ;1_(]107"
Using (1), we get
as 1
g 4o = 31\l — 282 = 5Ls +30Luo). 6)

Incorporating Lemma 2.3 and simplifying, we obtain

1+k2
Ly — 2Ly — 5Ls +30L1 = 6 {(*1)910

(1 —k7)
2(1 + k%)ygo (1+ k%)wa n 2kdy1o O
1+k‘1—k‘1 1—4k1—4k1 dkq

Substituting (7) in (6) and simplifying, we obtain (i).
Applying qdi on either sides of (6), we have

dlq ds 1 d

Taq |Sdg| ~24%4q

We note that, Ramanujan[3] recorded a very useful differ-
ential equation,

[Ly — 2Ly — 5L5 4+ 30Lyo] . (8)

€))

Using the above in (8), we get
q ds

PS¢ (dS\® | qdS

S d¢?2 52\ dg S dq
1

= ogg (L1 = M) = 4(L5 — M)

—25(L2 — Ms) + 300(L3, — Mio)] -

By Lemma 2.3 and 2.5, each of L?(¢®) and M (q*), s=1,2
are expressed in terms of k1,10 and k1 dym . After simpli-
fication, the claimed result follows.

Theorem 4.2: 1If

S(q) =5¢°(—q°) — ©*(—q),
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then the following differential identity holds: N2 d275 _ ﬁ ﬁ as
i) ¢~ +q
as 1 3v—2 dq S \dq dq
. v—
Z)qd_q T2 [v(v+1)(v—4) Y10 + w} S =0. n 1 vt u(u? — 32v + 28) w
1 oo+ 1w —4)
. od®S ¢ (dS ds 1 [u?(—25ut + 132u? + 2352)
W — — = + q— + =
d2 S \dq dq 36 v2(v+1)2(v —4)2
1 { (w ~u(-3v+2) y10> w —4v(5v*+396v24+2592) — 16750 2, )18 =0,
21\2 ovw+1(v—4) 02 (0+1)2 (v—4)2
1 9u*(31u” 4 200)
18 \ v2(v+1)2(v — 4)? where ki + k =u, —k1 + 1711 = v and
dyio _
_ 4v(9u4+243v2+236)—4652> 2 lg_y kG = -
v (v+1)%(v—4)? 10 ’ Proof: We note from [5, pp. 525] that
where ky + k =u, —k; + 1?11 = v and S(q) = ¢"**(q) — ¢***(¢°)
k1 ddzﬁlo =w. _ 1213 _ 1/4 f2f§"
mmno Jifio
Employing Definition 2.1 and logarithmically differentiating
Proof: From [5, pp. 525], note that on either sides, and further using Definition 2.2, we arrive
3 3 at
_ A2 5 2 _Amans 4 S35 as 1
S(q) = ¢ (=q°) — 7 (—q) = 4,25 = 4522 %dq 5q[-L1+2La + 1505 = 0Ly (12)
Emp'l oymg Definition 2'1 and logarithmically differentiating Incorporating Lemma 2.3 in the above and then substituting
on either sides, we arrive at . . e .
in (12) and simplifying, we obtain
1ds 1 rq 6rq
i - — L1+ 2Ly +15L5 — 10L
Sdq g gl—qr ;17(1% 1 2 5 10
_i 5rq°" Z 10rqor
1— q5’r — 1— ql()r . _ 3 4(1 + k’%)ylo _ 2(1 =+ k%)ylo
. (1—k?) 14k — ki
Employing Definition 2.2, we get 9
s 1 A+ K )yo k dylo} (13)
% 4o = il L1+ 0l2+5Ls = 10Ly]. (10) 1 —dky — 4k3 dky
. i . . .
Incorporating Lemma 2.3 to the above and simplifying, we Applying Zag Of cither sides of (12) and further using (9),
we deduce that
find that ) o ) )
d=s ds ds
—(1+ k2 4> 94 a9
—Ly4+6Ls+5L5 —10L19p =6 l:((lklz))ylo S dq? S2 S dgq
-
1
— k2 _ A2 :
Lk =k 1=dk—dky dky —T5(L2 — M5) +100(L2, — My)] .
Substituting the above in (10) and simplifying, we obtain (i).

1 : 2(,.8
Applying ¢ d% on either sides of (10) and further using (9), Using Lemma 2.3 and 2.5, expressing each of L?(¢°) and

we deduce M(q®), s=1, 2 in terms of k,y1o and k g}co, we attain the
9 proof. ]
¢S ¢ (ASYT qdS
S dq 52 \ dq S dq Theorem 4.4: If
288 (L2 — My) — 12(L% — My) S(q) = ¢"*9(q) — 5¢°*¢*(¢%),
—25(L% — Ms) 4 100(L3, — My)] - then the following differential identity holds:

Now, each of L?(¢®) and M (q®), s=1, 2 are expressed in

1 [u(u2—12v—12)
terms of ki, y10 and k‘lddyTll‘) by using Lemma 2.3 and 2.5.

Z)q% v _'U(v+1)('uf4) Y10 + UJ] S =0.

2
Hence the proof. [ | ii)q2d2—§ _ f (dS) + qﬁ
dq S \ dq dq
Theorem 4.3: 1If — 1 w u(u2 — 12v - 12)y
"y ko 1(\3 " vw+1)w—1) "
S(a) = ¢'*¢*(q) — 4" ** (%), 1 (u2(—3u4 + 338u2 + 2200)
then the following differential identity holds: 36 v2(v+1)%(v —4)?
ds 1 [u(u®—4v—28) 1 _ v(14v*+464v>+567)—1896 \ 2 _
S oy oy LU ser s -1? ) Y10| 9 = 0;
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where k1 + ki =

dyio _
/{1 dka = w.

u, fk1+k—11:vand

Proof: From [5, pp. 525], we have

S(q) = ¢/*¢*(q) — 5¢°"*¢*(¢°)
_ 3710 _ q1/4f13f10.
n2M5 fafs

Using Definition 2.1 and then logarithmically differentiating
and employing Definition 2.2 , we see that
qdS 1
S dg dg 24
Incorporating Lemma 2.3 in the above, we get

2(1 + k)yio0
3Ly — 2Ly —5L5+10L1g =6 | ———5—
1 2 5+ 10 { =&
(L4 Ky 200+ k)yio , dyio

T+k — k2 1—dky — 42 "dky |
substituting (15) in (14) and on simplifying, we obtain (i).

Applying qd% on either sides of (14) and further using (9),
we can deduce that

—[8Ly — 2Ly — 5Ls + 10Ly].  (14)

15)

¢S % ‘L ads
S dg? S? S dq
1
L — M
288 [3( )
—4(LP3 — My) — 25(L2 — Ms)
+100(L7, — Mo)] -

Using Lemma 2.3 and 2.5, expressing each of L?(¢®) and
M(q®), s=1, 2 in terms of ki,y10 and ky d‘jcm, we complete
the proof. ]

V. RELATIONS AMONG CLASS ONE INFINITE SERIES AND
k-FUNCTIONS

Theorem 5.1: For every n € N with n > 2, the following
relation among the series holds:
" +1
)+l 1] .

-1 {TZ (q
( qn; qn)oo
Proof: First, we prove the result for n = 2.

Replacing ¢ to ¢? in Definition 2.2, we obtain

L(¢") =1+ ng" (16)

d
L(g®) =1+ 24q2@log(q2; 7°)
d

)oo dg

1
I ey

(4% ¢*)oo
Further simplifying, we arrive at
(@*¢*)c L(d*) = (¢*1¢%) o0
+24q2d% [1 _1_21921(_1)1'{(1@‘(31—1) _|_qi(3i+1)}]
= (% ¢%) 0 +24¢ 32, (—1)7 [i(3i — 1)g?®*—D)
+i(3i + 1) D]
= (0% 0%) o0 +2¢ 50 (1) [((6i — 1)?
£y (=g = 24(¢%; ¢*) oo

2 0o ZQTz(

_ 1)qi(3i71)]
+ 2¢q

7*) — 2q(¢* ¢*)o + 24

Dividing throughout by (¢?;¢?)s and further rearranging
the terms, we deduce the result for n = 2. Similarly, the
proof of n € N, n > 2 follows by replacing g to ¢" in (1)
and using the series (2). [ |

Theorem 5.2: The following series expansions hold:

To(q) , To(d®) .. 4T2(q°)
I S
9T2(q10) ( _ 1)
+ 500¢q T1o +4q (1 7,

1 1
+125 4(1-) — 500 9(1—)
1 fs 1 Fio

—24( )y10+2370

To(q) . To(q?) 1 Ta(q°)
noo 2 SRy

0 T2(¢q"") ( _ 1)
+200g fio e fo

() )
+25¢ (1 f5> 200¢" (1

u
—12( —— 11 =0,
<U+1>y10+

Tr(q) , To(q?) 1T2(4%)
’ S 4 f2 2 s
9T2(qlo) ( _1)
300 f10 el f2

_orgtf(1_ L ofy_ 1
25¢q <1 f5>—|—300q (1 f10)

+24( u4>y10—2720,

T3(q) Ty(q?) 5 T (q°)

+38
fi 1 fa Is
T2(q1()) ( 1)
—2004° —4q(1- =
fio 1 fa
- 75 4(1—1>+200 9(1—1>
1 fs 1 F10
— 2w —1=0,

where k+ 1 =u, —~k+ L = v and k%0 = 4.

Proof: Using (3), putting n = 2,5,10 in (16) and
further substituting these in Lemma 2.4, we achieve the
desired outcome. [ |

Theorem 5.3: The following series expansions hold:

To(q) , To(d®) .. 4T2(d%)
T
0 T2(¢") ( B 1)
+ 300¢q T1o +4q |1 7

afy 1Y) of1_ L
+ 25¢ (1 fs) 300q (1 f10>

u(2u? — 5v — 10)
—12 23 =0
( oo+ (o —4) ym*“’) =0
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Bolg) 1y, Tole*) 954 1 T2(¢%)
o f

0 T2(¢") < _1)
£100g° L2 4 12g (1- =

1 1
+ 25¢* (1 - f5> +1004° <1 - flO)

+12(((3”2)y10w)10,

v+1)(v—4) 2

Tr(q) Tz( ) 1)
iz Hho T

9T2(q10) ( _ 1)
100" 44 (1-

+ 75¢* (1 — ;5) — 100q° (1 — J;)
ij(f) Jg @) o 4Tz}5)
)

0 T2(q") 1
+ 100¢ 1o (1 fz)

N T e
+ 25¢q <1 f5> 100q (1 flO)

(u(u2 —12v —12)
v(v+1)(v—4)

where k; + 1711 =u, —k; + kl =wv and k; d”“’ = w.

3

y10+w>+30,

Proof: The required result is obtained easily by using
(3), replacing n = 2, 5,10 in (16) and then substituting these
in (7), (11), (13) and (15). ]

REFERENCES

[1] A. Alaca, S. Alaca and K. S. Williams, “On the two dimensional
theta functions of the Borweins”, Acta Arithmetica, vol. 124, no. 2, pp.
177-195, 2006. A. Alaca, S. Alaca and K. S. Williams, “Evaluation of
the convolution sums >,  o(l)o(m)and >,  o(D)o(m)”,

+12m=n 3l+4m=n
Advances in Theoretical and Applied Mathematics, vol. 1, no.1, pp.
27-48, 2006.

[2] A. Alaca, S. Alaca, K. S. Williams, “Evaluation of the convolution

sums ». o(l)o(m)and >,  o(l)o(m)”, Journal of Num-
l+6m=n 2l4+3m=n
ber Theory, vol.124, no. 2, pp. 491 510, 2007..

[3] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer, New York
(1991).

[4] B. C. Berndt and G. E. Andrews, Series representable in terms of
Eisenstein series, Ramanujan’s Lost Notebook, Springer, New York,
2009.

[5] S. Cooper, Ramanujan’s Theta Functions, Springer, 2017.

[6] J. M. Borwein and P. B. Borwein, “A cubic counterpart of Jacobi’s
identity and the AGM”, Trans. Am. Math. Soc, vol. 323, pp. 691-701,
1991.

[71 S. Ramanujan, Notebooks, Vol. 1,2, Tata Institute of Fundamental
Research, Mumbai, India, 1957.

[8] S. Ramanujan, The Lost Notebook and Other Unpublished Papers,
Narosa, New Delhi, 1988.

[9] D. Anuradha, B. R. Srivatsa Kumar and Sayinath Udupa N. V., “A
Note on Somos’s identities of level 67, IAENG International Journal
of Applied Mathematics, vol. 52, no. 2, pp. 386-390, 2022.

[10] H. C. Vidya and B. R. Srivatsa Kumar, “Some studies on Eisenstein
series and its applications”, Notes on Number Theory and Discrete
Mathematics, vol. 25, no. 4, pp. 30-43, 2019.

[11] H. C. Vidya and B. Ashwath Rao, “Few more relations connecting
Ramanujan- Type Eisenstein series and cubic theta functions of
Borewein”, Proceedings of the Jangjeon Mathematical Society, vol.
25, no. 2, pp. 253-263, 2022.

[12] E.X. W. Xia and O. X. M. Yao, “Eisenstein series identities involving
the Borwein’s cubic theta functions”, Journal of Applied Mathematics,
Article 181264, 2012.

Volume 50, Issue 4: December 2023





