
 

  

Abstract— The oil palm industry is one of the most 

important industries for Malaysia's economic growth. 

Worldwide demand for palm oil is anticipated to increase from 

51 million tonnes to between 120 and 156 million tonnes over 

the next 30 years. However, the industry is highly dependent on 

foreign labor, particularly in harvesting and gathering fresh 

fruit bunches (FFBs). Workers must manually determine the 

FFB's ripeness prior to harvest. Thus, labor shortages, which 

are exacerbated by the recent COVID-19 pandemic, have had a 

significant impact on industry productivity. Therefore, in this 

paper, a system is proposed to identify ready-to-harvest FFB 

automatically by counting loose fruitlets on the ground. Data 

collection is performed in one of the smallholder plantation 

areas. The numbers of trees and fruitlets are 2140 and 490, 

respectively. The system starts with tree detection using 

YOLOv5 because of its lightweight model with a minimal 

computational cost. The tracking of the discovered trees will 

ensure that each tree is identified just once, and loose fruitlets 

on the ground will thereafter be found. The number of loose 

fruitlets detected will be used to infer the readiness to harvest 

the FFB. The results for the fruitlet detection had mAP of 

85.45% while those for the palm tree detection had mAP of 

97.79%. On the other hand, at counting thresholds of zero and 

three, respectively, the accuracy of ready-to-harvest 

classification is 90.48% and 91.34%. 

 
Index Terms— Palm oil; fresh fruit bunch; loose fruitlet; 

image processing, deep learning, harvest-ready prediction 

 

I. INTRODUCTION 

ith an anticipated global population of 9.7 billion by 

2050, at least 240 million tonnes of palm oil will be 

demanded to meet the pressure [1]. The global palm oil 

production of 84% is dominated by Indonesia and Malaysia. 

According to Fig. 1, Malaysia produced over 20 million 

tonnes of palm oil annually in 2018, ranking second globally 

and accounting for 27% of global production [2].  In 

addition, Malaysia is the world's second-largest exporter of 

palm oil, sending 17,368,865 tonnes of palm products 

abroad in 2020 [3] to nations like China, India, the 
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Netherlands, Turkey, and the United States. Malaysia has 

5.87 million hectares of oil palm agriculture yielding, but 

due to the COVID-19 pandemic and the obligation 

movement control order (MCO), which causes the delay, 

there was a slight decrease of 0.6% from the previous year 

in 2019 [4]. Moreover, shortage of labor workers 

decelerated the production of palm oil crops. Now, 

agriculturists have been exposed to the artificial intelligence 

technology and farmers have started to ingress with the 

machines and tools to meet the demand, which lowers 

production costs while simultaneously raising productivity. 

A revolution in technology that ranges from computer 

vision to robotics and the fusion of multiple cameras has 

entirely revolutionized many industries, including palm oil 

industry to modern agriculture. The main objective of an 

automated harvesting system is to develop a robust and 

precise algorithm to perform crop detection, tracking and 

classification. Throughout its evolution, machine vision has 

witnessed the advancement of multiple image processing 

techniques, including edge detection, region growth, shape 

detection, and color-based preprocessing. These methods 

have been employed to extract crop features from a diverse 

range of visual factors. Due to substantial advancements in 

deep learning, deep convolutional neural networks (CNNs) 

have attained remarkable accuracy and detection speed, 

establishing them as the forefront technology for object 

detection [1]. 

Many researchers have adopted CNN due to its capability 

to extract features and learn from the input image 

automatically through self-learning [1]. Lawal [5] proposed 

You Only Look Once (YOLOv3) to detect tomatoes for 

real-time harvesting. He used the same approach to detect 

muskmelons [6] by comparing YOLOv3, YOLO-Resnet50 

and YOLOv4. Yu et al. [7] adopted MaskRCNN to detect 

strawberry fruits with 100 images that contain 573 ripe 

fruits. All four research papers achieved mAP of more than 

90%. Moreover, there are more similar approaches for 

different object interests such as fresh fruit bunch (FFB) [1], 

orange [8], pear [9], blueberry [10], and all sorts of fruits 

[11]. Currently, FFB color is one of the most important cues 

that determines the grade and quality of the FFB. It is 

important to harvest FFB during its optimal maturity stage 

so as to ensure the quality of the fruits [12-14]. 

The quality of oil palm FFB is measured by its low free 

fatty acids (FFA) and high oil extraction rate (OER). By 

assessing the surface color of the fruit bunches, the 

Malaysian Palm Oil Board (MPOB) categorized the 

maturity stages of FFB into four classes; unripe, underripe, 
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optimally ripe, and overripe. The unripe class is 

characterized by a purplish-black color.   

Meanwhile, under-ripe and optimally ripe classes appear 

to be reddish black and reddish-orange respectively. The 

overripe class exhibits almost the entire FFB reddish-orange 

coloration.The bunch is at its most mature stage when it is 

optimally ripe because it has a high oil content that increases 

OER, whereas unripe fruits have nil or little oil, which 

lowers OER [15]. In contrast, because there are already 

many fruits that have fallen from the bunch, overripe fruits 

provide less OER than ripe bunches.  Therefore, the owners 

need to know the best time to harvest so as to maximize the 

production yields.  

The majority of the time, the harvest readiness is assessed 

manually, requiring the workers to visit the trees and gauge 

the age of the bunch. According to the smallholder's 

recommendation in [16], ripe bunches can be spotted 

manually based on the loose fruits that are buried beneath 

frond butts on the trunk of the palm tree or lying in a 

weeded circle around it. When harvesting tall palms, it is not 

advisable for the workers to look at the color of the bunches 

because, despite appearing red, the bunches may still be 

immature. In either case, this manual method is time-

consuming and heavily reliant on the workers' skill and 

experience.  

Due to this, numerous investigations have been carried 

out employing sensors as RGB cameras [17–18], 

hyperspectral imaging [19], near-infrared (NIR) 

spectroscopy [20], and lidar [21] to automatically determine 

FFB maturity level. The majority of algorithms that have 

been created rely on the fruitlets' colors as determined by 

computer vision and machine learning approaches. Support 

vector machine (SVM) is utilized as the classifier in [17] to 

categorize fruitlets into 4 different maturity levels. Color 

characteristics and a bag of visual words are used as the 

feature extractors. The method used a color feature and a 

bag of words, respectively, to obtain classification accuracy 

of 57% and 70%. Because a cell phone camera was used 

throughout the procedure, low accuracy may result from the 

poor quality of the photos that were recorded and used for 

system training. The color histogram and statistical color 

feature were employed as the feature extractor in [18], along 

with other color features. The classifier was an artificial 

neural network (ANN). The FFB was already harvested and 

sent to the mill for processing when the proposed technique 

obtained a classification accuracy of 94%. In [19], 

reflectance values, rather than color characteristics, were 

captured using a hyperspectral device at various 

wavelengths and used as the feature extractor before being 

sorted into various ripeness levels using ANN as the 

classifier. Similar to [21], the ripeness level was calculated 

using the reflectance intensity value recorded by the lidar. 

The article demonstrated that the reflectance values lacked 

sufficient distinction to distinguish between the maturity 

levels. 

Although several appearance-based processing techniques 

produced useful results in identifying the FFB's maturity 

level, the established techniques are not appropriate for use 

in a real plantation setting to determine which tree is ripe for 

harvest. One of the issues is brought on by the inconsistent 

color of matured FFB, which differs not only between 

different palms and regions [22], but also depending on 

when visual data was captured. In addition, the tall tree may 

result in obstructions to the FFB from nearby bunches and 

other items like fronds. Therefore, these elements will make 

it more difficult for approaches based on the FFB's aesthetic 

look to determine the bunch's maturity level on the tree 

accurately. 

The quantity of loose fruitlets on the ground, on the other 

hand, was linked in certain studies to the FFB maturity [23–

24]. The minimal maturity standard—also known as the 

amount of loose fruits on the ground—helps establish 

whether the FFB is at its minimum ripeness 

standard (MRS). There was standard established by the 

Thailand Department of agriculture [25], the Indonesian oil 

palm research institute [26], and the Malaysian palm oil 

board [27] all set a criterion that declared that the bunch is 

ready to be harvested if there are more than 10 palm fruitlets 

under the tree. While it was indicated in [16,28] that the 

FFB achieves optimum ripeness level if there are at least 

three loose fruitlets lying on the ground. Although the 

standard value varies from one company to another; 

however, the approach is more feasible and accurate as 

compared to accessing the FFB maturity level by evaluating 

the bunch on the tree. This is because the fruitlets on the 

ground can be seen more clearly as opposed to the bunch on 

the tree. However, no automated system has been suggested 

in the literature to assess the FFB's level of maturity based 

on the number of loose fruitlets. 

The method was developed using deep-learning model to 

detect palm tree and loose fruitlets within the ROI of the tree 

so as to deduce the harvest-ready status whether or not it is 

time to harvest. The remainder of this paper consists of the 

following sections. The methodology section outlines the 

 
Fig. 1. Palm oil production 
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general approach for gathering data, identifying trees and 

fruitlets, and making the final classification of harvest-ready 

status. In the results and discussion section, the results of 

both YOLOv4 and YOLOv5 performance were 

demonstrated and compared. Finally, the proposed work was 

concluded in the conclusion section.  

II. METHODOLOGY 

As shown in Fig. 2, the overall system architecture 

consists of the three main modules: data collection and 

acquisition, analytics and post-recognition modules. The 

input can typically take the form of photos or video input. 

The analytics module uses the photos that were captured to 

determine which tree in the image is ready for harvest. In 

the post-recognition module, the results of the detection and 

recognition are then superimposed over the output image to 

show the user which tree is ready for harvest. An oil palm 

tree is deemed harvest-ready in the first research if at least 

one or more loose fruitlets are found nearby. Each module's 

thorough explanation will be covered.  

 

A. Data collection and acquisition module 

Data collection and acquisition is a critical step in 

machine vision as it significantly affects the training process 

due to the experimental setting and image quality. The data 

collection process was carried out in a smallholder's 

plantation located in Sg. Pelek, Selangor, Malaysia. The 

data-gathering activities were conducted in both morning 

and afternoon sessions. The plantation area features tall 

trees, reaching approximately 5 meters in height, with 

favorable lighting conditions beneath the canopy. Each tree 

is separated by an average distance of 9 meters, as illustrated 

in Fig. 3, depicting the environmental state of the plantation. 

However, the presence of weeds, mounds of dried leaves, 

and sometimes dried or green leaves hanging from the trees 

pose significant challenges to data collection. Additionally, 

the off-road conditions vary depending on the season, with 

rainy periods leading to muddy roads. 

The acquisition module gathers images from a video 

source or input camera. The specifications of the camera 

used for data collecting are as follows: 

• Camera model: DJI Osmo Pocket 

• Camera resolution: 1920x1080 

• Frame rate: 60fps 

• Camera features: 3-axis gimbal stabilization, portable 

and lightweight 

 

The camera configuration used during data collection is 

presented as follows: (a) the camera's distance from the 

target tree, which was maintained at a range of 3 to 4 

meters; (b) the camera's height above the ground, which was 

set at approximately 1.5 meters; and (c) the camera itself, 

which was handheld and moved at a walking pace, as 

illustrated in Fig. 4. The data collection process involved 

capturing images of tree trunk surfaces, including smooth 

surfaces, surfaces covered in weeds, and surfaces covered in 

leaves, as depicted in Fig. 5. Data were collected under three 

distinct plantation conditions to ensure variability in the 

dataset. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Overall architecture of the ready-to-harvest prediction method 
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Fig. 3. Condition of the plantation area for data gathering activity where the road is muddy, pile of dried leaves and tree occluded by leaves. 
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B. Analytics module 

The analytics module serves as the primary processing 

component, responsible for determining whether a tree 

within the image is ready for harvest. This determination is 

based on the number of fruitlets detected within the tree's 

region-of-interest (ROI). The analytics module encompasses 

five processes, including tree detection, tree tracking, fruitlet 

detection, fruitlet counting, and harvest-ready classification. 

Once the tree is detected, the camera's distance from the 

tree is estimated to identify trees in close proximity to the 

camera for further examination. The tree is tracked when the 

lower midpoint of the detected tree enters the monitoring 

region to ensure that each tree is classified only once. The 

area of the image closest to the ground around the tracked 

tree trunk is cropped and provided to the fruitlet detection 

module. To ensure that the relative size of the loose fruitlets 

to the image size is significantly high, this sub-image is used 

as the input to the fruitlet detection module instead of the 

entire image. The fruitlets are then tracked for a few frames 

to establish the final count. Based on the total number of 

fruitlets detected, each identified tree is classified as either 

harvest-ready or not. The results from the analytics module 

are superimposed on the output image to enable user 

visualization. 

 

Tree and fruitlets detection modules 

A training dataset is created in order to establish the 

detection model.  Annotation is then performed manually 

using the online annotation tool CVAT [34] to indicate the 

location of trees and fruitlets in each training image. 

Annotated data includes the label file for each image in 

YOLO format. In this project, the model is trained using 

1498 images of trees and 343 images of fruitlets, with an 

average of one tree and more than ten fruitlets per image. 

The datasets are distributed between training and test data 

with a ratio of 70:30, as can be seen in Table I. The 

condition of the plantation environment, which includes 

dried fronds that are strewn on the ground, green fronds that 

partially cover the tree trunk, a darker ground area under the 

tree, and the size of the loose fruitlets, which is relatively 

small in the image, present significant challenges to the 

detection of the tree and the loose fruitlets. 

In this study, we employed YOLOv4 [29] and YOLOv5 

[30] to train a model for detecting oil palm trees and loose 

fruitlets. Based on prior research, it has been observed that 

YOLOv5 outperforms previous iterations of YOLO, namely 

YOLOv3 and YOLOv4, with regards to both accuracy and 

speed [35-36], despite some controversy surrounding 

YOLOv5's exceptional advances and lack of official 

publications [31].  YOLO, which stands for You Only Look 

Once, is a single convolutional network that uses multiple 

convolutional networks. YOLO generates predictive vectors 

for each object that appears in the image. The key concept 

of YOLO is to compute all features and make predictions 

for all objects simultaneously.  This is achieved by applying 

a grid cell, typically of size S × S (default is 7×7), to an 

image. If the center of an object falls within a particular grid 

cell, that grid cell is responsible for detecting and 

identifying the object. The network then provides an offset 

value for the bounding box and class probability for each 

bounding box by considering "m" bounding boxes for each 

grid cell [32]. 

   
Fig. 5. Several types of tree trunk, smooth trunk (left), Trunk 

with remaining fronds and less weed (center), and Trunk full of 

leaves (right). 

TABLE I 
TOTAL NUMBER OF TREE AND FRUITLET DATASET 

Object Training Testing Total 

Tree 1498 642 2140 

Fruitlet 343 147 490 

 

    
Fig. 4. The handheld camera with laptop to view the online testing output. 
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The YOLOv4 architecture exhibits significant 

improvement over its predecessor, YOLOv3. Bochkovskiy 

et al. [29] designed a complicated and deeper network using 

a Dense network to replace the residual block in YOLOv3, 

resulting in the overall architecture portrayed in Fig. 6. The 

network's backbone is Darknet-53 from YOLOv3, 

augmented by the Cross-Stage Partial (CSP) network. CSP 

divides the input into two parts: (a) the input goes through 

the convolution of a dense block, and (b) the data moves 

directly to the subsequent stage of DenseNet without being 

processed. This approach preserves fine-grained features by 

moving the process into a deeper layer and reduces the 

number of network parameters by repeating the features 

[31]. Spatial pyramid pooling (SPP) is employed in the neck 

portion of feature aggregation to widen the receptive field 

and discern the most important features while slowing 

down. Path Aggregation Network (PANet), which replaces 

Feature Pyramid Network (FPN) in the previous YOLO 

version, is another notable modification in YOLOv4. 

Finally, the network's head portion still uses the original 

YOLOv3 network. 

Glenn Josher [30] introduced YOLOv5 a month after 

YOLOv4's release. Both YOLOv4 and YOLOv5 share very 

similar architecture with minor differences. However, 

YOLOv5 sparked controversy when it performed better than 

YOLOv4 while being built in Python, which is simpler and 

easier to install and integrate on devices.The most striking 

feature of YOLOv5 is its ability to automatically learn the 

anchor boxes during training and select the appropriate size 

to fit over the detected object. YOLOv5 can be encapsulated 

as follows [30]-[31]: 

• Backbone: Focus structure, CSP network 

• Neck: SPP block, PANet 

• Head: YOLOv3 head using GIoU-loss 

Moreover, YOLOv5 is a more adaptive learner than 

YOLOv4 when the object significantly differs in terms of 

shape or size. 

 

 

 

Tree tracking module 

The system incorporates tree tracking to prevent 

redundant tree counting. Given that the distance between 

trees can range from 5m to 9m, depending on the owner, 

tree detection consistency is employed as an input to the tree 

tracking component. A tree is considered to be the same tree 

if it is consistently detected within the processing window. 

Moreover, the trees must be at approximately the same 

distance from the camera as it moves from one tree to the 

next. 

The pseudocode for the process is depicted in Fig. 7, 

where parameters f, nf, label, num_tree, and tree_label 

indicate the number of frames with continuously detected 

trees, the number of frames with continuously undetected 

Input 

Image 

Backbone 

CSPDarknet53 
Neck 

SPP, PANet 
Head 

YOLOv3 
 

 

 

 

  

 

 

 

 
 

 

NMS 

Generated 

bounding box 

Fig. 6. Overall architecture of YOLOv4 

Algorithm 1: Tree tracking 

Input: image sequence & detected tree location 

Output: tracking label of the detected tree (tree_label) 

Initialization: f-0, nf-0, label-0, num_tree-0 

1: read current image 

2: if tree detected in current image then: 

3:     if tree within the tracking region then: 

4:         f++ 

5:        nf=0 

6:        if f==t1 then: 

7:           //new tree detected 

8:           label++ 

9:           tree_label=label 

10:         num_tree++ 

11:      if f>t1 then: 

12:         //not a new tree 

13:         tree_label=label 

14:    else 

15:          nf++ 

16:          if nf>t2 then: 

17:             f=0 

18:    go to the next image 

19: else: 

20:       nf++ 

21:       if nf>t2 then: 

22:           f=0 

23        go to the next frame 

24:  end 
Fig. 7. Pseudocode of the tree tracking 
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trees, the current tracker label index, the number of trees 

tracked, and the tracking label of a detected tree in the 

current image, respectively. In the initial frame, these 

parameters are all initialized to zero. The input to the 

algorithm consists of the image sequence and the detected 

tree location in each image frame. The tracker algorithm 

distinguishes between new and existing trees and assigns a 

label to each tree. If a tree is detected within the tracking 

region, the parameter f is incremented (line 4), which 

denotes the total number of frames with continuous tree 

detection. 

  As illustrated in Fig. 8, the value of f is used to determine 

whether the detected tree is new (condition in line 6), 

previously tracked (condition in line 11), or noise. The value 

of f is reset when there are continuous frames with no 

detected tree, which is indicated by the parameter nf. Once 

the value of nf reaches the threshold t2, only the value of f is 

reset. This accounts for possible detector failure when 

detecting trees. If the detector does not detect any tree for t2 

frames in a row, then it is concluded that there is no tree in 

the image. Fig. 8 further demonstrates a sample scenario of 

the tracking algorithm output. The top graph corresponds to 

the tree detection output, while the middle graph displays 

the parameter f, representing the accumulated number of 

frames with continuous tree detection. The threshold t1 is 

used to define a new tree to be tracked once tree detection is 

confirmed. The bottom graph shows the number of frames 

with continuous undetected trees, nf. The value of nf is 

accumulated when there is no tree detected in the current 

frame and is reset when a tree is detected. If the tree 

detection model fails to detect a tree in alternate frames, the 

value of f is not reset. 

Fruitlets counting & ready to harvest recognition 

In this study, the ripeness of an oil palm fruit cluster for 

harvesting was assessed by counting the number of loose 

fruits in close proximity to the tree. The counting accuracy 

directly influences the reliability of the system. Given that 

some loose fruits may not be visible in earlier frames due to 

camera movements, a solution was devised. To mitigate this 

issue, the loose fruit count was calculated after multiple 

frames of the tree had been tracked. The fruit count in each 

frame was recorded once the tracking began. After tracking 

for a predetermined number of frames (n), a final count was 

made based on the highest counting frequency. As 

illustrated in Fig. 9, for instance, the final fruitlet count was 

determined to be three after tracking for n=15 frames.  

 

C. Evaluation Method 

The evaluation of tree and fruitlet detection accuracy is 

based on the computation of average precision (AP) at a 

specific intersection over union (IOU) threshold. In this 

study, AP is computed at a threshold of 50% IOU, denoted 

as AP@.50. This metric is widely used in assessing the 

performance of object detectors such as YOLO, Faster R-

CNN, and SSD. The average precision is computed by 

measuring the precision value for recall values ranging from 

0 to 1. Precision represents the accuracy of the model's 

predictions or detections, i.e., the percentage of correct 

predictions or detections. In contrast, recall measures the 

ability of the detection model to identify all the true 

positives. The average precision score ranges from 0.5 (for 

balanced data) to 1.0 (for a perfect model). The 

determination of IOU is illustrated in Figure 10, where it is 

defined as the ratio of the overlapping area between the 

ground truth (represented by the solid line box) and the 

predicted or detected object (represented by the dashed line 

box). IOU values range between 0 and 100%, where higher 

IOU values indicate better overlap between the ground truth 

and detection output. 

 In vision applications that require rigorous performance 

guarantees, inconsistent behavior becomes a matter for 

concern [33]. Furthermore, accuracy does not indicate how 

reliable the detector is. If there are any inaccuracies during 

detection, there may be further information that we can 

describe. In our case, consistency is important because our 

tracker depends on the consistency of object detection 

performance, as we discussed in Tree Tracking Module. The 

consistency of an object detector on a pair of images (I and 

J) is referred to as "pairwise consistency". It is determined 

by using (1) [33] and (2) [33]. Gi is the set of Ii’s ground 

truth, and Gj is the set of Ij’s ground truth. Mi,j , Mj,i captures 

the objects that were inconsistently detected as follows: Mi,j 

 
Fig. 9. Example of fruitlet count frequency distribution in 

n=15 number of frames 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Overall scenario of tree tracking output 
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is the set of ground truth that satisfy the following 

conditions: (1) the ground truth box is present in both 

images Ii , Ij (i.e. in Gi ∩ Gj ), (2) the object detector 

detected the object in frame Ii, and (3) the object detector 

missed the object in frame Ij. A value of C=1 indicates 

perfect consistency, while a value of C=0 indicates 

complete inconsistency. 
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We conducted tests on 1000 images taken from 2 videos 

that were extracted at a rate of 10 frames per second (FPS). The 

first video has a duration of approximately 9 minutes and 57 

seconds, while the second video lasts for about 2 minutes and 4 

seconds.   

For the ready-to-harvest prediction component, the 

accuracy is calculated by comparing the number of correctly 

recognized harvest-ready trees to the total number of tree 

samples. Another way to express it is by calculating the ratio of 

the combined true positives (TP) and true negatives (TN) to the 

total number of trials, which includes the sum of TP, false 

positives (FP), false negatives (FN), and TN. To illustrate the 

TP, TN, FP and FN, a confusion matrix as in Table II is 

referred to. In the figure, predicted is the ground truth, while 

true/actual is the system output. From the example in (3) 

below, accuracy is equal to 70%. 

           
5 2

100 70%
5 2 1 2

+
 =

+ + +
                 (3)             

 

For ready-to-harvest classification, the input for the 

testing is a set of short video clips that contain one palm tree 

to be analyzed. The clips are annotated as harvest-ready or 

not based on the number of loose fruitlets on the ground 

near the tree trunk. When determining readiness, two 

threshold values—corresponding to at least one or three free 

fruitlets—are employed. 

 

III. RESULTS AND DISCUSSION 

A. Tree and Fruitlet Detection Results 

The detection results are presented in Fig. 11, where the 

left image shows the detection area and the right image is a 

zoomed-in version of the same area. The white and black 

boxes represent the detection output and ground truth, 

respectively. The detection output boxes are classified as 

TP, FP, or FN based on their overlap with the ground truth. 

In this particular image, there are ten ground truth boxes and 

ten detection output boxes. Boxes marked as TP1 through 

TP8 have an overlap of more than 50% with their 

corresponding ground truth boxes. However, the detection 

output for boxes marked TP9 and FN1 covers two ground 

truth boxes, resulting in one being classified as TP and the 

other as FN. Box FP1 is correctly detected but classified as 

FP due to the lack of a corresponding ground truth box, 

highlighting the issue of faulty annotation. 

 
Fig. 11. Sample detection results 

 

TABLE II 

SAMPLE CONFUSION MATRIC FOR ACCURACY CALCULATION 

 True/Actual 

Positive Negative 

Predicted Positive 5 (TP) 1 (FP) 

Negative 2 (FN) 2 (TN) 

 

  

 

Ground truth 

Prediction 

 

 IoU: 0.4034 IoU: 0.7339 IoU: 0.9264 

 
 

Poor Good Excellent 

 
Fig. 10. IoU definition for poor, good and excellent  

 

 

 

Poor Good Excellent 

IoU: 0.4034 IoU: 0.7339 IoU: 0.9264 

Ground 
truth 

Prediction 
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Detecting trees accurately in oil palm plantations is a 

challenging task due to several factors. One of the most 

significant challenges is the presence of dangling fronds, 

which can be mistaken for trees by the detection model. In 

our dataset, all oil palm trees have trunks that are completely 

covered in green grass, making them appear similar in size, 

shape, and color. As a result, the detection model can 

receive false alarms. Fig. 12 displays a sample false 

detection, where the black box represents a falsely detected 

tree (FP) outside the ROI, while the white bounding box 

indicates a tree within the ROI being tracked. Once the tree 

is located and tracked, the loose fruitlet detection model is 

enabled. For the tracked tree in this image, no fruitlets were 

found. The algorithm can also detect blurred tree trunks, 

partially covered trees with many leaves, and trees of 

varying sizes and heights, as shown in Figs. 13(a) and (b). 

The performance of the tree and loose fruitlet detection 

models, trained on various numbers of epochs on the test 

datasets, are reported in Table III and Table IV, 

respectively. Our findings indicate that the YOLOv5 model 

exhibited superior performance in detecting trees than 

YOLOv4. Despite displaying lower recall values than 

YOLOv4, YOLOv5 consistently showed higher precision 

values, indicating fewer false detections. YOLOv5 also 

demonstrated exceptionally high mean Average Precision 

(mAP) scores, with a maximum of 97.79% achieved at 

15,000 epochs. This may be due to the changes made to the 

model's box selection process, allowing it to learn the 

anchor box's size and shape that best matches the dataset. In 

contrast, YOLOv4 outperformed YOLOv5 in detecting 

loose fruitlets, with a mAP of 83.97% (epoch = 10x103), 

precision of 83.97%, and recall of 88.08%. This indicates 

that the YOLOv4 model is more effective at identifying 

loose fruitlets in our dataset. 

 
(a) 

 

 
(b) 

Fig. 13. Sample output of true positive, even the image is (a) 

blurred and (b) the tree is partially covered by frond and full 

of leaves with different heights. 

 

TABLE IV 

PERFORMANCE OF FRUITLET DETECTION 

 Fruitlet 

 YOLOv4 YOLOv5 

Epoch (103) Precision Recall mAP Precision Recall mAP 

5 0.7710 0.8806 0.8163 0.8441 0.7705 0.7187 

10 0.8397 0.8808 0.8545 0.8642 0.7455 0.7216 

15 0.8370 0.8676 0.8443 0.8391 0.7899 0.7221 

20 0.8363 0.8712 0.8481 0.8210 0.7213 0.7219 

 

 
Fig. 12. Sample output of false positive, where the frond 

detected as tree 

 

Tree detected 
0 fruitlet detected! 
NOT Harvest-ready!! 

TABLE III 

PERFORMANCE OF TREE DETECTION 

 Tree 

 YOLOv4 YOLOv5 

Epoch 

(103) 
Precision Recall mAP Precision Recall mAP 

5 0.7633 0.7387 0.7668 0.9956 0.5022 0.9553 

10 0.7857 0.8871 0.8651 0.9935 0.5195 0.9705 

15 0.8000 0.9032 0.8886 0.9961 0.5180 0.9779 

20 0.7807 0.9419 0.8873 0.9954 0.5031 0.9748 
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The accuracy of fruitlet detection is challenging due to 

the small size of the fruitlets, which may be partially or 

completely obstructed by grass or other contaminants. False 

negatives may occur as a result. The square bounding box of 

the fruitlets and YOLOv4's superior performance with small 

objects may contribute to the observed results. Additionally, 

the fruitlet's color (orange to red for ripe fruitlets) is 

significant and can be influenced by the background, which 

can be brown for the ground or green for the grass. To 

improve the detection model, high-definition cameras may 

be utilized to capture crisper and more detailed images of 

the fruitlets. However, high accuracy does not necessarily 

ensure consistent object detection across different frames.  

The performance of object detection consistency was found 

to be 91.13%. As illustrated in Figure 14, the figure 

demonstrates cases where object detection was inconsistent, 

as evidenced by the presence of detected tree in both the 

first and third images, but it failed to detect a tree in the 

second image despite its clear presence. In most cases, the 

tree trunk's color and features were indistinguishable from 

the background (white circled shape in Fig. 14). 

Additionally, excessive leaves on the trunk can make it 

challenging to recognize whether it is a trunk or leaves. 

 

B. Ready-to-harvest Classification Results 

Fig. 15 displays sample images of oil palm trees with less 

than three loose fruitlets in the vicinity of the tree trunk, 

resulting in a three-point counting threshold that categorizes 

them as not harvest-ready. In contrast, Fig. 16 shows images 

of oil palm trees with more than three loose fruitlets on the 

ground, resulting in a categorization of harvest-ready. 

Tables V and VI report the ready-to-harvest classification 

results for thresholds zero and three, respectively, along 

with the corresponding confusion matrices. For threshold 

zero, a tree is deemed ready for harvesting if at least one 

loose fruitlet is detected in its vicinity. The ready-to-harvest 

classification accuracy for threshold zero is 90.48%, as 

reported in Table V. 

Ready-to-harvest classification accuracy (threshold zero): 

90.48%
TP TN

TP TN FP FN

+
=

+ + +
       (4) 

TABLE V 
CONFUSION MATRIX FOR HARVEST-READY CLASSIFICATION TESTING 

(HARVEST-READY THRESHOLD IS SET AS 0) 

 Predicted: not 

harvest-ready 

Predicted: harvest-

ready 

Actual: not 

harvest-ready 

161 12 

Actual: harvest-

ready 

8 50 

 

TABLE VI 

CONFUSION MATRIX FOR HARVEST-READY CLASSIFICATION TESTING 

(HARVEST-READY THRESHOLD IS SET AS 3) 

 Predicted: not 

harvest-ready 

Predicted: harvest-

ready 

Actual: not 

harvest-ready 

161 12 

Actual: harvest-

ready 

8 50 

 

 

 

 
Fig. 14. Consequences of frames show the inconsistent 

detection  

   
 

 
 

Fig. 15. Sample output detected as not harvest-ready trees 

 

 

(a) 

(b) 

Tree detected 
1 fruitlet detected! 
NOT Harvest-ready!! 

Tree detected 
0 fruitlets detected! 
NOT Harvest-ready!! 
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On the other hand, for the threshold set at three, there must 

be at least four loose fruitlets detected on the ground within 

the proximity of a particular tree before only the tree is 

considered ready-to-harvest.  Based on the matrix in Table 

VI, the accuracy of the ready-to-harvest classification for 

threshold three is 91.34% (in (3)). 

Ready-to-harvest classification accuracy (threshold three): 

91.34%
TP TN

TP TN FP FN

+
=

+ + +
       (5) 

 

C.  Limitation & Future Work 

This study presents a method for predicting the harvest-

ready status of fresh fruit bunches (FFBs) based on the 

count of loose fruitlets on the ground. The approach utilizes 

the YOLO (You Only Look Once) model to detect palm 

trees and loose fruitlets within the region of interest (ROI) 

of the tree, allowing for the harvest-ready status to be 

deduced. The deep-learning method was chosen due to its 

high level of accuracy and speed of detection. However, it's 

important to note that the detection results are dependent on 

both the trained detection model and the training dataset. 

When the model is applied to a new environment different 

from the training datasets, it requires retraining to account 

for the new knowledge. Additionally, the detection model's 

effectiveness is contingent on the visibility of at least 80% 

of the loose fruitlets on the ground within the camera's view 

and the minimum size of the fruitlet in the image being at 

least 25x25 pixels from the image resolution of 1920x1080. 

These limitations notwithstanding, the proposed method 

offers significant potential for improving the harvest 

readiness assessment process in oil palm plantations. 

For future work, the output of the proposed prediction 

algorithm can be utilized to generate a virtual 2D/3D map 

that displays the location of ready-to-harvest trees. To assist 

with harvest resource planning, a tree marking module will 

be developed by integrating the recognition output into a 3D 

map that represents the plantation area under investigation. 

Fig. 17 provides an example of a virtual 2D map of oil palm 

tree markings based on harvest readiness status. The 

integration of the proposed virtual map into farm 

management practices may lead to more efficient harvesting 

cycles. By identifying and marking the ready-to-harvest 

trees in the plantation, the resource planning process can be 

optimized, leading to increased productivity and lower costs. 

Moreover, during harvesting operations, the virtual map can 

serve as a valuable tool for guiding workers to the correct 

trees, further improving the efficiency of the process. 

 

IV. CONCLUSION 

In this study, we propose a novel machine vision-based 

prediction algorithm for determining the harvest-ready 

status of fresh fruit bunches (FFBs) in oil palm plantations 

by counting loose fruitlets on the ground. Our approach 

involves using YOLOv5 and YOLOv4 models to detect 

trees and fruitlets, respectively, based on their performance 

and accuracy. The results of our experiments demonstrate 

that YOLOv5 outperforms YOLOv4 in tree detection, 

achieving a mean average precision (mAP) of 97.9%, while 

YOLOv4 is more accurate in detecting small loose fruitlets, 

with mAP of 85.45%. Moreover, our object detection 

consistency findings confirm that the object detection and 

tracker algorithms are robust. We also discuss the challenges 

encountered in object detection. We evaluate the accuracy of 

the ready-to-harvest classification algorithm on 185 video 

clips, achieving 90.48% and 91.34% accuracy for count 

thresholds of zero and three, respectively. However, to 

further improve the prediction and object detection models, 

we recommend that more training data be collected to 

account for environmental variability, including extreme 

lighting conditions and varying tree arrangements in the 

plantation area. We also suggest the use of high-definition 

cameras to improve image quality. Overall, our results 

demonstrate the potential for implementing our proposed 

 

 

Fig. 16. Sample output detected as harvest-ready trees 

 

 

 
 

Fig. 17. Sample virtual 2D map of oil palm tree tagging 

Tree detected 
5 fruitlets detected! 
Harvest-ready!! 

Tree detected 
3 fruitlets detected! 
Harvest-ready!! 

Harvest-ready 

oil palm tree 
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algorithm in oil palm plantations to enhance resource 

planning and operational efficiency. 
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