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Abstract—In this paper, we propose a method of extracting

features from ECG signals based on the sparse representation
of double-threshold Stagewise orthogonal matching Pursuit.
First, the ECG signal was de-noised and then the K singular
value decomposition algorithm (KSVD) was used to iterate the
ECG data set to obtain a supercomplete dictionary of ECG
signals. Then, through the double-threshold Stagewise
orthogonal matching Pursuit, a sparse atomic matrix with the
best reconstruction effect is finally selected to obtain the
characteristics of ECG signals. Normal, atrial fibrillation, and
ventricular fibrillation ECG signals from MIT ’ s ECG Signal
Database (MIT-BIH) were used to evaluate the proposed
method. Experimental results show that in the binary
classification experiment, the comprehensive recognition rate of
the proposed algorithm for normal ECG signals, ventricular
fibrillation and atrial fibrillation is 93.96%, 1.26% higher than
that of CNN, and 3.99% higher than that of wavelet transform.
Meanwhile, the five parameters of the proposed algorithm, such
as comprehensive Kappa and comprehensive root relative
square error, are the best. In addition, this paper carries out
three-classification recognition of normal, atrial fibrillation,
and ventricular fibrillation signals. The average recognition
rate of the proposed algorithm among the three classifiers is
89.17%. The average recognition rate is 3.2% and 6.67% higher
than that of convolutional neural networks and wavelet
transform, respectively. The experimental results show that the
features extracted in this paper have high recognition
performance for arrhythmia ECG signals.

Index Terms—Double-threshold location, Dictionary
learning, orthogonal matching pursuit, Sparse representation

I. INTRODUCTION

ardiovascular diseases are the leading cause of death
worldwide. Since the beginning of the 21st century, aging has
intensified, and the incidence rate of cardiovascular diseases
has skyrocketed. Clinical cardiovascular diseases are often
accompanied by arrhythmia, among which atrial fibrillation
and ventricular fibrillation can lead to stroke and cardiac
arrest. Therefore, timely and accurate detection of the type of
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arrhythmia is urgent and necessary. Electrocardiogram (ECG)
signal detection is advantageous because it is non-invasive,
with a high recognition rate and rapid recognition. As such, it
has become the most commonly used diagnostic tool for
cardiovascular diseases. Because of the complexity and
diversity of human ECG signals, however, it is difficult to
classify them. The sparse representation of ECG signals has
become a new breakthrough point for the study of ECG
signals.

Traditional methods of extracting features from ECG
signals include hardware detection methods,
template-matching methods, wavelet change methods, and
morphological analysis. Hardware detection mainly uses a
peak voltage detection meter and voltage comparator to
detect R waves. However, this method is greatly affected by
the environment and the characteristics of the measuring
devices. The template-matching method involves
recognizing images of ECGs and taking existing signal
features, such as R waves and QRS wave groups, as a
template feature vector. This method extracts the feature
vector that matches the position of the template feature vector
from the image to be tested for a comparative experiment,
calculates the difference between the feature vector obtained
from the recognition image and the template feature vector,
and identifies the image wave group according to the
difference [1]–[2]. But template matching requires
establishing a standard template library in advance, and this
requires a large amount of probability distribution
calculations, which are easily subjected to interference from
external noise that can lead to misjudgments. The wavelet
change method uses a wavelet transform to decompose ECG
signals and obtain time domain information and high-order
statistics of the ECG signals [3]–[6]. However, this method
relies heavily on carefully selected features, making it
difficult to handle multi-class classification tasks. With
morphological analysis, feature extraction and analysis of
ECG signals are carried out according to the QRS wave
group, T waves, R waves, and other information provided by
ECG signal waveforms [7]–[8]. Yet this method requires
manual feature extraction. As such, the designer much have
ample experience for the method to be effective. In addition,
when there is a lot of noise in the original signal or the
morphological characteristics of the ECG signal are not
obvious, information may be omitted.

In recent years, the development of artificial intelligence
and deep learning has provided a method by which deep
features can be automatically learned, avoiding the influence
of artificial designs on classification efficiency. Deep
learning can now effectively replace traditional ECG signal
feature extraction algorithms. Deep learning methods applied
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to ECG classification and recognition include convolutional
neural networks (CNNs) [9]-[13], decision trees and support
vector machines [14-15], k-nearest neighbors [16], CNNs in
combination with long short-term memory [17]-[21], and
recurrent neural networks. Such methods have demonstrated
good performance at signal classification. Deep learning
methods use a deep neural network to extract the features of
ECG signals and determine signal categories. However, deep
learning requires considerable data and computing resources.

In what follows, we propose a feature extraction
method ,which is called double-threshold Stagewise
orthogonal matching Pursuit (DSWOMP), for ECG signals
based on sparse representation. A wavelet transform is first
used to filter out baseline drift and electromyographic noise
in the ECG signals. Then, the Butterworth low-pass filter is
used to filter out high-frequency noise in the signals, and the
processed signals are iterated using the K-singular-value
decomposition algorithm to obtain a supercomplete
dictionary of normal, ventricular fibrillation, and atrial
fibrillation ECG signals. Using this dictionary, a stagewise
orthogonal matching pursuit algorithm is used to reconstruct
the ECG signals. The sparse atomic matrix with the best
reconstruction effect is then selected through the threshold
parameters of the double-threshold positioning method, and
the sparse atomic matrix of each signal is taken as the feature
of the signal.

II. PREPROCESSING BASED ON WAVELET TRANSFORM

ECG signals collected by machines always have
electromyographic noise caused by the human body itself and
baseline drift caused by machine hardware extraction. This
noise seriously affects the extraction of ECG signal features.
Therefore, we applied filtering operations on the ECG signals
collected before generating data sets. The function of the
wavelet transform is to decompose the signal into a series of
wavelet functions. Because of its excellent performance in
both the time and frequency domains, the wavelet transform
can carry out multi-scale subdivisions of signals through
scaling and translation operations. As such, it is often used in
signal processing. Because of its ability to subdivide time at
both high and low frequencies—that is, it can automatically
adapt to the analysis of time-frequency signals—we used the
wavelet transform to reduce the noise in ECG signals. The
scale coefficient of the wavelet transform is expected to
reduce some noise in ECG signals. The definition of the
wavelet transform is as follows:

 )(),(),( ,f ttfbaWT ba (1)
The db5 wavelet cluster is selected from among many

wavelets to decompose the collected ECG signals, which are
decomposed into eight layers. First, we consider the detailed
coefficient and approximate coefficient of ECG signal
decomposition. The first and second layers of the detailed
coefficient of ECG decomposition contain most of the
high-frequency noise in the ECG signal. The eighth layer of
the approximate coefficient contains the baseline drift noise
in the signal. The ECG signal itself is not highly correlated
with the first, second, and eighth layers of the approximate
coefficient. Therefore, we set the first and second layers of
the detailed coefficient to zero to eliminate high-frequency
noise in the ECG signal. To eliminate baseline drift noise in

ECG signals, we used the above method to set the eighth
layer of the approximate coefficient in the decomposed
signals to zero. Finally, the ECG signal was reconstructed
according to the processed approximate coefficient to obtain
a relatively clean ECG signal.

However, the wavelet transform only filters out
high-frequency noise and baseline drift in the ECG signal.
Other EMG noise remains in the ECG signal, resulting in
considerable jitter. In order to obtain a smoother ECG signal,
the Butterworth low-pass filter is used to extract the envelope
of the ECG signal. The energy of ECG signals is mainly
concentrated in the range of 5 – 20 Hz. We selected the
second-order Butterworth low-pass filter with a cut-off
frequency of 15 Hz, according to the energy of ECG signals.
The signal de-noised with this filter is close to the standard
ECG signal.

Normalization can increase the contrast between signals.
Thus, we used normalization to process the ECG signal after
extracting the envelope. The amplitude of the ECG signal
was limited to [-1, 1]. The normalization formula is as
follows:

max( ) = ( ) /F n F n F
～

(2)

where F(n) is the signal after envelope processing, and
Fmax is the maximum value of the signal after envelope
processing.

We selected a normal signal to show the effect of noise
reduction. Figure 1 provides diagrams to compare the
original signal to the signal after wavelet transform
de-noising, envelope extraction, and normalization . In the
figure, the abscissa is the number of sampling points of the
ECG signal, and the ordinate is the signal amplitude.

III. K-SINGULAR-VALUE DECOMPOSITION ALGORITHM

A. Sparse Representation
Sparse representation mainly consists of finding a suitable

dictionary for non-sparse samples, so that the samples can be
converted into a linear combination of several nonlinear
correlation vectors in the dictionary, thus simplifying the
learning task, reducing the complexity of the model, and

Fig. 1. Comparison of the original signal, the signal after noise reduction,
and the signal after normalization
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reducing the calculation time. The process of finding a
dictionary is called "dictionary learning". That is, the process
of selecting sparse atoms in the dictionary to represent the
original sample by sparse coding is the process of solving
sparse atoms. The core idea of sparse representation is to find
a suitable dictionary for the samples of ordinary dense
representation and convert the samples into a suitable sparse
representation—that is, to express most or all of the original
signals with a few linear combinations of basic signals. Its
schematic diagram is shown in Fig. 2.

Suppose we use a matrix ��∗� to represent the data
set—that is, a set of signals in a total of y columns, each of
which represents an ECG signal, and x rows, each of which
represents a characteristic attribute of a sample. In general,
the sample matrix is dense. That is, most of the elements are
non-zero. The meaning of sparse representation is to find two
matrices to reconstruct the original signal. Specifically, we
find a dictionary matrix ��∗� and a sparse matrix ��∗� , so
that ��∗� ∗ ��∗� can reproduce the sample matrix ��∗� as
much as possible, and each column of sparse vectors
of ��∗� can be as sparse as possible. ��∗� is the sparse
representation of the sample matrix ��∗�:

yssxy NMH ***x * (3)

B. Sparsity Analysis of ECG Signals
ECG signals are complex narrow-band signals

concentrated at low frequencies. Most of their energy is
concentrated in the frequency range of 0.5–30 Hz. In the time
domain, the ECG signals show the non-stationary
characteristics of quasi-periods, and the signals between each
period are very similar. These two characteristics mean that
ECG signals are compressible and strongly correlated with
each other. In addition, ECG signal waveforms between
people show roughly the same waveforms on the whole, due
to the fitness and cardiovascular differences between people,
although there are differences in the details. If there are
cardiac arrhythmias caused by cardiovascular disease, there
will be a big difference in the performance of the ECG signal.
In this paper, the redundancy of signals is removed to
construct a sparse dictionary of ECG signals.

C. K-Singular-Value Decomposition Algorithm
The sample matrix Hx∗y is divided into a group of y vectors

with x elements in each group of vectors; i.e., y Hx∗y =
[ℎ1, ℎ2, ⋯, ℎy]. Similarly, the sparse matrix ��∗� is changed to
��∗� = [�1, �2, ⋯, ��] , and the 0-norm, namely ∙ 0 , is
introduced to make ��∗� as sparse as possible. Thus, n 0

represents the sparsity of the sparse coefficient n, and this
mathematical formula represents the number of non-zero
coefficients of the sparse coefficient n. In the research, the
data are expected to be as sparse as possible; that is, H is as
small as possible. To solve the sparse representation, it can be
converted into the following convex optimization problem:

n,1,2,i     ..s                           
||||minarg
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If the sparse vector in each column of Ns∗y must be
k-sparse, then the number of non-zero elements of the
coefficient vector in each column of Ns∗y is k, and k is the
sparsity. Equation (2) can be transformed into:
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Although 0-norm minimization can derive a nearly perfect
analytical solution, the solution of 0-norm minimization is
still problematic. It is later found that 1-norm minimization
has a common solution with 0-norm minimization under
certain conditions, while 1-norm minimization has no
problem. Therefore, the above convex optimization problem
can be written as:

nkt
nMn isxii
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2
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(4)

K-singular-value decomposition includes the following
steps. First, the dictionary is initialized, whereby m samples
are randomly selected from the data set H as the initial
dictionary, which is denoted M = [m1, m2, ⋯, ms] . Second,
the sparse matrix is initialized. According to the initial
predefined dictionary, the orthogonal matching tracking
algorithm is used for sparse decomposition of the sample
matrix H, and sparse coefficient matrix N = [n1, n2, ⋯, my] is
obtained. Third, the dictionary is updated by fixing the sparse
coefficient matrix N and updating the atoms in the dictionary
M column by column:

2
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(6)

where mj represents the j-th column in dictionary M, nj
T

represents the j-th row in N, and Ek represents the error after
removing mk. When updating the dictionary, we first update
the k-th atom mk in the supercomplete dictionary M,
calculate the error matrix Ek, select the index set that is not 0
in the k-th row vector nj

T of the sparse coefficient matrix, and
define the index set:

 0)(,1|iwk  inyi T
k （7）

IV. DOUBLE-THRESHOLD POSITIONING STAGEWISE
ORTHOGONAL MATCHING PURSUIT ALGORITHM

Stagewise orthogonal matching pursuit is a greedy
algorithm derived from the orthogonal matching algorithm. It
aims to improve the accuracy of orthogonal pursuit algorithm
reconstruction and improve the computing efficiency. OMP
eliminates the atom with the greatest correlation with the

Fig. 2. Schematic diagram of sparse representation
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sample signal in each iteration, and ensures that the
eliminated signal is orthogonal to the eliminated vector, and
that the eliminated vector does not need to be repeatedly
calculated in each subsequent iteration. However, it is
difficult for this algorithm to ensure the global optimum of
each search result, and there may be sub-optima. Stagewise
orthogonal matching pursuit algorithm can add a threshold
value, select the signal with a better effect in the residual
signal, and send it to the next iteration, ultimately achieving
the effect of improving the signal reconstruction rate.
However, the threshold value of the algorithm needs to be set
manually. If the threshold value is set improperly, the signal
may be overprocessed or underprocessed. In this paper, a
feature extraction method of ECG signals based on
double-threshold positioning and stagewise orthogonal
matching pursuit is proposed.

A. Double-Threshold Location Algorithm
The threshold value of the stagewise orthogonal matching

pursuit algorithm is adjustable between 0 and 1. Traversing
from 0 to 1 at steps of 0.01, the iteration number of stagewise
orthogonal matching pursuit is set to 20 times. Then, the
reconstruction error rate of the original signal is calculated
under different threshold values, that is, the difference
between the original signal and the reconstructed signal. This
difference is divided by the original signal value. The
calculation is given as follows:

 


x

j

y

),(
),(_),(

isum ijH
ijcHijHH (8)

In (8), ���� is the reconstruction error rate, �(�, �) is the
original signal, and �_�(�, �) is the reconstructed signal.

The 100 reconstruction error rates were analyzed, the
index of the minimum reconstruction error rate was selected,
and the interval of [-5,5] was set to zero. The minimum
reconstruction error rate after screening was selected again,
and its index was recorded. The difference between the
second index and the first index was then judged. If the
difference was 5, the first index was recorded. By default, it is
the optimal threshold of the stagewise orthogonal matching
pursuit algorithm. If the difference between the second index
value and the first index value is greater than 5, there is a
suboptimal value. In that case, it is necessary to make a
second threshold judgment. The threshold values of the two
indexes are respectively followed by 20-fold segmental
orthogonal matching tracking. After calculating segmental
orthogonal matching tracking every 20 fold, the loss rate is
judged:

 
x

i
2))^,(_),(( icHiHH suml ：： (9)

The sum of the residual squares of each column of the
entire sample matrix is calculated to determine whether the
loss rate is approximately 0. If it is approximately 0, it is
recorded as a successful reconstruction, and the entire sample
matrix is traversed to determine the success rate of sample
reconstruction:

L
Ls (10)

In (10), Ls is the number of successful sample
reconstruction columns, and L is the number of total sample
columns. The index value with the higher sample

reconstruction rate calculated by the two index values is the
optimal threshold value of the stagewise orthogonal matching
pursuit algorithm.

B. Double-Threshold Stagewise Orthogonal Matching
Pursuit Algorithm
Because the traditional SWOMP algorithm needs to set the

threshold artificially, the dual-threshold positioning method
and the SWOMP algorithm are combined to form the
DSWOMP algorithm, which is applied to ECG signal feature
extraction. The algorithm is shown as follows:
Algorithm 1 DSWOMP algorithm
Input：H (Sample matrix of ECG signal), M

(Overcomplete dictionary matrix)，L (Initial sparse atomic

number)

Output：E (Sparse coefficient matrix)

Step 1：Assign the residual matrix, make H=r0 .

Step 2：Define the update dictionary matrix 0x ，The

matrix of reconstruction the error rate 0y 。

Step 3：Initialize the threshold Th←0, The number of

iterations P←0，The index iZ 。

Step 4：

for Th <= 1 do

(a): Add 0.1 to the threshold value Th ← Th + 0.1。

(b):

for P<=20 do

(1): Calculate the inner product of dictionary matrix

and residual matrix.

]rabs[MS 1-i
T 。

(2): The atoms in S larger than Th are used as the

index iJ to construct the atom set.

)*)max((findi ThSSJ  ,

(3): Update the index iZ 。

iii J ZZ

(4)：Update the dictionary matrix ix by index iZ

(5): The least squares method is used to solve the

sparse coefficient matrix iE

21

^
||xH||minarg  iii EE

(6): Update the residual matrix ir
L
iEx-Hr L

ii 
end for
(c) :The number of iterations increases by one
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1 PP

(d) :According to Equation (7), the reconstruction

error rate is calculated and stored in 0y

end for

Step 5：Obtain the minimum value of 0y and its position

index s, set the field of s[-5,5] to zero, and generate 1y .

Step 6：Obtain the minimum value of 1y and its position

index d, and obtain the threshold m according to the two

minimum values.

d-sm  .

Step 7：

If m = 5, then

do

(a) :Obtain the optimal threshold value Th

01.0*sh T 。

(b) :The sparse coefficient matrix is obtained according

to the threshold value iE ;

else

(a) :Get index s, The threshold value of d;

(b) :The success rate of reconstruction was calculated

according to Equations (7) and (8);

(c) :Select the one with the higher success rate as the

best threshold value, and obtain the sparse coefficient

matrix iE ；

end if

The three kinds of ECG signals are de-noised by wavelet
transform, and the EMG noise and baseline drift of ECG
signals are filtered. The ECG signal matrix is constructed
with the processed signals as shown in Figure 1, and the ECG
signal matrix is sent into the K-singular-value decomposition
algorithm. After iteration, an overcomplete dictionary of the
ECG signal sample matrix is obtained. Finally, the ECG
signal matrix and the overcomplete dictionary matrix are sent
together to the double-threshold stagewise orthogonal
matching pursuit algorithm to obtain the sparse matrix under
the optimal threshold. Finally, the sparse atomic matrix of
each signal is used as the characteristic of the signal. The
flowchart of the algorithm for segmented sparse
representation of double-threshold values is shown in Fig. 3.

V. INTRODUCTION TO THE CLASSIFIER

A. Decision trees
Decision trees are named for their shape. This classifier

generates tree-like flow diagrams based on the “if–then”
judgment principle. Decision trees consist of three parts: test
nodes, branches, and leaf nodes. Each test node represents an
attribute judgment on the data. The first test node of the tree,
the topmost node of the tree, is also called the root node. The
attribute tests at the root node are usually the tests that we
think will have the most impact on the final classification
result. A branch is the output of each test node, which leads
either to the leaf node or to the next test node for the next
round of property testing.

Most decision-tree algorithms are top-down
divide-and-conquer management methods. The impact of test
nodes on leaf nodes decreases from top to bottom, and the
root node is the node with the highest correlation to the leaf
nodes. Another important part of a decision tree is the
attribute selection measure of the test node — that is, the
setting of the“if”decision condition. There are three popular
methods for setting the attribute decision condition: the
information gain, information gain rate, and Gini index.

B. Random forests
In this paper, random forests are used to classify the

features extracted by the DWT, CNN, and proposed
algorithm. The random forests algorithm adds randomness to
a decision tree to improve its performance. Random forests
involve integrated learning, where the basic idea is to use a
large number of decision trees — that is, classifiers with
relatively weak classification ability—as base classifiers, and
to obtain classifiers with better predictions by combining
these decision trees.

The classifier uses a meta-learning algorithm that can be
divided into a combinator and a decision. The specific
working process of the combinator is as follows: among X
original samples, c samples are selected by random sampling,
and these c samples are formed into a new sample set that is
included in the original sample set. This operation is repeated
Y times so that there are Y sample subsets of the original
samples in the classifier. Each sample subset is sent to the
basic classifier. The total number of test attributes is denoted
as M, and m are randomly selected from the total number of
test attributes, where m is less than M. Then, Y classifiers are
predicted and Y test results are obtained. The following is the
work of the decision in the meta-learning algorithm. Random
forests are used for classification, so the decision adopts the
voting method to determine the final category. That is, the
result that appears the most times among the Y results is the
classification result of the algorithm we want.

C. RandomCommittee
RandomCommittee and random forests are both based on a

meta-learning algorithm, so RandomCommittee also
involves integrated learning with several basic classifiers.
The difference between this classification algorithm and the
random forests classification method is that the basic
classifier of random forests is a fixed decision tree, and the
RandomCommittee classification algorithm can be changed:
we can choose a basic decision tree, the naive Bayes classifier,
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a multi-layer perceptron neural network, etc. We opted for
the IBK, a classifier based on the k-nearest neighbors
algorithm, as the basic classifier.

The k-nearest neighbors algorithm involves using a new
sample as the data training set. The distance between the
sample and the surrounding training set samples is then
calculated, and the k samples closest to the new sample are
marked. Finally, the category of the new sample is
determined according to the principle of minority obedience.

D. BayesNet
BayesNet's model is a directed acyclic graph that consists

of two parts: nodes and directed edges. The correlation
degree of the parent node to the child node is evaluated by
calculating the conditional probability. The node represents a
random variable corresponding to the ECG characteristics
input in this paper, and the directed edge is the connection
between the two nodes. When the node is the initial node—
that is, with no parent node—the prior probability is used for
information expression. By calculating the conditional
probability between each node, the network obtains the
probability of the final label and realizes the classification of
the database. The specific process is to send to the network
the data to be measured, match the features to be measured
with the existing network, calculate the conditional
probability of the nodes, and obtain the prediction label.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The ECG signal in this experiment comes from the ECG
Signal Database (MIT-BIH) provided by the Massachusetts
Institute of Technology. The three ECG signal databases are
the normal sinus rhythm database, atrial fibrillation database,
and ventricular fibrillation database[22].

All databases are in “dat” files in dual-channel data,
among which the data waveform of the first channel is more
commonly used than that of the second channel. Therefore,
we adopted the MIT-BIH ECG signal data of the first channel
in this study.

The MIT-BIH atrial fibrillation database consists of the
long-term electrocardiogram records of 25 human subjects
with atrial fibrillation at a sampling rate of 250 Hz and a

resolution of 12 bits. The database was collected at the Beth
Israel Hospital in Boston. A normal sinus rhythm database
and atrial fibrillation database were collected from a hospital
and consisted of five men aged 26 to 45 years and 13 women
aged 20 to 50 years at a sampling frequency of 128 Hz with a
sampling accuracy of 11 digits. The ventricular fibrillation
database was based on the sudden cardiac death Holter
electrocardiogram database, which was originally collected
by Scott Greenwald when he was at MIT. It was collected
from 23 patients with ventricular fibrillation. First, the ECG
signal samples obtained in the data set were up-sampled. The
normal ECG signal sample was raised from 128Hz to 250Hz.
Uniform sampling rate for more reliable data. In order to
prevent the large difference in the number of samples from
causing the classifier to prefer samples with a large number
of samples, this paper selects 80 samples of each ECG signal
sample after sampling, and 240 samples of the three types of
signals in total.
The detailed information of the three databases is shown in
Table I.

The data samples in the MIT-BIH database were identified,
read, and classified by the editor, and the three types of ECG
signal morphological results were obtained, as shown in Fig .
4.

ECG signal samples are sent to the K-SVD algorithm to
generate an overcomplete dictionary through ECG signal
reconstruction. After iteration, the reconstruction failure rate
curve of the overcomplete dictionary generated by the
K-SVD algorithm is shown in Fig. 5.

ECG signal samples are sent to the K-SVD algorithm to
generate an overcomplete dictionary through ECG signal
reconstruction. After iteration, the reconstruction failure rate

Fig. 3. Flowchart of double-threshold segmented sparse representation algorithm

TABLE I
DATA INFORMATION TABLE

Gender Age Sampling parameter

Total Ma
le

Femal
e

Unk
now

n
Range Sampling

rate
Sampling
accuracy

Normal 18 5 13 - 20-50 128 11

AF 25 - - 25 - 250 12

VF 23 13 8 2 17-82 250 -
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curve of the overcomplete dictionary generated by the
K-SVD algorithm is shown in Fig. 5.

As can be seen from Fig. 5, the reconstruction failure rate
of the K-SVD algorithm in this paper during the generation of
the overcomplete dictionary decreases from 26.5% to 12%
after iteration, greatly improving the completeness of the
overcomplete dictionary.

Common ECG signal feature extraction algorithms include
morphological feature extraction based on wavelet
transforms and feature extraction based on the convolutional
neural network. We applied these two methods to the
database for feature extraction. The two methods and the
ECG features extracted by the proposed method were
verified by 10-fold cross-validation, to ensure the accuracy of
the test system. All the characteristic data were divided into
ten parts. One part was selected as the test set and the other
nine parts as the training set. After a test was completed, the
remaining nine parts were selected as the test set in turn, and
the remaining nine parts of each non-test set were selected as
the training set. The corresponding accuracy rate was
recorded, with the average of ten tests as the final result. In
this way, the probability of error is greatly reduced and the
accuracy of test results is guaranteed. Three classification
methods, RandomForest, RandomCommittee, and BayesNet,
were used for a pair-to-pair classification comparison of the
features extracted by the DWT, CNN, and DSWOMP
algorithms. In this study, we used the number of correctly
classified instances, root relative squared error, relative
absolute error, root mean squared error, mean absolute error,
and Kappa to analyze the experimental results of the
classifier. These six parameters aptly reveal the classification
effect of the extracted features in the classifier. The correctly

classified instances and the Kappa are such that the larger the
value, the better the classification. The root relative squared
error, relative absolute error, root mean squared error, and
mean absolute error are such that the smaller the value, the
better the classification effect of the extracted ECG features
in this classifier. Since the DWT, CNN, and DSWOMP
algorithms output more parameters in the three classifiers, we
focused on analyzing the mean value of the three feature

extraction algorithms in the three classifiers—that is, to
obtain the mean value of each parameter obtained by each
feature extractor after classification by the three classifiers.

Normal ECG signals and ventricular fibrillation signals
were classified and analyzed. The classification results are
shown in Table Ⅱ.

The confusion matrix of the normal and ventricular
fibrillation classifiers is shown in Fig. 6.

It can be seen from Table Ⅱ that the average recognition
rate of features extracted by DWT is 95.42% in
RandomForest, RandomCommittee, and BayesNet, and the
average recognition rate of features extracted by the CNN is
98.75% in the three classifiers. The average recognition rate
of the features extracted by the proposed algorithm is 100%

TABLE Ⅱ
CLASSIFICATION RESULTS OF NORMAL ECG SIGNALS AND VF SIGNALS

Classification unit

RandomForest RandomCommittee BayesNet Mean

D
W
T

Correctly
classified
Instances

95% 93.13% 98.13% 95.42%

Kappa 0.90 0.86 0.96 0.91
Mean

absolute
error

0.06 0.07 0.02 0.05

Root
mean

squared
error

0.18 0.23 0.14 0.18

Relative
absolute

error
11.87% 13.94% 4.09% 9.97%

Root
relative
squared

error

36.74% 45.81% 27.72% 36.76%

C
N
N

Correctly
classified
Instances

98.75% 98.75% 98.75% 98.75%

Kappa 0.98 0.98 0.98 0.98
Mean

absolute
error

0.01 0.01 0.01 0.01

Root
mean

squared
error

0.11 0.11 0.11 0.11

Relative
absolute

error
2.5% 2.5% 2.5% 2.5%

Root
relative
squared

error

22.25% 22.36% 22.36% 22.36%

D
S
W
O
M
P

Correctly
classified
Instances

100% 100% 100% 100%

Kappa 1.00 1.00 1.00 1.00
Mean

absolute
error

0.005 0.00 0.005 0.01

Root
mean

squared
error

0.03 0.00 0.02 0.03

Relative
absolute

error
2.15% 1% 0% 1.05%

Root
relative
squared

error

5.23% 5.48% 0% 3.57%

Fig. 4. Morphological classification of three types of ECG signals

Fig. 5. ECG signal reconstruction error rate curve

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_11

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



in the three classifiers. The proposed algorithm has absolute
advantages in the feature extraction of normal and ventricular
fibrillation signals. The kappa mean value of features
extracted by the proposed algorithm (kappa value = 1) is also

the highest among the three classifiers. The mean values of
the mean absolute error and root mean squared error of the
features extracted by the proposed algorithm are the smallest
in the three classifiers, at 0.005 and 0.02, respectively. The

Fig. 6. Different machine learning confusion matrices for normal and
ventricular fibrillation

Fig. 7. Different machine learning confusion matrices for normal and atrial
fibrillation

TABLE Ⅲ
CLASSIFICATION RESULTS OF NORMAL ECG SIGNALS AND AF SIGNALS

Classification unit

RandomForest RandomCommittee BayesNet Mean

D
W
T

Correctly
classified
Instances

92.5% 90.63% 89.38% 90.84%

Kappa 0.85 0.81 0.78 0.81
Mean

absolute
error

0.15 0.13 0.11 0.13

Root
mean

squared
error

0.25 0.27 0.31 0.28

Relative
absolute

error
30.38% 26% 23.04% 26.47%

Root
relative
squared

error

50.22% 54.77% 62.44% 55.81%

C
N
N

Correctly
classified
Instances

85% 81.25% 87.5% 84.58%

Kappa 0.70 0.63 0.75 0.69
Mean

absolute
error

0.18 0.18 0.13 0.16

Root
mean

squared
error

0.34 0.37 0.35 0.35

Relative
absolute

error
36.04% 36.13% 25.19% 32.45%

Root
relative
squared

error

69.98% 74.82% 70.71% 71.84%

D
S
W
O
M
P

Correctly
classified
Instances

84.38% 81.88% 79.38% 81.88%

Kappa 0.69 0.64 0.59 0.64
Mean

absolute
error

0.29 0.26 0.24 0.26

Root
mean

squared
error

0.35 0.36 0.41 0.37

Relative
absolute

error
57.26% 51.38% 47.90% 52.18%

Root
relative
squared

error

70.93% 72.41% 82.63% 75.32%

TABLE Ⅳ
CLASSIFICATION RESULTS OF VF SIGNALS AND AF SIGNALS

Classification unit

RandomForest RandomCommittee BayesNet Mean

D
W
T

Correctly
classified
Instances

83.13% 81.25% 85.63% 83.34%

Kappa 0.66 0.63 0.71 0.67
Mean

absolute
error

0.21 0.2 0.15 0.19

Root
mean

squared
error

0.35 0.38 0.37 0.37

Relative
absolute

error
41.84% 40.25% 29.21% 37.1%

Root
relative
squared

error

70.66% 76.72% 73.90% 73.76%

C
N
N

Correctly
classified
Instances

95% 94.38% 95% 94.79%

Kappa 0.90 0.89 0.90 0.90
Mean

absolute
error

0.08 0.07 0.05 0.07

Root
mean

squared
error

0.22 0.22 0.22 0.22

Relative
absolute

error
15.55% 13.38% 10.00% 12.98%

Root
relative
squared

error

44.57% 44.58% 44.72% 44.62%

D
S
W
O
M
P

Correctly
classified
Instances

100% 100% 100% 100%

Kappa 1.00 1.00 1.00 1.00
Mean

absolute
error

0.02 0.01 0.00 0.01

Root
mean

squared
error

0.04 0.04 0.00 0.03

Relative
absolute

error
3.14% 2.00% 0.00% 1.71%

Root
relative
squared

error

8.28% 8.37% 0.00% 5.55%

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_11

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



mean relative absolute errors of the CNN, DWT, and the
features extracted by the proposed algorithm with the three
classifiers were 9.97%, 2.5%, and 1.05%, respectively. The
average relative absolute error of the ECG features extracted
by the proposed algorithm is the smallest, indicating that the
features extracted by the proposed algorithm have the best
effect on the classification of normal and ventricular
fibrillation signals. By comparing the above table data, it is
found that the average root relative squared error of the
proposed algorithm is 3.57%, much smaller than that of the
CNN algorithm (22.36%) and the DWT algorithm (36.76%).

Normal ECG signals and atrial fibrillation signals are
classified and analyzed below, and the classification results
are shown in Table Ⅲ.

The confusion matrix of normal and atrial fibrillation
classifiers is shown in Fig. 7.

It can be seen from Table Ⅲ that the average recognition
rate of the features extracted by DWT in the three classifiers
is 90.84%, the average recognition rate of the features
extracted by the CNN in the three classifiers is 84.58%, and
the average recognition rate of the features extracted by the
proposed algorithm is 81.88%. DWT has an advantage in the
feature extraction of normal and atrial fibrillation signals. In
addition, it can be seen from the above table that the feature
extracted by the proposed algorithm is not as effective as the
DWT algorithm through the five parameters of Kappa, root
relative square error, relative absolute error, root mean square
error and mean absolute error. The proposed algorithm is not
effective at classifying normal and atrial fibrillation signals.

The classification of ventricular fibrillation signals and
atrial fibrillation signals is analyzed below, and the
classification results are shown in Table Ⅳ.

The confusion matrix of classifiers for ventricular
fibrillation and atrial fibrillation is shown in Fig. 8.

As can be seen from Table Ⅳ, the average recognition rate
of the features extracted by DWT in the three classifiers is
83.34%, the average recognition rate of the features extracted
by the CNN in the three classifiers is 94.79%, and the average
recognition rate of the features extracted by the proposed
algorithm in the three classifiers is 100%. The proposed
algorithm still has absolute advantages in extracting features
of ventricular fibrillation signals and atrial fibrillation signals,
which is far superior to the features extracted by DWT.
Moreover, the mean value of the Kappa of the features

extracted by the proposed algorithm in the three classifiers is
1, higher than that of the CNN (0.9) and DWT (0.67). The
root relative squared error, relative absolute error, root mean
squared error, and mean absolute error were calculated by the
three classifiers. The average values were 5.55%, 1.71%,
0.03, and 0.01, respectively. By comparing these four
parameters with the values calculated by the CNN and DWT
algorithms, it is found that the parameters of the proposed
algorithm are the lowers, indicating that the proposed
algorithm has the best effect in the binary classification of
atrial fibrillation and ventricular fibrillation, outperforming
the other two algorithms.

Through a comprehensive analysis of Tables Ⅰ, Ⅱ, and Ⅲ,
the features extracted by the proposed algorithm have
excellent results in the binary classification of normal and
ventricular fibrillation, as well as of ventricular fibrillation
and atrial fibrillation. But they are slightly inferior to the
other algorithms in the binary classification of normal and
atrial fibrillation. To evaluate the algorithm further, we
defined the comprehensive recognition rate as well as the
comprehensive Kappa, comprehensive root relative squared
error, comprehensive relative absolute error, comprehensive
root mean squared error, and comprehensive mean absolute
error. The results of the proposed algorithm are evaluated
using these six parameters.The average recognition rate of
the three DWT classifications is 95.42%, 90.84%, and
83.34%, respectively. The average recognition rate of the
three classifications is 89.97%. The average recognition rates
of the three classifications by the CNN were 98.75%, 84.58%,
and 94.79%. CNN's overall recognition rate was 92.7%. The
average recognition rates of the proposed algorithm were
100%, 81.88%, and 100% respectively, with an overall
recognition rate of 93.96%. The comprehensive recognition
rates of the CNN, DWT, and DSWOMP algorithms are
shown in Fig. 9.

The comprehensive Kappa, comprehensive root relative
square error, comprehensive relative absolute error,
comprehensive root mean square error, and comprehensive
average absolute error of the proposed algorithm and the
traditional ECG signal feature extraction algorithm are
shown in Table Ⅴ.

It can be seen from Table Ⅴ that the comprehensive Kappa,
comprehensive root-mean-square error, comprehensive
relative absolute error, comprehensive root-relative square
error, and comprehensive average absolute error calculated
by the algorithm in this paper have the best results, and only

Fig. 9. Comprehensive recognition rate of CNN, DWT, and DSWOMP
algorithms

Fig. 8. Different machine learning confusion matrices for ventricular and
atrial fibrillation
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the comprehensive average absolute error is slightly inferior
to the convolutional neural network.

The ROC curve of each machine learning is shown in
Figure 10.

The ROC curve is all about receiver operating
characteristics where each point on the curve reflects the
sensitivity of stimuli to the same signal. It has a negative
positive class rate on the X-axis and a positive class rate on
the Y-axis. According to this curve, AUC, or the area under
the ROC curve, is proposed, which can represent the effect of
machine learning. The larger the AUC, the better the
classification effect. According to the ROC curves of normal
ECG signals, ventricular fibrillation ECG signals, and atrial
fibrillation ECG signals by random forest, random committee,

and Bayesian network, it can be seen that random forest has
the best classification effect on the features extracted by this
algorithm. The curve area of the normal ECG signal is 0.9623,
the curve area of ventricular fibrillation is 1, and the curve
area of atrial fibrillation is 0.9625. According to the ROC
curve, it can also be found that the algorithm extracted in this
paper has a high recognition performance in recognizing
ventricular fibrillation signals

As can be seen from Table Ⅵ, the recognition rate of
DSWOMP in random forest, randomcommittee ,and
Bayesian network classification methods is 90.42%,
87.92% ,and 89.17% respectively, and it can be seen that

TABLE Ⅴ
PARAMETERS OF CLASSIFICATION RESULTS OF THE THREE METHODS
Feature extractor Characteristic parameter Characteristic parameter value

DWT

comprehensive Kappa 0.80
comprehensive root relative

square error 0.12

comprehensive relative
absolute error 0.28

comprehensive root mean
square error 0.25

comprehensive average
absolute error 0.55

CNN

comprehensive Kappa 0.86
comprehensive root relative

square error 0.08

comprehensive relative
absolute error 0.23

comprehensive root mean
square error 0.16

comprehensive average
absolute error 0.46

DSWOMP

comprehensive Kappa 0.88
comprehensive root relative

square error 0.09

comprehensive relative
absolute error 0.14

comprehensive root mean
square error 0.18

comprehensive average
absolute error 0.28

TABLE Ⅵ
THREE METHODS FEATURE DETECTION RESULTS

Feature extractor classifier Sample size Recognition rate

DWT
Randomforest 80 84.58%

Randomcommittee 80 80.42%
BayesNet 80 82.50%

CNN
Randomforest 80 85.42%

Randomcommittee 80 83.75%
BayesNet 80 88.75%

DSWOMP
Randomforest 80 90.42%

Randomcommittee 80 87.92%
BayesNet 80 89.17%

Fig. 11. Tripartite confusion matrix

Fig. 10. The ROC curve of each machine learning
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DSWOMP has the highest recognition rate of 90.42% in
randomforest classifier. The recognition rates of DWT in
these three classification methods were 84.58%, 80.42% ,and
82.5%, respectively.The recognition rates of CNN in these
three classification methods were 85.42%, 83.75%
respectively.By comparison, it can be found that the
DSWOMP algorithm has the best classification effect on the
features extracted from the database in this paper. The
confusion matrix of each classifier is shown in Figure 11.

According to the data in Table Ⅶ, the Kappa of random
forest, randomcommittee, and Bayesian network is 0.86, 0.82,
and 0.84 respectively, with an average value of 0.84, and
Kappa is the smallest in the randomcommittee. The features
extracted by the algorithm in this paper have high accuracy
on the three classifiers, and the accuracy is the highest on the
random forest. The minimum average absolute error of the
three classifiers is 0.07, the average is 0.11, and the
root-mean-square error of the three classifiers is 0.24. The
average relative absolute error of the three classifiers is 25.03,
and the root relative square error is 50.03%. Experiments
show that the proposed algorithm has the best performance
compared with convolutional neural networks and wavelet
transform.

In addition, Precision, Recall, F-Measure, and ROC_Aera
are also used as evaluation indexes of the algorithm. The
Comparison bar chart of evaluation indexes under different
machines is shown in Figure 12.Where Precision represents
the proportion of cases that are positive in the examples that
are classified as positive cases, it can also be said that
Precision is the ability of the classifier not to label negative
samples as positive. Recall, also known as recall rate,
represents the proportion of the actual positive samples in the
positive samples to the positive samples in the whole sample.
F-Measure is also called comprehensive index. When there is
a contradiction between Precision and Recall, we need to
comprehensively evaluate Precision and Recall, so
F-Measure is proposed. When the F-number is high, it
indicates that the test method is effective and the results are in
line with expectations. ROC_Aera compares the prediction
results with the random guess results to obtain the true
positive rate (TPR) and false positive rate (FPR) of the
classification model under different thresholds. The larger
the value of ROC_Aera, the better the performance of the
classification model under different thresholds. Through the
three bar graphs, we can see that the proposed algorithm has a
good effect on the four parameters of Precision, Recall,
F-Measure, and ROC_Aera. In the four parameters of
random deep forest and random committee, the proposed
algorithm is higher than the comparison algorithm. In a

random deep forest, the Precision, Recall, F-Measure, and
ROC_Aera of this algorithm are 0.907, 0.904, 0.904, and
0.975, respectively. On the Bayesian network, the Precision
of the CNN algorithm is slightly higher than that of this
algorithm, but the Recall is slightly lower than that of this
algorithm. At this time, we must take comprehensive
consideration. On F-Measure, we can see that this algorithm
has higher recognition performance. The ROC_Aera of the
algorithm in this paper is which is also the highest of all. By
synthesizing all classifiers and all evaluation indexes, we can
see that the proposed algorithm has higher performance in the
process of ECG feature extraction.

TABLE Ⅶ
FEATURE TEST RESULT

classifier Random
forest

Randomcom
mittee BayesNet Mean

Correctly classified
Instances(%) 90.42 87.92 89.17 89.17

Kappa 0.86 0.82 0.84 0.84
Mean absolute error 0.14 0.12 0.07 0.11
Root mean squared

error(%) 0.24 0.24 0.24 0.24

Relative absolute
error 30.93 27.06 17.09 25.03

Root relative
squared error(%) 50.28 49.95 49.85 50.03

Fig. 12. Comparison bar chart of evaluation indexes under different
machines

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_11

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



VII. SUMMARY AND OUTLOOK

In this paper, we proposed a feature extraction algorithm
for ECG signals based on double-threshold segmented
orthogonal matching tracking and K-singular-value
decomposition. After the ECG signal is de-noised, a sample
array is generated by the ECG signal and sent to the
K-singular-value decomposition algorithm to update the
supercomplete dictionary. Through iterative optimization,
the reconstruction error rate of the ECG signal array is
reduced, and the supercomplete dictionary is obtained. Then,
this dictionary and an ECG signal sample array are sent to the
double-threshold segmented orthogonal matching tracking
algorithm for reconstruction. The sparse atomic matrix with
the best reconstruction effect is ultimately selected, so as to
obtain the characteristics of ECG signals. In this paper, three
kinds of ECG signals are classified in addition to three pairs.
A large number of experiments show that compared with the
traditional ECG signal feature extraction algorithm, the
algorithm extracted in this paper has the best recognition
effect. According to the multi-classifier experiment, the
average recognition rate and comprehensive recognition rate
are defined in three groups of two classification experiments.
Among the three algorithms, the comprehensive recognition
rate of the algorithm proposed in this paper is the highest
93.96%. In addition, in the three-classification experiment,
the proposed algorithm also has an absolute status
recognition rate of 90.42%, ranking first. The experiment
fully shows that the ECG signal features extracted by the
double-threshold segmental sparse representation method
have high recognition performance in the classification of
normal, ventricular fibrillation, and atrial fibrillation.

The DSWOMP algorithm can be used to extract the
features of normal, atrial fibrillation, and ventricular
fibrillation ECG signals. Although some achievements have
been made, there are many shortcomings. In the next step, the
KSVD algorithm might be improved to obtain a dictionary
matrix with a lower reconstruction failure rate, to improve the
accuracy of ECG signal features in the classifier. By updating
the algorithm, the difference between normal signals and the
atrial fibrillation signals can be enhanced to improve the
recognition rate. In addition, in our study we exclusively
considered the steps of feature extraction. In future research,
we will apply network learning and build an appropriate
network to improve the recognition rate of the database.
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