
  

Abstract—Process monitoring is frequently done with quality 

control charts. To find tiny and moderate shifts in the process, 

the DEWMA control chart is a useful choice. The purpose of this 

article is to construct precise formulas for the average run 

length (ARL) in order to improve usability with observations 

from a seasonal autoregressive model. The Fredholm integral 

equation has been used to solve the explicit formula, and 

Banach's fixed point theorem has been used to guarantee the 

solution's uniqueness. The explicit formula's accuracy was 

checked using the numerical integral equation, also known as 

the NIE approach. And then, its efficiency was proven by the 

computation's speed. The results of the new ARL’s explicit 

formula were compared with the NIE in relative error (RE). It 

is calculated as less than 510− %. One significant finding from 

this comparison is that the calculation, in terms of the 

computation's speed, i.e., the explicit formula, occurs practically 

instantly. It was also extended to evaluate the effectiveness of the 

control chart between the original EWMA control chart and the 

suggested ARL's DEWMA control chart. This study covered 

both simulated and real-world data, and the findings showed 

likewise. And then, the application in this study was chosen to 

be about air pollution, which is one of the pollution's problems 

in Thailand. 

 
Index Terms— average run length, control chart, explicit 

formula, numerical integral equation, seasonal autoregressive 

I. INTRODUCTION 

mix of statistical and analytical techniques called 

statistical process control (SPC) is very helpful in raising 

the caliber of a manufacturing process. Control charts are 

essential tools for the SPC principle. It is used to monitor 

processes and detect changes. It is also often applied in the 

environment, industry, health care, and other fields [1-3]. 

Shewhart [4] was the one who first proposed the concept of 

process validation using control charts. The Shewhart control 

chart has been included in many production procedures, and 

it is useful for detecting large changes in the mean of a 

process. Unfortunately, it is useless for detecting subtle or 

mild changes. As answers to this issue, Page [5] and Roberts 

[6] proposed the cumulative sum control chart (CUSUM) and  
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the exponentially weighted moving average control chart 

(EWMA), respectively. They are capable of detecting small 

and moderate changes. Many researchers have developed 

EWMA control charts to increase control charts’ capabilities 

in detecting small changes. Patel and Divecha [7] introduced 

the modified exponentially weighted moving average control 

chart (MEWMA), which was later developed by Khan et al. 

[8]. Naveed et al. [9] suggested the extended exponentially 

weighted moving average control chart (EEWMA). This 

performs better in detecting even subtle changes than the 

EWMA control chart shown by Karoon et al. [10]. In 

addition, Mahmoud and Woodall [11] suggested the double 

exponentially weighted moving average control chart 

(DEWMA). Shamma and Shamma [12] first showed it in 

1992. The DEWMA control chart aids in the rapid detection 

of parameter changes and minor shifts in autocorrelated data. 

Due to their ability to manage risk in a variety of situations, 

time series modeling and forecasting are essential tools used 

in many areas, including environmental, economic, and 

financial trends [13]. As a result, understanding statistical 

methods and time series modeling is crucial for 

characterizing changes in various processes. Autocorrelation 

in time series has been studied for a long time, and in a variety 

of situations, time-series models have been used to predict the 

data. The data's seasonality and trend were factors. The three 

main categories are autoregressive (AR), moving average 

(MA), and autoregressive moving average (ARMA). The data 

in a time series may exhibit trends or seasonality in some 

circumstances, such as seasonal autoregressive (SAR), 

Seasonal moving average (SMA), autoregressive with trends 

(trend AR), etc. These models of time series were utilized in 

statistical process control, which in this study used the 

seasonal model. 

An indicator of a control chart's effectiveness is the average 

run length (ARL). The number of average observations that 

must remain within the control limit before the procedure 

alerts that they are out of control is referred to as the ARL. It 

is split into two categories: ARL0 (a process is in-control and 

the values should be high) and ARL1 (a process is out-of-

control and the values should be as small as necessary). The 

Markov Chain Approach, the Monte Carlo Method, and the 

Numerical Integral Equation were the techniques that were 

used in much earlier research to estimate the ARL. They were 

found in Runger and Prabhu [14], Riaz et al. [15], Karoon et 

al. [16], and Suriyakat and Petcharat [17]. In addition, explicit 

formulas are one of the techniques. Many researchers are 
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interested in using ARLs to measure their effectiveness 

because explicit formulas can significantly reduce computing 

time. The ARL of random observations from an MA process 

with exponential white noise operating on the CUSUM 

control chart was explicitly formulated by Petcharat et al. [18] 

in their publication. Sunthornwat et al. [19] provided explicit 

formulations for the analytical ARL on the EWMA control 

chart with a long-memory ARFIMA process and contrasted 

them with the NIE technique. When the data are the first- and 

general-order autoregressive models with exponential white 

noise. Phanthuna et al. [20] mentioned that observations of 

trend-stationary autoregressive operating on the MEWMA 

control chart resulted in exact formulations of the ARL.  

Later, Karoon et al. [21–22] proposed explicit formulas for 

the ARL on the EEWMA control chart based on the first-

order and general autoregressive models and compared them 

with the EWMA and CUSUM control charts, and they found 

that the EEWMA control chart can be well performed. 

Recently, the explicit formula of ARL for the EEWMA 

control chart was derived based on the observations from the 

quadratic trend AR(p) model, which was proposed by Karoon 

et al. [23] in 2023. When the data were from an ARMA with 

an explanatory variables model, Silpakob et al. [24] showed 

the precise solution of the ARL on a modified EWMA control 

chart. At the same time, ARL, which runs on a double EWMA 

control chart, was modified by Karoon et al. [25] to 

incorporate the use of an explicit approach based on the time 

series shown in the AR model. 

Furthermore, numerous research studies have investigated 

the modeling of time series using the seasonal model, which 

has been investigated in many studies and has been widely 

used in conjunction with the control chart. For example, The 

MEWMA control chart based on the seasonal autoregressive 

model and its applications with the percentages of internet 

users by business and news website categories in Thailand 

was provided by Phanthuna and Areepong [26]. Phanyaem 

[27] presented explicit formulas and four numerical integral 

equation ARL methods based on a seasonal ARX model and 

the CUSUM control chart. Later, Petcharat [28] improved the 

explicit ARL formula on the CUSUM control chart. It was 

running based on the seasonal autoregressive with trend 

model, utilizing the Fredholm integral equation technique, 

and afterwards applied actual data to the silver price data. The 

exact formula of ARL that operates on an extended EWMA 

control chart and runs underlying the seasonal AR model was 

presented by Karoon et al. [29]. They enlarged it to assess the 

effectiveness of regular EWMA control charts and then used 

real data, the number of internet users, to confirm the 

conclusions of these. Chananet and Phanyaem [30] developed 

the explicit formula for ARL based on the CUSUM control 

chart. It uses observations from a seasonal AR model with 

exogenous variables. They further developed it to contrast the 

ARL of CUSUM generated by NIE with Gaussian and 

midpoint rules. Later, Petcharat [31] proposed the ARL that 

was obtained by an exact solution running on the EWMA 

control chart under the seasonal MAX model, compared it to 

the NIE with Gaussian and Midpoint rules, and extended it to 

compare with the CUSUM control chart. 

In addition to the aforementioned, seasonal time-series 

models are useful in a variety of applications. Chen and Wang 

presented the seasonal ARIMA model in 2007 [32], which 

was used to anticipate the production values of the equipment 

sector. Montaser et al. [33] presented the performance of a 

seasonal model based on ARIMA for applications in glucose 

prediction in an artificial pancreas. As shown by Kadri et al. 

in 2019 [34], a seasonal ARMA model was employed to 

predict the emergency department systems. 

However, the explicit ARL of the DEWMA control chart 

based on the data is a seasonal autoregressive model that has 

not been done before. Using the DEWMA control chart, this 

paper's main objective is to construct explicit ARL formulae 

for the data and compare them to the NIE method, which uses 

seasonal autoregressive models. Then, for both simulated and 

real data, the DEWMA control chart is extended for 

comparison to the EWMA control chart. Its applications are 

about O3 and PM10 in Chiang Mai, Thailand; those are 

important pollutants. 

II. MATERIALS AND METHODS 

In this section, we present the DEWMA statistic design along 

with data from the seasonal autoregressive model (SAR(p)s), 

followed by the explicit formula and NIE approach of the 

ARL. 

A. The DEWMA Control Chart 

First of all, Robert is credited with coming up with the 

EWMA control chart [6]. It typically tracks and finds minute 

variations in the process's mean. The equation below can be 

employed to describe the statistics of the EWMA control 

chart in (1).  

1(1 )t t tZ X Z  −= + −                                                        (1)                                                 

where the EWMA control chart parameter 
tX  is a sequence 

of seasonal autoregressive (SAR(p)s) model and a sequence 

data at 1,2,3,...t =  with exponential white noise,   is an 

exponential smoothing parameter (0,1] , tX  at 0t =  is the 

initial value of the EWMA statistics. Its mean is equal to 

and variance of tX is equal to 
2 (2 ) − . And then, the 

upper control limit (UCL) and lower control limit (LCL) can 

be descripted from the mean  , the standard deviation   , 

and a control width limit B as follows: 

, .
2 2

LCLUCL B B
 

 
   =

− −
= + −  

The EWMA control chart's stopping time is written as: 

 inf 0 : Zb tt UCL =   . 

   Second, Mahmoud and Woodall [11] improved the 

DEWMA control chart after Shamma and Shamma initially 

proposed it in 1992 [12]. It was extended from the EWMA 

control chart after being smoothed twice exponentially. The 

equation in (2) below could be used to describe the statistics 

of the DEWMA control chart. 

2 2 1(1 )t t tDE Z DE  −= + −  

1 1 1(1 )Zt t tZ X  −= + − .                                                  (2) 

where the DEWMA control chart parameter tX  is a 

sequence of seasonal autoregressive (SAR(p)s) model and a 

sequence data at 1,2,3,...t =  with exponential white noise, 

1  and 
2  are exponential smoothing parameters equals
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(0,1] , tX  at 0t =  is the initial value of the DEWMA 

statistics. Its mean is equal to   and variance of tX is equal 

to 
2 2 2 2

21 2 2 1 1 2

2 2 2

1 2 2 1 1 2

(1 ) (1 ) (1 )(1 )
2 .

( ) 1 (1 ) 1 (1 ) 1 (1 )(1 )

     


     

 − − − −
+ − 

− − − − − − − − 

 

And then, the upper control limit (UCL) and lower control 

limit (LCL) can be descripted from the mean  , the standard 

deviation   , and a control width limit D as follows: 

2 2 2 2

1 2 2 1 1 2

2 2 2

1 2 2 1 1 2

2 2 2 2

1 2 2 1 1 2

2 2 2

1 2 2 1 1 2

(1 ) (1 ) (1 )(1 )
2 ,

( ) 1 (1 ) 1 (1 ) 1 (1 )(1 )

(1 ) (1 ) (1 )(1 )
2 .

( ) 1 (1 ) 1 (1 ) 1 (1 )(1 )

UCL D

LCL D

     
 

     

     
 

     

 − − − −
= + + − 

− − − − − − − − 

 − − − −
= − + − 

− − − − − − − − 

 

The EWMA control chart's stopping time is written as: 

 inf 0 :b tt DE UCL =   . 

Moreover, if 1  equals 1 in the DEWMA statistic, that 

becomes the EWMA statistic.  

 

  B. The DEWMA Control Chart for SAR(p)s Models 

Monitoring industrial operations, the environment, the 

provision of healthcare, and the tracking of corporate 

financial indicators all require the use of time series data. 

Data points collected over time may contain internal 

structures (such as autocorrelation, trend, or seasonal 

fluctuation) that need to be taken into consideration. Time-

series analysis takes this into account. Many time series have 

seasonal activity, with fundamental patterns that recur 

seasonally across time. A seasonal model can also be defined 

using different metrics, such as autoregressive (AR(p)), 

moving average (MA(q)), autoregressive moving average 

(ARMA(p,q)), and so on. In this article, we looked at the 

seasonal autoregressive model, also known as the SAR(p)s 

model.  

  The seasonal autoregressive model for lag p and period s of 

the seasonality, denoted by SAR(p)s, is written in (3) as:  

1 1 2 2 ...t t s t s p t ps tX c X X X   − − −= + + + + +               (3) 

Where ( )t Exp    

           
tX  is a sequence from a SAR(p)s model,  

             c  is the constant of the model,  

1 2, ,..., p    are coefficients of the seasonal autoregressive 

model with values of 1p  , 

       s  is the number of seasonal periods (e.g., s equals 4 for 

quarterly data and s equals 12 for monthly data),  

      
t  is the error terms for white noise exponential 

distribution, 

and, 
1 2, ,...,t s t s t psX X X− − −

are initial values with the 

process mean. 

   For the DEWMA control chart running a seasonal 

autoregressive model, the initial value of ARL denoted ( )D 

and the initial value of the monitoring DEWMA statistic 

0DE =  represented at [0, ]b  . As the result, the function 

( )D   is defined in (4) as follows: 

( ) ( )bARL D  = =                                                        (4) 

The following definitions apply to the ARL in (4): 

0

1 1

E ( ), ( ),
( )

E ( ), ( ),

b

b

ARL no change in control
ARL D

ARL change out of control






= −
= = 

= − −
, 

where ( )  denote the expectation with the density function 

as ( , )f x  .  After that, it can be used in the following section 

about process monitoring. The change-point models are 

considered as follows:  

0

1

( ), 1, 2,3,..., 1

( ), , 1, 2,...
t

Exp t

Exp t

 


   

= −


= + +
. 

Herein,  =   is known as the in-control ARL (ARL0) and 
denotes that there has been no change in the statistical control 
process. On the other hand, 1 =  denotes the first time point 
in the statistical control process when a change occurs from 

0  to  , which is referred to an out-of-control ARL 
(ARL1). 
 

 C. Explicit Formula and NIE for SAR(p)s Models 

Analytical Explicit Formula of the ARL 

This part uses a seasonal autoregressive model with an 

exponential noise distribution to solve the analytically 

explicit formula of the ARL on the DEWMA control chart. It 

is assumed that the lower control limit (LCL) is equal to 0 and 

the upper control limit (UCL) is equal to b. 

  First, solve the seasonal autoregressive (SAR(p)s) explicit 

formula for the ARL operating on the DEWMA control chart. 

The SAR(p)s model is used as Xt in (3) instead of the 

DEWMA statistics in (2), in the following: 

 

( )1 2 1 1 2 2 ...t t s t s p t ps tDE c X X X     − − −= + + + + +  

           
2 1 1 2 1(1 ) Z (1 )t tDE  − −+ − + − . 

1tDE − = is supported by the first point in time at t = 1, and 

the initial value of the DEWMA statistic Z0 is equal to  . In 

terms of SAR(p)s, the DEWMA statistic is as follows:  

( )1 1 2 1 1 2 2 1

2 1 2

...

(1 ) (1 )

t s t s p t psDE c X X X     

   

− − −= + + + + +

+ −  + −
. 

Second, solve the error term. The range of DE1 between the 

lower and upper bound control limits is stated in the control 

process as 0 to b and the error term 1  may be expressed as 

follows: 
*

1 .n n                                                              (5) 

Where n represents 2 1

11 2 1

0 (1 ) (1 ) p

i t is

i

c X
  


  

−

=

 − − − 
− − + 

 


and n*represents 2 1

11 2 1

(1 ) (1 ) p

i t is

i

b
c X

  


  
−

=

 − − − 
− − + 

 
 , 

respectively. 
Third, solve the ARL by using the Fredholm integral equation 
of the second kind [35]. The equation is shown as follows: 

*
1 2 1

1

2 1 2

( ) ( )

(1 ) (1 )

p

n
i t is

i

n

c X
D D f d

   
  

   

−

=

  
+ +  

=   
 + −  + − 


 , 

Then, when the integration variable is substituted to get  

1 2 1 2 1 2

1

(1 ) (1 )
p

i t is

i

c X        −

=

 
= + + + −  + − 

 
 , 

( )D  has been rearranged as follows: 
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2 1

1 2 1

1 2 0

1

(1 ) (1 )

1
( ) 1 ( ) .

b

p

i t is

i

D D f d

X c

   

  
  

 
 −

=

− − −  
− 

 = +
 

− − 
 




  (6) 

Next, the error terms then describe the function ( )D   as an 

exponential distribution function. So, the function ( )D  is 

rewritten as:  

1 2

1 2 0

1
( ) 1 ( )

b

qD e D e d



   
 

−

= +  .                               (7) 

where
2 1 1 2

1 2 1 1

(1 ) (1 )
( )

p

i t is
i

q c X
    


    −

=

− − 
= + + +   ,

( )
q

G e = .  

After that, the explicit formula ARL, which is running on the 

DEWMA control chart based on the SAR(p)s model, is then 

checked for existence and uniqueness using Equation (7), and 

the solution is found using Banach's fixed point theorem [36]. 

Theorem1: Banach’s fixed point theorem 

Let ( , )X d represent a complete metric space and Let 

:T X X→ represent the contraction mapping. And then, T 

denote unique on fixed point. There exists a unique solution 

to the fixed point when ( )T  = . 

To proof that, let T determined in Eq. (6) is a contraction 

mapping for 
1 2( ) , ( ) [0, ]D D G b   . Such that, 

1 2 1 2( ( ) ) ( ( ) ) ( ) ( ( ) ,T D T D h D D   −  −  

1 2( ) , ( ) ,D D X    

where h denotes a positive constant. 

Therefore, 

1 2 1 2
[0, ]

( ) ) ( ( ) ) sup ( ( ) ( ( )
b

TD T D D D


   




− = −  

1 2

1 2
[0, ] 1 2 0

1
sup ( ( ) ( ) )

b

q

b

e D D e d



 



  
 

−



= −   

1 2

1 2
[0, ] 1 2 0

1
sup ( ) ( )

b

q

b

e e d D D



 



  
 

−




 −  

1 2

1 2
[0, ]

sup . 1 . ( ) ( )

b

q

b

e e D D
 



 

−




   
 − −   

   

 

1 2( ) ( ) ,h D D 


 −  where [0,1)h . 

The explicit ARL is simplified to give a uniqueness and 

existence solution. 

After checking for uniqueness and existence, the next step is 

setting new variables in equation (7), which can be presented 

as follows: 

1 2

0

( )

b

D e d



   

−

=  . 

Therefore, by adding new variables, the explicit ARL 

solution can be rewritten as follows: 

1 2

1
( ) 1 ( )D G  

 
= +  .                                              (8) 

Next step, Equation (8) is used instead of ( )D  , Its 

procedure is illustrated below. 

From           1 2

0

( )

b

D e d



   

−

=  , 

we will get  1 2

1 20

1
(1 ( ) )

b

G e d



    
 

−

= +   . 

Such that, 

 

1 2

1 1

1 1

1 2

(1 )

2

1

1
1 . 1

p

i t is

i

b

c X
b

e

e e

 




  

 





−

=

−

+
−  −

+

 
− − 

  =


 
+  − 

  

 .        (9) 

After that,   in (9) is substituted into (8), the ( )D   can be 

rewritten as: 

( )D 

2

1 2 1 2

(1 )1 1

1
1

(1 )

2

2

1

1

1

p
c Xi t is

i

b

b

e e

e e




 

 

   







+  −
− = +

− −

−

 
 − 
  = −

 
+ − 

  

.      (10) 

So, the explicit ARL solution on the DEWMA control chart 

for the model of data is SAR(p)s, which is shown in (10). 

Moreover, the explicit ARL0 (the in-control circumstance) in 

( )D  is obtained by 0 = in (10) whereas the explicit 

ARL1 (the out-of-control circumstance) in ( )D  in obtained 

by 1 =  in (10), and then 1 0(1 )  = + . 
 
Analytical NIE of the ARL 

The NIE approach could be used to calculate the ARL of 

the SAR(p)s model running on the DEWMA control chart. 

Let ( )D  
 be the ARL of the NIE approach on the 

DEWMA control chart when the model of the data is 

SAR(p)s. The ARL of the NIE approach is estimated by 

starting from (8) and computing in terms of the m linear 

equation systems with the midpoint rule on the interval [0,b]. 

The interval is subdivided into m subintervals                                  

([ yk-1, yk ], k=1,2,…,m), a set of equal width (dj = b/m), and 

the intermediate value of the kth interval to be yj = dj(j – 0.5).  
  The quadrature rule evaluates the estimation for an integral 
in (11) as follows: 

 

10

( ) ( ) ( )

b m

j j

j

D f d d f y  
=

                                             (11) 

The NIE approach ( ( )D  
), which is approximated by a 

linear equation, has a solution, as follows below. 

2 1

1 2 1

11 2

1

(1 ) (1 )

1
( )* 1 ( ) ,

1,2,...,

j i

m

i j j p
j

i t is

i

y y

D y d D y f

c X

i m

 

  

 


=

−

=

− − − 
− 

 = + 
 

− − 
 

=




 

Finally, substituting   for iy  in ( )iD y 
, the solution of 

the NIE approach for the function ( )D   being expressed as 

the function ( )D  
 in (12) as follows: 
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2 1

1 2 1

11 2

1

(1 ) (1 )

1
( )* 1 ( )

j

m

j j p
j

i t is

i

y

D d D y f

c X

  

  


 


=

−

=

− − − 
− 

 = + 
 

− − 
 




.(12) 

where yj = dj(j – 0.5) and dj = b/m, j = 1,2,…,m. 

III. EFFICIENCY COMPARISON AND EVALUATION OF ARL 

A. Experimental Results of ARL 

  This section examined the explicit ARL using the Fredholm 

integral equation and contrasted it with the ARL of the NIE 

technique using the Gauss-Legendre quadrature rule as well 

as the composite midpoint rule based on the DEWMA control 

chart with 1,000 division nodes. A seasonal autoregressive 

(SAR(p)s) model was used to analyze the experimental 

data. The Mathematica software calculated the codes for 

computing the explicit ARL and the NIE method of the ARL. 

The accuracy of the ARL that approximates values is 

measured by the relative error (%RE). The ARL's expressly 

created formulas checked the performance's effectiveness in 

terms of the relative error (%RE) and computation time. That 

is calculated following the equation below. 

*( ) ( )
% 100%

( )

D D
RE

D

 



−
=                                       (13) 

where ( )D  and 
*( )D   are the explicit ARL in (10) and 

the ARL of the NIE technique in (12), respectively. 

   The simulated data is commonly provided with ARL0 = 370 

for the in-control circumstance, allowing the starting 

parameters to be studied at 0 1 = , whereas 1  is investigated 

in the out-of-control circumstance and computed at 

determining small and modulate shift (  ), such as 0.001, 

0.002, 0.003, 0.004, 0.005, 0.01, 0.02, 0.05, and 0.5. And then 

the lower and upper control limits are studied for the 

exponential distribution at the interval [0, b]. The one-sided 

DEWMA structure of the explicit ARL values was associated 

with SAR(1)12 and SAR(2)12 models.       

The simulated data of SAR(1)12 with and SAR(2)12 models 

are shown in Table I. and II. Those were compared to the 

ARL values of the NIE technique. The results in Table I. and 

Table II. were showed the performance of the explicit ARL 

against the ARL of the NIE techniques. Results from the 

explicit ARL are comparable to those from the NIE 

methodology; however, the computational durations for the 

explicit ARL's significant relative error times are 

instantaneous, whereas those for the NIE method's ARL are 

between 7-9 seconds. 

B. Performance Comparison of the Explicit ARL 

This section investigated the explicit ARL with the 

DEWMA control chart using different
1  values and 

compared its capability to the EWMA control chart using 
1

equals 1. The exponential smoothing parameters are set small 

(
2 equals 0.05 and 0.1) and moderate (

2 equals 0.2 and 0.3) 

on the SAR(1)12 and the SAR(2)12 models. 

 

 

TABLE I 

THE EXPLICIT ARL VALUES AGAINST THE ARL VALUES OF THE NIE 

METHOD ON THE DEWMA CHART WITH THE DATA RUNNING ARE 

SAR(1)12. 
 

1 0.05 =
 

 


 

 

 1 2, =
 

1 0.2 =
 

0.0003669357b =  

1 24 , =
 

1 0.2 = −

0.001545667b =  

0 ( )D   370.01453428  

(<0.001) 

370.04734182  

(<0.001) 

( )*D   370.01453363  

(7.765) 

370.04733569  

(7.890) 

%RE  0.00000018 0.00000166 

0.001 ( )D   172.12999928  

(<0.001) 

174.50987343  

(<0.001) 

( )*D   172.12999905  

(7.985) 

174.50987199  

(7.875) 

%RE  0.00000013 0.00000083 

0.002 ( )D   112.35093284  

(<0.001) 

114.37383494  

(<0.001) 

( )*D   112.35093272  

(7.923) 

114.37383429  

(7.921) 

%RE  0.00000012 0.00000057 

0.003 ( )D   83.49985789  

(<0.001) 

85.16994582  

(<0.001) 

( )*D   83.49985780  

(7.906) 

85.16994543  

(7.860) 

%RE  0.00000011 0.00000045 

0.004 ( )D   66.50780220  

(<0.001) 

67.91469329  

(<0.001) 

( )*D   66.50780213  

(7.922) 

67.91469304  

(7.938) 

%RE  0.00000010 0.00000037 

0.005 ( )D   55.30949921  

(<0.001) 

56.52039143  

(<0.001) 

( )*D   55.30949916  

(7.984) 

56.52039124  

(7.953) 

%RE  0.00000010 0.00000033 

0.01 ( )D   30.23673288  

(<0.001) 

30.94359335  

(<0.001) 

( )*D   30.23673285  

(7.999) 

30.94359329  

(7.875) 

%RE  0.00000009 0.00000021 

0.02 ( )D   16.14112652  

(<0.001) 

16.52488538  

(<0.001) 

( )*D   16.14112651  

(7.969) 

16.52488536  

(8.077) 

%RE  0.00000008 0.00000015 

0.05 ( )D   7.11166453  

(<0.001) 

7.27328790  

(<0.001) 

( )*D   7.11166452  

(7.937) 

7.27328789  

(7.953) 

%RE  0.00000007 0.00000010 

0.5 ( )D   1.51663432  

(<0.001) 

1.53340793  

(<0.001) 

( )*D   1.51663432  

(7.876) 

1.53340793  

(7.891) 

%RE  0.00000001 0.00000002 

Note: The results in parentheses are the computational times in seconds 
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TABLE II 

THE EXPLICIT ARL VALUES AGAINST THE ARL VALUES OF 

THE NIE METHOD ON THE DEWMA CHART WITH THE DATA 

RUNNING ARE SAR(2)12. 
 

1 0.1 =
 

 


 

 
1 2, =

 

1 0.3 =
 

0.003935012b =  

1 22 , =
 

1 0.3 = −
 

0.00854954b =  

0 ( )D   370.07317709  

(<0.001) 

370.03645639 

 (<0.001) 

( )*D   370.07316428 

 (8.219) 

370.03640473 

 (8.280) 

%RE  0.00000346 0.00001396 

0.001 ( )D   200.83279025 

 (<0.001) 

205.45992145  

(<0.001) 

( )*D   200.83278591  

(8.375) 

205.45990494 

 (8.218) 

%RE  0.00000216 0.00000804 

0.002 ( )D   138.00219472 

 (<0.001) 

142.39721552  

(<0.001) 

( )*D   138.00219241 

 (8.297) 

142.39720731  

(8.250) 

%RE  0.00000167 0.00000577 

0.003 ( )D   105.22749104  

(<0.001) 

109.06392275  

(<0.001) 

( )*D   105.22748955 

 (8.265) 

109.06391777  

(8.265) 

%RE  0.00000142 0.00000457 

0.004 ( )D   85.10487553  

(<0.001) 

88.44732723  

(<0.001) 

( )*D   85.10487446  

(8.297) 

88.44732385  

(8.312) 

%RE  0.00000126 0.00000382 

0.005 ( )D   71.49346977 

 (<0.001) 

74.43602753  

(<0.001) 

( )*D   71.49346894  

(8.359) 

74.43602506  

(8.265) 

%RE  0.00000116 0.00000331 

0.01 ( )D   39.95781567 

 (<0.001) 

41.76811381  

(<0.001) 

( )*D   39.95781531 

 (8.266) 

41.76811292 

 (8.343) 

%RE  0.00000090 0.00000213 

0.02 ( )D   21.55271193  

(<0.001) 

22.56812959  

(<0.001) 

( )*D   21.55271178  

(8.220) 

22.56812927  

(8.265) 

%RE  0.00000074 0.00000141 

0.05 ( )D   9.49069606  

(<0.001) 

9.93098564 

 (<0.001) 

( )*D   9.49069600  

(8.297) 

9.93098555 

 (8.296) 

%RE  0.00000058 0.00000088 

0.5 ( )D   1.848654363 

 (<0.001) 

1.900194303  

(<0.001) 

( )*D   1.848654361  

(8.218) 

1.900194300  

(7.891) 

%RE  0.00000013 0.00000017 

Note: The results in parentheses are the computational times in seconds 

 

 

 

The results for contrasting capability between the 

DEWMA and EWMA control charts based on different 

situations are shown in Table III. and IV and Fig. 1. and 2.  

The results showed that the DEWMA control chart 

received lower ARL1 values than the EWMA control chart in 

all situations. The DEWMA control chart with 
1 20.5 =

also outperformed the DEWMA control chart with 
1 2 =

and 
1 22 =  and the EWMA control chart, respectively, for 

both SAR(1)12 and SAR(2)12 models in all cases. 
Correspondingly, the relative mean index (RMI), a 

measurement, may also be used to confirm the effectiveness 

of each control chart [37]. The RMI in (14) is calculated as 

follows: 
*

*
1

1 n
i i

i i

ARL ARL
RMI

n ARL=

−
=                                                            (14) 

where the ARL value for row ith on the tested control chart is 

iARL , and the lowest ARL value for row ith on the tested 

control chart is
*

iARL . The control chart, this one, can be 

given the lowest RMI value and has more capability than 

other control charts. Additionally, the average extra quadratic 

loss (AEQL) is a metric that may be used to assess the 

effectiveness of each control chart [38]. The AEQL is 

calculated in (15) as follows:  

( )
max

min

21
( )

i

i iAEQL ARL


 

 
=

= 


                                          (15) 

where 
i  is the amount of shift in the operation calculated by 

the control chart, ( )iARL   is the ARL value of the control 

chart for the amount of shift 
i  , and   is the sum of shift 

numbers from 
min to 

max . In this study,   was determined 

as 10 increments from 
min 0 =  to 

max 0.5 = . The control 

chart can be given the lowest AEQL value and has more 

capability than other control charts, for which the criteria are 

indicated similarly to the RMI measurement. The results 

shown are the RMI and AEQL values of the DEWMA and 

EWMA charts based on different parameters to confirm the 

performance of the control charts as presented in Table V. 

The results show the RMI and AEQL values of each control 

charts; the DEWMA chart with  
1 20.5 =  has the lowest 

RMI and AEQL values for all cases. So, the DEWMA chart 

outperforms the EWMA chart with all of its different  in 

every situation. The exponential smoothing parameters
2 are 

so low that the performance of the DEWMA control chart is 

good. Note that, the bold in Table V is the lowest RMI and 

AEQL values when the values were compared by using 

different 
1 of the DEWMA and EWMA charts, and 

DEWMA_05, DEWMA_1, DEWMA_2 in Figs. 1, 2, 4, and 

5  are instead of DEWMA with 
1 20.5 =  , 

1 2 = , and 

1 22 = , respectively. 
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TABLE III 

PERFORMANCE COMPARISON ON THE DEWMA (DIFFERENT    PARAMETERS WERE GIVEN) AND EWMA CONTROL CHARTS, AND DIFFERENT 

SHIFT  SIZES IN THE MODEL WERE PERFORMED WITH SAR(1)12 AND DETERMINED COEFFICIENT MODEL ( 1 ) EQUAL TO 0.2. 

  

2
 

Control 

Charts      
1

           
b

 
Shift sizes ( ) 

0 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.05 0.5 

0.05  

DEWMA 

 

1 20.5 =
 

0.00002474721 370 130.92 79.74 57.44 44.96 36.97 19.77 10.49 4.69 1.22 

1 2 =
 

0.0003669357 370 172.13 112.35 83.50 66.51 55.31 30.24 16.14 7.11 1.52 

1 22 =
 

0.002008143 370 200.59 137.78 105.03 84.94 71.35 39.87 21.51 9.48 1.85 

EWMA 
1 1 =

 
0.05016143 370 236.37 173.84 137.58 113.91 96.42 56.43 31.07 13.78 2.48 

0.1  

DEWMA 

 

1 20.5 =
 

0.000736578 370 172.57 112.72 83.80 66.76 55.53 30.36 16.21 7.14 1.52 

1 2 =
 

0.004057362 370 201.82 138.94 106.05 85.82 72.12 40.34 21.77 9.59 1.86 

1 22 =
 

0.01356398 370 220.39 157.10 122.17 100.02 84.72 48.26 26.29 11.61 2.16 

EWMA 
1 1 =

 
0.10296968 370 239.89 177.64 141.14 117.16 100.20 58.39 32.22 14.29 2.54 

0.2  

DEWMA 

 

1 20.5 =
 

0.008286 370 204.38 141.36 108.15 87.65 73.73 41.33 22.32 9.82 1.88 

1 2 =
 

0.02811368 370 224.83 161.65 126.29 103.70 88.02 50.36 27.50 12.14 2.21 

1 22 =
 

0.07376465 370 237.86 175.42 139.04 115.24 98.44 57.20 31.50 13.94 2.46 

EWMA 
1 1 =

 
0.2177584 370 247.30 185.85 148.96 124.35 106.78 62.82 34.84 15.46 2.66 

0.3  

DEWMA 

 

1 20.5 =
 

0.02731528 370 221.25 157.97 122.94 100.70 85.32 48.62 26.47 11.66 2.13 

1 2 =
 

0.07934069 370 239.02 176.66 140.21 116.30 99.40 57.83 31.85 14.08 2.45 

1 22 =
 

0.1925868 370 250.19 189.12 152.11 127.28 109.46 64.65 35.92 15.93 2.69 

EWMA 
1 1 =

 
0.347435 370 255.33 195.04 157.87 132.66 114.45 68.11 38.01 16.88 2.81 

 

 

TABLE IV 

PERFORMANCE COMPARISON ON THE DEWMA  (DIFFERENT    PARAMETERS WERE GIVEN) AND EWMA CONTROL CHARTS , AND DIFFERENT 

SHIFT SIZES IN THE MODEL WERE PERFORMED WITH SAR(2)12 AND DETERMINED COEFFICIENT MODEL ( 1 AND  2  ) EQUAL TO 0.2 AND -0.3, 

RESPECTIVELY. 

 

2
 

Control 

Charts       
1

           
b

 
Shift sizes ( ) 

0 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.05 0.5 

0.05  

DEWMA 

 

1 20.5 =
 

0.00002550128 
370 131.42 80.11 57.72 45.18 37.16 19.88 10.54 4.71 1.22 

1 2 =
 

0.000378155 
370 172.90 113.00 84.04 66.96 55.70 30.47 16.27 7.17 1.52 

1 22 =
 

0.002069962 
370 201.54 138.68 105.82 85.62 71.95 40.25 21.72 9.57 1.87 

EWMA 
1 1 =

 
0.0517304 

370 238.00 175.60 139.23 115.42 98.61 57.34 31.61 14.03 2.52 

0.1  

DEWMA 

 

1 20.5 =
 

0.000759185 
370 173.34 113.38 84.35 67.22 55.92 30.60 16.34 7.20 1.53 

1 2 =
 

0.004183598 370 202.83 139.89 106.88 86.54 72.76 40.74 21.99 9.69 1.88 

1 22 =
 

0.0139921 370 221.66 158.39 123.33 101.06 85.65 48.85 26.64 11.77 2.18 

EWMA 
1 1 =

 
0.10628055 370 241.64 179.57 142.98 118.85 101.74 59.42 32.83 14.57 2.57 

0.2  

DEWMA 

 

1 20.5 =
 

0.00854954 370 205.46 142.40 109.06 88.45 74.44 41.77 22.57 9.93 1.90 

1 2 =
 

0.0290356 370 226.26 163.12 127.64 104.91 89.10 51.07 27.91 12.32 2.24 

1 22 =
 

0.076240841 370 239.60 177.32 140.85 116.89 99.94 58.21 32.09 14.21 2.50 

EWMA 
1 1 =

 
0.2252005 370 249.38 188.20 151.23 126.47 108.72 64.15 35.64 15.82 2.70 

0.3  

DEWMA 

 

1 20.5 =
 

0.02823092 370 222.67 159.42 124.25 101.87 86.37 49.29 26.86 11.83 2.15 

1 2 =
 

0.0821211 370 240.86 178.69 142.13 118.06 101.01 58.90 32.49 14.37 2.49 

1 22 =
 

0.1995475 370 252.44 191.70 154.61 129.61 111.62 66.14 36.82 16.33 2.74 

EWMA 
1 1 =

 
0.3601765 370 257.77 197.90 160.70 135.33 116.92 69.84 39.06 17.36 2.87 
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Fig. 1. Comparison of the ARL values based on the DEWMA with different 2  and the EWMA control charts on the SAR(1)12 model. 
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Fig. 2. Comparison of the ARL values based on the DEWMA with different 2  and the EWMA control charts on the SAR(2)12 model. 
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     IV. APPLICATION OF THE PROPOSED EXPLICIT ARL 

Air pollution is one of Thailand's most important 

environmental problems. For people who reside in and travel 

to tourist cities where air pollution levels are substantially 

higher, the effects of the issue are particularly severe. As a 

result, air pollution is a major issue in Thailand that requires 

quick attention. This study looked at two types of air pollutant 

concentrations: particulate matter (PM10) in terms of 

micrograms per cubic meter ( 3/g m ) and ozone (O3) in 

terms of ppb in Chiang Mai, Thailand, with statistical process 

control used to monitor and detect when the concentrations of 

air pollutants exceeded the specified limits. Monthly 

observations of seasonally fitted models served as evidence 

that the data were real. There are two case studies of models 

that are running on the DEWMA and compared to the 

EWMA control chart.  

Both real data consist of 48 observations of the monthly 

concentrations of PM10 and O3 from January 2017 to 

December 2020, which were downloaded from a website: 

http://inenvocc.ddc.moph.go.th/dust/ and shown in Fig. 3. 

Furthermore, the SAR model was fitted using the SPSS 

program, and the Kolmogorov-Smirnov test was used to 

defined that exponential distribution using residuals. The 

coefficient values for the SAR(p)s model that was used in this 

case study are shown in Table VI and VII. 

TABLE V 

RMI AND AEQL VALUES FOR IN THE INDICATED CAPABILITY OF 

CHARTS. 
SAR(1)12 model 

Control 

Charts 

   

   2
  

   

 

0.05 

 

0.1 

 

0.2 

 

0.3 

DEWMA 

 
1 20.5 =

 
RMI 0.0000 0.0000 0.0000 0.0000 

AEQL 0.0325 0.0411 0.0514 0.0582 

1 2 =
 

RMI 0.3984 0.2493 0.1649 0.1413 

AEQL 0.0410 0.0507 0.0605 0.0674 

1 22 =
 

RMI 0.7518 0.4412 0.2861 0.2429 

AEQL 0.0504 0.0590 0.0675 0.0740 

EWMA 
1 1 =

 
RMI 1.3318 0.6792 0.3834 0.2936 

AEQL 0.0680 0.0695 0.0731 0.0774 

SAR(2)12 model 

DEWMA 

 
1 20.5 =

 
RMI 0.0000 0.0000 0.0000 0.0000 

AEQL 0.0326 0.0413 0.0518 0.0589 

1 2 =
 

RMI 0.4008 0.2514 0.1678 0.1451 

AEQL 0.0412 0.0511 0.0613 0.0684 

1 22 =
 

RMI 0.7574 0.4465 0.2927 0.2512 

AEQL 0.0508 0.0596 0.0685 0.0755 

EWMA 
1 1 =

 
RMI 1.3544 0.6923 0.3944 0.3045 

AEQL 0.0689 0.0705 0.0744 0.0790 

Note: The results are bold because they have the lowest of RMI and AEQL 

values. 

 

TABLE VI 

THE SAR(1)12 MODEL COEFFICIENT VALUES WERE CALCULATED 

USING PM10 CONCENTRATIONS IN THAILAND AS CASE STUDY 1. 
Variable Coefficient SE t Sig 

c 48.377 7.436 6.506 0.000 

AR(1) 0.894 0.064 13.868 0.000 

One-Sample Kolmogorov-Smirnov test 

Exponential parameter 14.0799 

Kolmogorov-Smirnov 0.534 

Asymp.Sig (2-tailed) 0.938 

 

 
 

TABLE VII 

THE SAR(3)12 MODEL COEFFICIENT VALUES WERE CALCULATED 

USING O3 CONCENTRATIONS IN THAILAND AS CASE STUDY 2. 
Variable Coefficient SE t Sig 

c 27.385 2.949 9.287 0.000 

AR(1) 0.597 0.159 3.744 0.001 

AR(2) -0.472 0.173 -2.724 0.009 

AR(3) 0.835 0.084 9.877 0.000 

One-Sample Kolmogorov-Smirnov test 

Exponential parameter 6.6258 
Kolmogorov-Smirnov 1.246 

Asymp.Sig (2-tailed) 0.090 

 

The concentrations of PM10 in Thailand was determined as   

SAR(1)12 model and the parameters were shown in Table VI.  

So, the SAR(1)12 model is expressed as follows: 

1248.377 0.894 ; (14.0799)t t t tX X Exp −= + + . 

 The concentrations of O3 in Thailand was determined as 

SAR(3)12 model and the parameters were shown in Table VII. 

So, the SAR(3)12 model is expressed as follows: 

12 24 3627.385 0.597 0.472 0.835 ;t t t t tX X X X − − −= + − + +

(6.6258)t Exp . The results of fitting the SAR(1)12 model 

from Table VIII to the dataset containing PM10 

concentrations show that the DEWMA control chart with the 

exponential smoothing parameter relative to 1 20.5 =  has 

the lowest ARL based on shift changes when compared to the 

DEWMA with another exponential smoothing parameter and 

the EWMA control charts. Thus, the DEWMA with a lower 

exponential smoothing parameter is more efficient than the 

DEWMA with a higher exponential smoothing parameter, 

and it also outperforms the EWMA control chart in all 

situations. According to the results of applying the SAR(3)12 

model from Table IX. to the dataset containing O3 

concentrations, the DEWMA control chart with the 

exponential smoothing parameter relative to 1 20.5 =  has 

the lowest ARL based on shift changes, which is in 

conformity with the SAR(1)12 model's findings. The ARL 

values are based on various shift sizes shown in graphs in Fig. 

4. and 5.  

Furthermore, the lowest RMI and AEQL values in Table X, 

particularly for DEWMA, which result from the lower 

exponential smoothing parameter values, are consistent with 

the efficacy of the DEWMA control chart. As a result, the 

results indicated that the PM10 and O3 concentration datasets 

in Thailand studied gave the same results as the simulated 

data. 

Additionally, the effectiveness of the shift change detection 

procedure shows that, under identical circumstances, the 

DEWMA control chart identifies shift changes better than the 

EWMA control chart. Notice the graphs in Figs. 6 and 7. The 

detection on the DEWMA control chart Based on 

observations made using the SAR(1)12 model, it exceeded the 

bound for the first time at the first observation, which can be 

detected more quickly than the EWMA control chart, which 

did so at the 15th observation. Similarly, the DEWMA control 

chart recognized that it had exceeded the bound for the first 

time at the 6th observation when it came to identifying shift 

changes in observations conducted on the SAR(3)12 model, 

whereas the EWMA control chart surpassed the bound after 

the 15th observation. 
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Fig.3. The real data of the concentrations of air pollutants in Thailand, namely: (A) PM10 (
3/g m ) and (B) O3 (ppb).
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TABLE VIII 

PERFORMANCE COMPARISON ON THE DEWMA WITH 1 20.5 = AND EWMA CONTROL CHARTS, AND DIFFERENT SHIFT SIZES IN THE MODEL 

WERE PERFORMED WITH SAR(1)12 BY USING THE DATASET OF PM10 CONCENTRATIONS IN THAILAND, AND DETERMINED C AND
1 EQUAL TO 

48.377 AND 0.894, RESPECTIVELY. 

2
 

Control 

Charts       
1

          
b

 
Shift sizes ( ) 

0 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.05 0.5 

0.05  

DEWMA 

 

1 20.5 =
 0.0000668327 370 108.13 63.53 45.19 35.07 28.70 15.23 8.09 3.68 1.12 

1 2 =
 0.00055342 370 127.14 76.97 55.41 43.28 35.56 18.98 10.07 4.51 1.20 

1 22 =
 0.00225279 370 139.12 85.86 62.32 48.91 40.29 21.62 11.47 5.10 1.27 

EWMA 
1 1 =

 0.04272205 370 151.62 95.55 69.99 55.21 45.63 24.64 13.09 5.80 1.35 

0.1  

DEWMA 

 

1 20.5 =
 0.001107274 370 127.17 76.99 55.43 43.30 35.57 18.99 10.07 4.51 1.20 

1 2 =
 0.00450918 

370 
139.20 85.92 62.37 48.95 40.32 21.64 11.48 5.11 1.27 

1 22 =
 0.0128723 

370 
145.95 91.11 66.46 52.30 43.16 23.24 12.34 5.47 1.31 

EWMA 
1 1 =

 0.0855738 
370 

151.79 95.68 70.10 55.29 45.70 24.68 13.12 5.80 1.35 

0.2  

DEWMA 

 

1 20.5 =
 0.0090328 

370 
139.35 86.04 62.47 49.02 40.39 21.68 11.50 5.12 1.27 

1 2 =
 0.02580356 

370 
146.20 91.30 66.61 52.42 43.26 23.30 12.37 5.48 1.31 

1 22 =
 0.06168995 

370 
149.86 94.15 68.88 54.29 44.84 24.19 12.85 5.69 1.33 

EWMA 
1 1 =

 0.1716695 
370 

152.12 95.94 70.31 55.47 45.85 24.76 13.16 5.82 1.35 

 

TABLE IX 

PERFORMANCE COMPARISON ON THE DEWMA WITH 1 20.5 = AND EWMA CONTROL CHARTS, AND DIFFERENT SHIFT SIZES IN THE MODEL 

WERE PERFORMED WITH SAR(3)12 BY USING THE DATASET OF O3 CONCENTRATIONS IN THAILAND, AND DETERMINED C, i ; 1, 2,3i =  EQUAL 

TO 27.385, 0.597,   -0.472, AND 0.835, RESPECTIVELY.      

2
 

Control 

Charts        
1

           
b

 
Shift sizes ( ) 

0 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.05 0.5 

0.05  

DEWMA 

 

1 20.5 =
 0.0000746943 370 119.44 70.99 50.83 39.66 32.55 17.31 9.19 4.14 1.16 

1 2 =
 0.000676301 370 144.14 89.19 64.95 51.14 42.22 22.67 12.05 5.35 1.29 

1 22 =
 0.00288022 370 160.01 101.69 74.94 59.40 49.24 26.67 14.20 6.27 1.41 

EWMA 
1 1 =

 0.0569306 370 176.55 115.53 86.30 68.94 57.44 31.45 16.82 7.41 1.56 

0.1  

DEWMA 

 

1 20.5 =
 0.001353981 370 144.24 89.27 65.02 51.19 42.26 22.70 12.06 5.35 1.29 

1 2 =
 0.00577297 

370 
160.19 101.87 75.08 59.52 49.35 26.73 14.24 6.29 1.41 

1 22 =
 0.01687272 

370 
169.23 109.32 81.17 64.61 53.71 29.26 15.62 6.88 1.48 

EWMA 
1 1 =

 0.1143535 
370 

177.07 115.97 86.66 69.25 57.71 31.60 16.90 7.44 1.56 

0.2  

DEWMA 

 

1 20.5 =
 0.01159655 

370 
160.68 102.26 75.41 59.79 49.57 26.86 14.31 6.31 1.41 

1 2 =
 0.03396255 

370 
170.00 109.96 81.68 65.04 54.08 29.47 15.73 6.93 1.49 

1 22 =
 0.0822512 

370 
174.97 114.17 85.17 67.98 56.61 30.96 16.54 7.28 1.53 

EWMA 
1 1 =

 0.2307105 
370 

178.08 116.85 87.39 69.87 58.24 31.92 17.07 7.51 1.56 

       

TABLE X 

RMI AND AEQL VALUES WERE USED IN THE INDICATED CAPABILITY OF CONTROL CHARTS WHEN THE PARAMETERS OF SAR(1)12 AND 

SAR(3)12 WERE OBTAINED BY TWO DATASETS OF PM10 AND O3 CONCENTRATIONS IN THAILAND, RESPECTIVELY.         

Control Charts     SAR(1)12 model SAR(3)12 model 

2 0.05 =
 2 0.1 =

 2 0.2 =
 2 0.05 =

 2 0.1 =
 2 0.2 =

 

DEWMA 

 
1 20.5 =

 
RMI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AEQL 0.0295 0.0320 0.0339 0.0308 0.0347 0.0380 

1 2 =
 

RMI 0.1879 0.1066 0.0567 0.2355 0.1358 0.0745 

AEQL 0.0319 0.0339 0.0351 0.0347 0.0379 0.0402 

1 22 =
 

RMI 0.3175 0.1703 0.0879 0.4071 0.2197 0.1164 

AEQL 0.0339 0.0351 0.0358 0.0379 0.0401 0.0415 

EWMA 
1 1 =

 
RMI 0.4639 0.2275 0.1077 0.6084 0.2967 0.1434 

AEQL 0.0362 0.0362 0.0363 0.0421 0.0422 0.0424 

Note: The results are bold because they have the lowest of RMI and AEQL values. 
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Fig. 4. Comparison of the ARL values based on the DEWMA with different 2  and the EWMA charts based on the SAR(1)12 model by 

using the dataset of PM10 concentrations in Thailand 
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Fig. 5. Comparison of the ARL values based on the DEWMA with different 2  and the EWMA charts based on the 

SAR(3)12 model by using the dataset of O3 concentrations in Thailand 
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Fig. 6. The capability of detecting processes in the dataset, which is PM10 concentrations based on the SAR(1)12 model and 

running on two control charts; (A) EWMA and (B) DEWMA control charts. 
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Fig. 7. The capability of detecting processes in the dataset, which is O3 concentrations based on the SAR(3)12 model and 

running on two control charts; (A) EWMA and (B) DEWMA control charts.
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V. CONCLUSIONS 

The efficiency of the DEWMA control chart, which runs 

SAR(p)s models with an exponential white noise distribution, 

was evaluated using the explicit ARL, which outperformed 

the NIE approach's explicit ARL in terms of computation 

time. After that, the explicit ARL on running the DEWMA 

control chart was compared to the EWMA control chart in 

cases of different exponential smoothing parameters for the 

simulated data, which form the SAR(p)s model. Two 

measurements, such as RMI and AEQL, confirm the 

effectiveness of control charts, and the explicit ARL values 

were compared for all instances. According to the results, the 

DEWMA, which has a lower exponential smoothing 

parameter than the DEWMA, which has a higher exponential 

smoothing value, may express more capability. The 

DEWMA control chart also appears to be better than the 

EWMA control chart in all circumstances. In addition, the 

explicit ARL can also be applied to real data, which gives the 

same results as simulated data. In this study, it was applied to 

the data about the concentration of air pollutants such as 

PM10 and O3 in Thailand. Hence, the explicit formula is an 

alternative for calculating the ARL for shift changes, and the 

case study showed the data with the SAR(p)s model running 

on the DEWMA control chart.  
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