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Abstract—This work presents a novel coalitional model pre-
dictive control scheme for linear systems composed of disturbed
and constrained subsystems. These subsystems are dynamically
interconnected and controlled by a group of local model
predictive controllers or agents connected by a network. A su-
pervisor periodically activates or deactivates the network links
to achieve the best balance between control performance and
communication cost. Each coalition, which is a group of agents
connected by activated links, then employs a decentralized
model predictive control strategy to coordinate their control
actions. To guarantee the satisfaction of the system’s constraints,
we extend the concept of a control invariant set for non-switched
constraint systems to switched constraint systems, referred to
as a ”common control invariant set.” This set is adopted as the
terminal constraint of the collective coalitional model predictive
control optimization problem. A three-reaches irrigation canal
system is considered for validating the performance of the
proposed control strategy.

Index Terms—model predictive control schemes, coalitional
control schemes, common control invariant sets, switched sys-
tems, irrigation canal systems

I. INTRODUCTION

MODEL predictive control (MPC) is an optimal control
technique employing a process model to forecast the

future output of the controlled system and the receding
horizon principle [1]. At each time step, a finite-horizon
optimal control problem, possibly subject to some con-
straints, is solved to obtain a sequence of future control
inputs. Subsequently, the first element of the sequence is
implemented as the control input for the current time step.
This process is repeated based on the new measurements
and the receding horizon principle to determine the control
input for the subsequent time steps. Due to its advantages
over other control strategies, MPC has been applied in
many process industry sectors [2]. However, its application
to large-scale systems encounters challenges such as com-
putational complexity, communication limitations, and lack
of flexibility. Therefore, to address these challenges, non-
centralized MPC schemes have been developed.

In the non-centralized MPC scheme, the computation of
control input to the system is divided among multiple MPC
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agents, where each agent is responsible for calculating con-
trol inputs for different subsystems. The scheme is referred to
as a decentralized MPC if the agents do not share information
in determining their control inputs. Conversely, if information
exchange occurs among the agents, it is known as distributed
MPC. The distributed MPC scheme offers control perfor-
mance comparable to that achieved by the centralized MPC
strategy due to the information sharing among the agents
[3]. The applications of the non-centralized MPC scheme
encompass various domains, including microgrids [4], irri-
gation canal systems [5], power systems [6], supply chain
systems[7], road traffic systems[8], and train transportation
systems [9], among others.

In terms of the communication network topology among
the agents, the distributed control strategy is classified as
either partially connected or fully connected [3]. Both ap-
proaches assume that the network topology connecting the
agents is initially specified and remains constant, regardless
of the level of interaction between the agents. In recent years,
a novel control strategy which modifies the communication
network topology based on the level of interaction among
the agents has been proposed, known as a coalitional control
strategy [10]. The primary objective of this strategy is to look
for a balance between control performance and communica-
tion load.

The modification of the network topology in the coalitional
control strategy could be determined by either a top-down
approach [11], [12], [13], [14] or a bottom-up approach
[15]. In the top-down approach, a supervisor is responsible
for selecting the optimal network topology based on some
information transmitted by all agents. Conversely, in the
bottom-up approach, the agents autonomously determine the
network topology among themselves. Based on the selected
network topology, the agents connected via enabled links
establish a coalition and coordinate their control actions
cooperatively.

In this work, we present a top-down coalitional MPC
strategy for systems composed of disturbed and constrained
subsystems that are dynamically coupled. Specifically, the
network topology selection process follows the approach
presented in [11], where a supervisor periodically solves an
optimization problem based on the state vector information
of all subsystems to find the best network topology. Subse-
quently, each coalition resulting from the selected network
topology independently calculates its control actions using a
decentralized MPC scheme instead of the feedback control
scheme employed in [11].

Ensuring the satisfaction of the system’s constraints in the
coalitional MPC scheme is challenging since the dynamics
of the controlled system switch among different system
modes according to the active network topology. Enforcing
constraints on switched systems is challenging because they

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_12

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



must be satisfied in both the current and potential modes
[16]. In the coalitional MPC strategy proposed in [17],
constraint satisfaction is guaranteed under the assumption
that the optimization problem at the upper control layer has
a feasible control sequence for the centralized topology at
the initial time step. This assumption implies that the initial
topology should be chosen as the centralized topology.

Our proposed coalitional control strategy aims to provide
more flexibility in selecting the initial topology while still en-
suring the satisfaction of the system’s constraints. To achieve
this, we extend the existing concept of a control invariant
set for non-switched constrained systems to switched con-
strained systems, referred to as a common control invariant
set. In particular, we employ the common control invariant
set as the terminal constraint of the collective coalitional
MPC optimization problem. Additionally, we present an
algorithm for computing the common control invariant set.
The computation of the set is straightforward since it is
obtained by intersecting the control invariant sets of all
system modes.

The rest of this paper is set up as follows: Section II
formulates the problem statement. Section III presents the
control algorithm, including network topology selection and
the computation of control actions. Section IV discusses the
recursive feasibility analysis of the proposed control scheme.
Section V demonstrates the application of the proposed con-
trol scheme in irrigation canal systems. Finally, we present
the conclusions in Section VI.

Notation 1. The Cartesian product of sets Xi ⊆ Rn, i =
1, . . . , p is denoted by

∏p
i=1 Xi. For X ,Y ⊆ Rn, X ⊕ Y

and X ⊖ Y respectively denote the Minkowski sum and the
Minksowski difference of X and Y . The set of non-negative
integers is indicated by Z+. A subset O ⊆ X is referred to
as a positive invariant set for a system described by x(k +
1) = f(x(k)), where x(k) ∈ X ,∀k ∈ Z+, if the initial state
x(0) belongs to O, then x(k) remains in O for all k ∈ Z+.
A subset C ⊆ X is considered a control invariant set for
a system specified by x(k + 1) = g(x(k), u(k)), in which
x(k) ∈ X , u(k) ∈ U ,∀k ∈ Z+, if x(k) is an element of C,
then there exist a feedback control u(k) = h(x(k)) ∈ U such
that x(k+1) remains in X for all k ∈ Z+. The precursor set
to the set A ⊂ Rn with respect to the system Ω : x(k+1) =
g(x(k), u(k)), x(k) ∈ X , u(k) ∈ U ,∀k ∈ Z+, is denoted
by PreΩ(A), and defined as PreΩ(A) = {x ∈ Rn|∃u ∈
U such that g(x, u) ∈ A}.

II. PROBLEM STATEMENT

The system under consideration is a linear discrete-time
system that consists of a collection of dynamically inter-
connected subsystems, denoted as S = {1, 2, . . . ,M}. Each
subsystem i ∈ S is characterized by its specific dynamics
and constraints, represented by

xi(k + 1) = Aiixi(k) +Biiui(k) + di(k), (1a)

di(k) =
∑
j∈Ni

(Aijxj(k) +Bijuj(k)) +Diiwi(k), (1b)

xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rqi , wi ∈Wi ⊂ Rni , (1c)

in which xi, ui and wi are the state, control input, and exter-
nal disturbance vectors of subsystem i, respectively. Matrices

Aii, Aij , Bii, Bij and Dii are real matrices with appropriate
dimensions. The set Ni denotes the set of all neighbours of
subsystem i defined as Ni = {j ∈ S|Aij ̸= 0 ∨ Bij ̸= 0},
where 0 indicates a zero matrix with suitable dimension.
From (1b) and (1c), we have

di ∈ Di =
⊕
j∈Ni

(
AijXj ⊕BijUj

)
⊕DiiWi. (2)

The sets Xi, Ui, and Wi are assumed to satisfy the
following assumption, which is a standard requirement in
the MPC control design.

Assumption 1. For all i ∈ S, Xi, Ui, and Wi are compact
polyhedral sets that contain the origin within their interior.

Remark 1. The set Di is also a polyhedral compact set with
its origin in its interior based on Assumption 1.

A. Communication Network

The M subsystems are independently controlled by a set
of local MPC controllers or agents interconnected through a
communication network. The network is represented by an
undirected graph (S, E), where S represents the group of
agents, and E denotes the collection of links interconnecting
them specified by

E ⊆ ES = {{i, j}|{i, j} ⊆ S, i, j ∈ S, i ̸= j}. (3)

In the coalitional approach, each link {i, j} ∈ E can be either
enabled or disabled, where an enabled link is associated with
a fixed stage cost c > 0. The set of all enabled links is
denoted by the symbol g, referred to as the topology. It is
important to note that there are 2|E| possible topologies that
can be established if the cardinality of E is |E|. All topologies
that can be formed are collected in the set G, i.e., G = {g|g ⊆
E}.

Each topology g ∈ G partitions the set S into distinct
clusters of agents connected by a path of enabled links. These
clusters are referred to as coalitions. All coalitions generated
by the topology g are collected in the set Pg defined as
Pg = {C|C ⊆ S}, where all coalitions C ∈ Pg are nonempty
sets, the intersection of any pair C, C′ ∈ Pg, is a nonempty
set, and the union of all coalitions C ∈ Pg is the set S. The
number of the elements of the set Pg , indicated by |Pg|,
varies from 1 to M . The case |Pg| = 1 occurs when all
communication links are active (i.e., g = E) and |Pg| = M
corresponds to the case no links are active (i.e., g = ∅).

B. Coalitions Dynamics

Consider any topology g ∈ G and a coalition C ∈ Pg . In
the coalitional control design, all agents within coalition C
collaborate to compute their control signals and work as a
single system. Specifically, the dynamics of coalition C are
derived by combining the dynamics of each subsystem i ∈ C.
In other words, the individual subsystems are assembled to
obtain the behavior of coalition C, that is,

xC(k + 1) = Ag
CxC(k) +Bg

CuC(k) + dC(k), (4)

where uC = (ui)i∈C ∈ RqC and xC = (xi)i∈C ∈ RnC

respectively denote the control input and the state vectors of
coalition C, with qC =

∑
i∈C qi and nC =

∑
i∈C ni. The ma-

trices Ag
C = [Aij ]i,j∈C and Bg

C = [Bij ]i,j∈C are real matrices
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with suitable dimension. The vector dC = (dCi )i∈C ∈ RnC

captures the effect of the vectors xj and uj , j ∈ Ni\C, and
the vector wi, i ∈ C, on the state of coalition C. In addition,
the vector dCi , i ∈ C, is specified by

dCi (k) =
( ∑
j∈Ni\C

Aijxj(k) +Bijuj(k)
)
+Diiwi(k). (5)

Considering (1c), the constraints of coalition C are given by

xC ∈ Xg
C , uC ∈ Ug

C , dC ∈ Dg
C , (6)

where Xg
C =

∏
i∈C Xi, Ug

C =
∏

i∈C Ui, and Dg
C =

∏
i∈C DC

i ,
with

dCi ∈ DC
i = (

⊕
j∈Ni\C

AijXj ⊕BijUj)⊕DiiWi. (7)

Furthermore, based on Assumption 1, Xg
C , Ug

C , and Dg
C are

compact polyhedral with their interiors containing the origin.
Let xS = (xC)C∈Pg and uS = (uC)C∈Pg be the state and

control input vectors of the whole system corresponding to
the topology g. The state-space form of the whole system is
described by

xS(k + 1) = Ag
SxS(k) +Bg

SuS(k) +Dg
SwS(k), (8)

where Ag
S = [Ag

C ]C∈Pg
, Bg

S = [Bg
C ]C∈Pg

, Dg
S =

diag(Dg
C)C∈Pg

, and wS = (wC)C∈Pg
, with Dg

C =
diag(Dii)i∈C and wC = (wi)i∈C . In addition, the constraints
of System (8) are

xS ∈ Xg
S uS ∈ Ug

S , wS ∈Wg
S (9)

where Xg
S =

∏
C∈Pg

Xg
C , Ug

S =
∏

C∈Pg
Ug

C and Wg
S =∏

C∈Pg
Wg

C . Since Xg
C , Ug

C , and Wg
C are compact polyhedral

sets with their interiors containing the origin for all C ∈ Pg ,
so do Xg

S , Ug
S , and Wg

S .
The assumption below, commonly utilized in the non-

centralized MPC designs such as [18], [19], [20], is employed
to stabilize System (8).

Assumption 2. There exists a block-diagonal matrix Kg
S ≜

diag(Kg
C)C∈Pg

for each topology g ∈ G, with Kg
C ∈ RqC×nC ,

that satisfies: (i) F g
S ≜ Ag

S +Bg
SK

g
S is Schur, and (ii) F g

C ≜
Ag

C +Bg
CK

g
C is Schur for all C ∈ Pg .

C. Control Goal

The control objective is to determine the sequence of
control actions and the sequence of network topologies that
steer the state of all subsystems to the origin while reducing
communication costs. Let σ : Z+ → G denote the function
specifying the active topology at each time step. Then, the
following objective function:

∞∑
t=0

∑
C∈Pσ(k+t)

ℓ
σ(k+t)
C

(
xC(k+t), uC(k+t)

)
+c|σ(k+t)| (10)

subject to (4) and (6) is minimized to achieve the control
objective. Here, ℓgC(xC(k), uC(k)) represents the stage cost
for coalition C ∈ Pg , defined as

ℓgC(xC(k), uC(k)) = xT
C (k)Q

g
CxC(k)+

uT
C (k)R

g
CuC(k),

(11)

where the weighting matrices Qg
C ∈ RnC×nC and Rg

C ∈
RqC×qC are defined as Qg

C = diag(Qi)i∈C and Rg
C =

diag(Ri)i∈C , and assumed to be positive definite for all
C ∈ Pg(k).

Consider that the decision variables of Optimization Prob-
lem (10) are the sequence of network topologies and the
sequence of control inputs. Notice that G is a finite set
established by enabling or disabling the links in E . By
associating an enabled link with 1 and a disabled link
with 0, we have G ⊆ {0, 1}|E|. For example, the network
topology where all links are enabled can be represented
as { 1, 1, . . . , 1︸ ︷︷ ︸

1 as many as |E|

}. Conversely, the topology with all links

disabled can be represented as { 0, 0, . . . , 0︸ ︷︷ ︸
0 as many as |E|

}. Thus, Opti-

mization Problem (10) belongs to the family of mixed-integer
optimization problems, which are generally challenging to
solve due to their non-convex nature. To address this issue,
we modify the two-layer control approach given in [11]
to find the suboptimal solution to Optimization Problem
(10). Specifically, we adopt the method suggested in [11]
to determine the network topology. However, instead of
employing linear feedback control schemes as proposed in
[11], we utilize a decentralized MPC scheme to compute the
control actions for the overall system.

III. CONTROL ALGORITHM

This section presents a two-layer control strategy that
provides the suboptimal solution to Optimization Problem
(10). At the upper layer, a supervisor determines the network
topology. Subsequently, at the lower layer, a group of coali-
tions generated by the selected network topology employs
a decentralized MPC strategy to determine the control input
for the entire system.

A. Upper Layer

The assumption below is required in the selection of
network topologies.

Assumption 3. Suppose the system xS(k+1) = Ag
SxS(k)+

Bg
SuS(k) is controlled by a feedback law uS(k) = Kg

SxS(k)
for any topology g ∈ G. A positive definite matrix P g

S ≜
diag(P g

C )C∈Pg
exists and satisfies

xT
S (k)P

g
SxS(k) ≥

∞∑
t=0

ℓgS(xS(k + t), uS(k + t)), (12)

where

ℓgS(xS(k), uS(k)) =
∑
C∈Pg

ℓgC(xC(k), uC(k)).

Let AS = (Aij)i,j∈S , BS = (Bij)i,j∈S , QS =
diag(Qi)i∈S , RS = diag(Ri)i∈S , W g

S = (W g
S)

T =
(Wij)i,j∈S , and Y g

S = (Y g
S )

T = (Yij)i,j∈S , where Wij ∈
Rni×nj , Yij ∈ Rqi×nj , and Wij = 0, Yij = 0 ∀i, j ∈
S, C ∈ Pg such that i ∈ C, j /∈ C. The following linear
matrix inequality (LMI) proposed in [11] W g

S W g
SA

T
S + (Y g

S )
TBT

S W g
SQ

1/2
S (Y g

S )
TR

1/2
S

ASW
g
S +BSY

g
S W g

S 0 0

Q
1/2
S W g

S 0 I 0

R
1/2
S Y g

S 0 0 I

 > 0,

(13)
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is solved to obtain matrices Kg
S and P g

S , respectively sat-
isfying Assumptions 2 and 3. If W g

S and Y g
S satisfying the

above LMI exist, then

Kg
S = (W g

S)
−1, P g

S = Y g
S (W

g
S)

−1.

Assume that the state xS(k) is given at time step k. The
network topology at time step k is determined by solving the
following optimization:

min
g∈G

r(g, xS(k)), (14)

where

r(g, xS(k)) ≜ xS(k)
TP g

SxS(k) + c|g|. (15)

Due to the rapid growth of the cardinality of G to the
cardinality of E , Optimization Problem (14) is evaluated at
every multiple of specified time steps to to decrease the
computational load.

B. Lower Layer

In this work, we modify the decentralized MPC scheme
proposed in [21] to determine the control input to System (8).
The control scheme in [21] was initially designed for control-
ling constrained large-scale systems composed of subsystems
interconnected through their state. Additionally, the network
communication considered in [21] is assumed to be constant.
In this work, we extend the control scheme in [21] to handle
disturbed and constrained systems that switch among a finite
set of system modes. Particularly, we define and utilize a
common control invariant set for the switched systems to
ensure the persistent feasibility of the entire system.

The work in [21] relies on the tube-based MPC control
strategy suggested in [22]. The control strategy addresses the
feasibility and robust stability of constrained linear systems
subject to bounded disturbances. Moreover, the MPC opti-
mization problem of this strategy is derived by employing
the nominal system that associates with the actual system
and the constraints that are tighter than the original ones.

Considering dC as a disturbance, the nominal system
corresponding to System (4) is defined as

x̂C(k + 1) = Ag
Cx̂C(k) +Bg

CûC(k), (16)

where ûC and x̂C are the nominal control input and state
vectors of coalition C. Furthermore, the coalitional input
uC(k) in (4) is determined by the following feedback control
policy:

uC(k) = ûC(k) +Kg
C(xC(k)− x̂C(k)), (17)

where the value of xC(k) is given. Suppose that σ(k) = g,
the value of the pair (x̂C(k), ûC(k)) is obtained by solving
the following coalitional MPC optimization problem:

min
(x̂C(k),{ûC(k+t)}Np−1

t=0 )

Jg
C (x̂C(k), {ûC(k + t)}Np−1

t=0 ), (18a)

subject to
xC(k)− x̂C(k) ∈ Zg

C , (18b)

x̂C(k+t+1) = Ag
Cx̂C(k+t)+Bg

CûC(k+t), t = 0, . . . , Np−1,
(18c)

x̂C(k + t) ∈ X̂g
C , t = 0, . . . , Np − 1, (18d)

ûC(k + t) ∈ Ûg
C , t = 0, . . . , Np − 1, (18e)

x̂C(k +Np) ∈ T̂g
C , (18f)

where Np is the length of horizon prediction and the objec-
tive function Jg

C (., .) is defined as

Jg
C (x̂C(k), {ûC(k + t)}Np−1

t=0 ) =
Np−1∑
t=0

ℓgC(x̂C(k + t), ûC(k + t)) + V g
C (x̂C(k +Np)),

(19)

where V g
C (.) is defined as

V g
C (x̂C(k +Np)) = x̂T

C (k +Np)P
g
C x̂C(k +Np). (20)

Let the pair (x̂∗
C(k), {û∗

C(k+t)}Np−1
t=0 ) be the optimal solution

to Optimization Problem (18), then the control input for
System (4) is determined by:

u∗
C(k) = û∗

C(k) +Kg
C
(
xC(k)− x̂∗

C(k)
)
.

The set Zg
C in (18b) is a robust positively invariant (RPI)

set for the system

zC(k + 1) = F g
C zC(k) + dC(k), (21)

where zC = xC − x̂C . The existence of the set Zg
C is guaran-

teed since F g
C is assumed to be Schur, and the disturbance

dC lies in the bounded set Dg
C [23]. We employ the algorithm

proposed in [24] to compute the set Zg
C . Once the set Zg

C is
obtained, the sets Ûg

C and X̂g
C are calculated as follows:

Ûg
C ≜ Ug

C ⊖Kg
CZ

g
C , X̂g

C ≜ Xg
C ⊖Z

g
C . (22)

The set T̂g
C in (18f) is the terminal constraint that will be

clearly specified in the next section.
A state xC(k) ∈ Xg

C is said to be feasible for Optimzation
Problem (18) if

Ug,Np

C (xC(k)) ≜
{
{ûC(k + t)}Np−1

t=0 |xC − x̂C(k) ∈ Zg
C ,

x̂C(k + t+ 1) = Ag
Cx̂C(k + t) +Bg

CûC(k + t),

ûC(k + t) ∈ Ûg
C , x̂C(k + t) ∈ X̂g

C ,

x̂C(k +Np) ∈ T̂g
C ,∀t ∈ {0, . . . , Np − 1}

}
̸= ∅.

(23)

We denote the set of all feasible states for Optimization
Problem (18) as Xg,Np

C , which is described by

Xg,Np

C ≜ {xC ∈ Xg
C | if xC(k) = xC then Ug,Np

C (xC(k)) ̸= ∅}.
(24)

Let X̂g,Np

C be the set of all states x̂C ∈ X̂g
C for which the

following optimization problem

min
({ûC(k+t)}Np−1

t=0 )

Jg
C (x̂C(k), {ûC(k + t)}Np−1

t=0 ), (25a)

subject to
x̂C(k) = x̂C , (25b)

x̂C(k+t+1) = Ag
Cx̂C(k+t)+Bg

CûC(k+t), t = 0, . . . , Np−1,
(25c)

x̂C(k + t) ∈ X̂g
C , t = 0, . . . , Np − 1, (25d)

ûC(k + t) ∈ Ûg
C , t = 0, . . . , Np − 1, (25e)

x̂C(k +Np) ∈ T̂g
C , (25f)
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is feasible. Mathematically, X̂g,Np

C is represented by

X̂g,Np

C ≜ {x̂C ∈ X̂g
C | if x̂C(k) = x̂C then Ûg,Np

C (x̂C(k)) ̸= ∅},
(26)

where

Ûg,Np

C (x̂C(k)) ≜
{
{ûC(k + t)}Np−1

t=0 |x̂C(k + t+ 1) =

Ag
Cx̂C(k + t) +Bg

CûC(k + t), ûC(k + t) ∈ Ûg
C ,

x̂C(k + t) ∈ X̂g
C ,∀t ∈ {0, . . . , Np − 1},

x̂C(k +Np) ∈ T̂g
C
}
.

(27)

The relationship between Xg,Np

C and X̂g,Np

C is explained in
the following proposition.

Proposition 4. Suppose Xg,Np

C and X̂g,Np

C are the feasible
regions for Optimization Problems (18) and (25). Then,
Xg,Np

C = X̂g,Np

C ⊕Zg
C .

Proof: Based on the definitions of Xg,Np

C and X̂g,Np

C , we
have

Xg,Np

C = {xC ∈ XC |∃x̂C ∈ X̂g,Np

C such that xC = x̂C ⊕Zg
C}

= X̂g,Np

C ⊕Zg
C

The algorithm below is used to calculate the set Xg,Np

C .

Algorithm 1: The computation of the set Xg,Np

C
Require: system Ωg

C : x̂C(k + 1) = Ag
Cx̂C(k) + Bg

CûC(k),
subject to x̂C(k) ∈ X̂g

C , ûC(k) ∈ Ûg
C , ∀k ∈ Z+, and the

sets T̂g
C and Zg

C .
Initialize Ψg

C(0) = T̂g
C

for k = 1 : Np do
Ψg

C(k) = PreΩg
C
(Ψg

C(k − 1)) ∩ X̂g
C

end for
X̂g,Np

C = Ψg
C(Np)

Xg,Np

C = X̂g,Np

C ⊕Zg
C

Remark 2. If X̂g
C and Ûg

C are polyhedral sets represented by

X̂g
C = {x̂C |HCx̂C ≤ hC},

Ûg
C = {ûC |LCûC ≤ lC},

where HC ∈ RmC×nC , L ∈ RpC×qC , hC ∈ RmC , and lC ∈
RpC , then the precursor set to the set X̂g

C with respect to
the system Ωg

C , i.e. PreΩg
C
(X̂g

C), is obtained by projecting the
following set{[

x̂C
ûC

]
∈ RnC+qC :

[
HCA

g
C HCB

g
C

0 LC

] [
x̂C
ûC

]
≤
[
hC
lC

]}
to the space of the state x̂C .

Let T ≜ {mT |m ∈ Z+}, for some positive integer T ,
represent the set of time steps at which the network topology
is updated. The two-layer control strategy proposed in this
work is outlined in the following algorithm.

Algorithm 2: The two-layer control strategy
1) a) For k ∈ T , i.e., k = mT for some m ∈ Z+,

all agents share their state vector, and the super-
visor solves the Optimization Problem (14). The
optimal solution to Optimization Problem (14) is

set as the topology from time step k to time step
(m+ 1)T − 1.

b) Otherwise, every agent only informs their state
vector to other members of the same coalition.

2) Every coalition C ∈ Pσ(k) determines its control input
uC(k) by solving Optimization Problem (18).

IV. RECURSIVE FEASIBILITY ANALYSIS

Define matrices Ãg
S ≜ diag(Ag

C)C∈Pg and B̃g
S ≜

diag(Bg
C)C∈Pg

and matrices Āg
S and B̄g

S as Āg
S ≜ Ag

S − Ãg
S

and B̄g
S ≜ Bg

S − B̃g
S . Then, the following system

xS(k + 1) = Ãg
SxS(k) + B̃g

SuS(k) + dS(k), (28)

where

dS(k) = (dC(k))C∈Pg
= Āg

SxS(k) + B̄g
SuS(k) +Dg

SwS(k)

is equivalent to System (8). In addition, the constraint of
vector dS is provided by

dS ∈ Dg
S =

∏
C∈P(g)

Dg
C . (29)

Considering vector dS as an additive disturbance, we
have the nominal system that corresponds to System (28)
as follows:

x̂S(k + 1) = Ãg
S x̂S(k) + B̃g

S ûS(k), (30)

in which x̂S = (x̂C)C∈Pg
and ûS = (ûC)C∈Pg

. Furthermore,
the constraints of System (30) are given by

x̂S ∈ X̂g
S =

∏
C∈Pg

X̂g
C , ûS ∈ Ûg

S =
∏

C∈Pg

Ûg
C . (31)

In line with Equation (17), the feedback control policy for
System (28) is provided by

uS(k) = ûS(k) +Kg
S(xS(k)− x̂S(k)). (32)

By defining Zg
S ≜

∏
C∈Pg

Zg
C , X̂g

S ≜
∏

C∈Pg
X̂g

C , Ûg
S ≜∏

C∈Pg
Ûg

C , and T̂g
S ≜

∏
C∈Pg

T̂g
C , we can express the

coalitional MPC optimization problem for all coalitions in
Pg as a collective MPC optimization problem as follows:

min
(x̂S(k),{ûS(k+t)}Np−1

t=0 )

Jg
S(x̂S(k), {ûS(k + t)}Np−1

t=0 ) (33a)

subject to
xS(k)− x̂S(k) ∈ Zg

S (33b)

x̂S(k + t+ 1) = Ãg
S x̂S(k + t) + B̃g

S ûS(k + t), (33c)

x̂S(k + t) ∈ X̂g
S , t = 0, . . . , Np − 1, (33d)

ûS(k + t) ∈ Ûg
S , t = 0, . . . , Np − 1, (33e)

x̂S(k +Np) ∈ T̂g
S , (33f)

where

Jg
S(x̂S(k), {ûS(k + t)}Np−1

t=0 ) =∑
C∈Pg

Jg
C (x̂C(k), {ûC(k + t)}Np−1

t=0 ). (34)
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Extending the right-hand side of Equation (34) leads us to

Jg
S(x̂S(k), {ûS(k + t)}Np−1

t=0 ) =
Np−1∑
t=0

(
xT
S (k + t)Qg

S(xS(k + t)+

uT
S (k + t)Rg

S(uS(k + t)

)
+ xT

S (k +Np)P
g
S(xS(k +Np),

(35)

where Qg
S = diag(Qg

C)C∈Pg
and Rg

S = diag(Rg
C)C∈Pg

.

Remark 3. The set Zg
S in Constraint (33b) is robustly

positive invariant for the system

zS(k + 1) = F g
SzS(k) + dS(k), (36)

where zS = (zC)C∈Pg
.

Remark 4. Suppose Xg,Np

S denotes the set of all states xS
for which Optimization Problem (33) is feasible. Then, the
set Xg,Np

S is given by Xg,Np

S =
∏

C∈Pg
Xg,Np

C .

The subsequent assumption is required to ensure that the
Optimization Problem (33) is recursively feasible.

Assumption 5. For any topology g ∈ G, a set X̂g
F ⊆ X̂g

S
that is positive invariant for the system

Ωg
S : x̂S(k + 1) =

(
Ãg

S + B̃g
SK

g
S
)
x̂S(k) (37)

exists and satisfies

ûS(k) = Kg
S x̂S(k) ∈ Ûg

S , ∀x̂S(k) ∈ X̂g
F .

In other words, X̂g
F is a control invariant set for System

(30) subject to Constraints (31). The following algorithm
provides the computation of X̂g

F , which is adopted from [25].

Algorithm 3: The computation of the control invariant
set X̂g

F

Require: System (37) and Constraints (31).
Initialization: Ψ(0)← X̂g

S , k ← −1
repeat
k ← k + 1
Ψ(k + 1)← PreΩg

S
(Ψ(k)) ∩Ψk

until Ψ(k + 1) = Ψ(k)
X̂g

F ← Ψ(k)

Remark 5. If X̂g
S and Ûg

S are polyhedral sets represented
by

X̂g
S = {x̂S |Hx̂S ≤ h},

Ûg
S = {ûS |LûS ≤ l},

then the precursor to the set X̂g
S with respect to System (37)

is given by the following polyhedron

PreΩg
S
(X̂g

S) =

{
x̂S ∈ Rn|

[
H(Ãg

S + B̃g
SK

g
S)

LKg
S

]
x̂S ≤

[
h
l

]}
,

where H ∈ Rm×n, L ∈ Rp×q , h ∈ Rm, and l ∈ Rp.

In addition, to guarantee the recursive feasibility of Opti-
mization Problem (33), we require that the terminal set T̂g

S is
a common control invariant set. The definition of a common
control invariant set is provided below.

Definition 6. Consider the switched system

x̂S(k + 1) = Ã
σ(k)
S x̂S(k) + B̃

σ(k)
S ûS(k), (38a)

x̂S(k) ∈ X̂σ(k), ûS(k) ∈ Ûσ(k), (38b)

that switches between |G| system modes according to switch-
ing signal σ. A set T is called a common control invariant
set for System (38) if it is control invariant for all system
modes.

The computation of the common control invariant set is
presented in the algorithm below.

Algorithm 4: The computation of the common control
invariant set T

1) For each topology g ∈ G, compute X̂g
F using Algo-

rithm 3.
2) Compute T = ∩g∈GX̂g

F .

Remark 6. Given the common control invariant set T.
The set T̂g

C in Optimization Problem (18) is obtained by
projecting the set T onto the state space of the coalition
C.

The following remark explains the order of the execution
of the algorithms presented above. It is important to note that
Algorithms 1, 3, and 4 are executed offline, while Algorithm
2 is performed online.

Remark 7. First, Algorithm 3 is executed to obtain the
control invariant set X̂g

F , for all g ∈ G. Subsequently,
Algorithm 4 is executed to determine the common invariant
set T and the sets T̂g

C , for all C ∈ Pg , for all g ∈ G. Then,
algorithm 1 is executed to compute the feasible region Xg,Np

C
for all C ∈ Pg , for all g ∈ G. Finally, Algorithm 2 is executed
utilizing these results.

The assumption below is also needed to ensure that
Optimization Problem (33) is recursively feasible.

Assumption 7. For any consecutive time steps mT ∈ T and
(m+ 1)T ∈ T , it holds that

Zσ(mT )
S ⊆ Zσ((m+1)T )

S ,

for any m ∈ Z+.

The main result of this work is presented in the theorem
below.

Theorem 8. Suppose all assumptions above hold, Np ≤ T ,
and T̂g

S = T for all g ∈ G. Then, if Optimization Problem
(33) has a feasible solution at time step k, it also has a
feasible solution at time step k + 1 for all k ∈ Z+.

Proof: In this proof, we investigate two scenarios. In
the first scenario, we consider the topology at time steps k
and k+1 unchanged. Then, in the second case, we examine
the situation in which the topology at time steps k and k+1
is modified.

Let
(
x̂∗
S(k), {û∗

S(k + t)}Np−1
t=0

)
be the feasible solution to

Optimization Problem (33) for the state xS(k). Denote the
state trajectory for Nominal System (30) corresponding to
the solution as {x̂∗

S(k + t)}Np

t=0. Substituting

u∗
S(k) = û∗

S(k) +K
σ(k)
S (xS(k)− x̂∗

S(k))
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into (28), we have xS(k + 1) for any dS(k) ∈ Dσ(k)
S .

(Scenario 1. σ(k + 1) = σ(k)) Consider the tuple(
x̂∗
S(k + 1), {û∗

S(k + t+ 1)}Np−1
t=0

)
,

with û∗
S(k + Np) = K

σ(k)
S x̂∗

S(k + Np), to be a solution
to Optimization Problem (33) corresponding to the state
xS(k + 1). Then, the state trajectory for Nominal System
(30) associated with the later solution is

{x̂∗
S(k + t+ 1)}Np

t=0,

where

x̂∗
S(k +Np + 1) =

(
Ã

σ(k)
S + B̃

σ(k)
S K

σ(k)
S

)
x̂∗
S(k +Np).

From the feasibility at time step k, it follows that

x̂∗
S(k + t+ 1) ∈ X̂σ(k)

S = X̂σ(k+1)
S , for t = 0, . . . , Np − 1,

û∗
S(k + t+ 1) ∈ Ûσ(k)

S = Ûσ(k+1)
S for t = 0, . . . , Np − 2,

and
xS(k)− x̂∗

S(k) ∈ Z
σ(k)
S .

Consequently, based on Proposition 1 in [22], we have

xS(k + 1)− x̂∗
S(k + 1) ∈ Zσ(k)

S = Zσ(k+1)
S .

Moreover, due to

x̂∗
S(k +Np) ∈ T̂σ(k)

S = T̂σ(k+1)
S = T,

it follows that

x̂∗
S(k +Np + 1) ∈ T̂σ(k+1)

S ,

and
û∗
S(k +Np) ∈ Ûσ(k+1)

S ,

according to Assumption 5. This proves that (x̂∗
S(k +

1), {û∗
S(k + t + 1)}Np−1

t=0 ) is a feasible solution to (33) at
time step k + 1.
(Scenario 2. σ(k + 1) ̸= σ(k)) Since Np ≤ T , then

x̂∗
S(k + t) ∈ T̂σ(k)

S = T̂σ(k+1)
S = T, for all t = 0, . . . , Np.

Consequently, by defining x̂0
S(k+1) = x̂∗

S(k+1), we obtain

û0
S(k + 1) = K

σ(k+1)
S x̂0

S(k + 1) ∈ Ûσ(k+1)
S ,

x̂0
S(k + 2) =

(Ã
σ(k+1)
S + B̃

σ(k+1)
S K

σ(k+1)
S )x̂0

S(k + 1) ∈ Tσ(k+1)
S ,

according to Assumption 5. In the same way, we also have

û0
S(k + 2) = K

σ(k+1)
S x̂0

S(k + 2) ∈ Ûσ(k+1)
S ,

x̂0
S(k + 3) =

(Ã
σ(k+1)
S + B̃

σ(k+1)
S K

σ(k+1)
S )x̂0

S(k + 2) ∈ Tσ(k+1)
S .

Repeating this procedure recursively, we get the following
sequences:

{û0
S(k + t+ 1)}Np−1

t=0 ,

and
{x̂0

S(k + t+ 1)}Np

t=0},

where û0
S(k+t+1) ∈ Ûσ(k+1)

S , for all t = 0, . . . , Np−1 and
x̂0
S(k+t+1) ∈ X̂σ(k+1)

S , for all t = 0, . . . , Np. Furthermore,
according to the proof in Scenario 1, it follows that

xS(k + 1)− x̂∗
S(k + 1) ∈ Zσ(k)

S .

Fig. 1. Illustration of canal reach i

Since Zσ(k)
S ⊆ Zσ(k+1)

S , we have

xS(k + 1)− x̂0
S(k + 1) ∈ Zσ(k+1)

S .

Thus, the pair
(
x̂0
S(k + 1), {û0

S(k + t+ 1)}Np−1
t=0

)
is a fea-

sible solution to (33) at time step k + 1.

V. SIMULATION

To validate the performance of the proposed control
scheme, we apply it to an irrigation canal system comprising
three canal reaches. As shown in Fig. 1, each canal reach i is
assumed to have an inflow, denoted by qin,i ∈ R≥0(m

3/s),
originating from an upstream canal reach, and an outflow,
indicated by qout,i ∈ R≥0(m

3/s), directed towards a down-
stream canal reach. Furthermore, the canal reach i is also
assumed to have a local outflow, represented by qofftake,i ∈
R≥0(m

3/s), resulting from factors such as farmer usage.
The water level in the canal reaches is influenced by the

amount of water that flows into and out of the reaches.
In addition, the surface of the reaches also contributes to
the change in the water levels. However, for our analysis,
we focus solely on the water levels at the downstream end
of each reach since, in this location, the water offtakes
occur, and the water level should be maintained close to the
reference level.

Let hi(m) and hi,ref (m) represent the water level and
reference level at the downstream end of the canal reach i,
respectively. We define ei = hi − hi,ref as the difference
between the water level and the reference level, and As,i as
the surface area of the canal reach i. The change in water
level in the canal reach i from time step k to time step k+1
is specified by [26]

ei(k + 1) =ei(k) +
Ts

As,i
qin,i(k)−

Ts

As,i
qout,i(k)

− Ts

As,i
qofftake,i(k),

(39)

or

∆ei(k + 1) =∆ei(k) +
Ts

As,i
∆qin,i(k)−

Ts

As,i
∆qout,i(k)

− Ts

As,i
∆qofftake,i(k),

(40)

where ∆ei(k), ∆qin,i(k), ∆qout,i(k), and ∆qofftake,i(k)
denote the difference of the corresponding variables at time
steps k and k − 1, and Ts indicates the sampling time.
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Define state, control input, and disturbance input vectors

as xi(k) =

(
∆ei(k)
ei(k)

)
, ui(k) = ∆qin,i(k), ui+1(k) =

∆qout,i(k), and wi(k) = ∆qofftake,i(k). Then, System (40)
can be put in the state-space form as follows:

xi(k+1) = Aiixi(k)+Biiui(k)+Bi(i+1)ui+1(k)+Diiwi(k),
(41)

where

Aii =

(
1 0
1 1

)
, Bii =

(
Ts

As,i
Ts

As,i

)
,

Bi(i+1) =

(
− Ts

As,i

− Ts

As,i

)
, Dii =

(
− Ts

As,i

− Ts

As,i

)
.

Therefore, the dynamics of canal reaches 1, 2, and 3 are
given by :

x1(k+1) = A11x1(k)+B11u1(k)+B12u2(k)+D11w1(k),
(42a)

x2(k+1) = A22x2(k)+B22u2(k)+B23u3(k)+D22w2(k),
(42b)

x3(k + 1) = A33x3(k) +B33u3(k) +D33w3(k). (42c)

In this simulation, we set the constraints of the state,
control input, and disturbance input for canal reaches 1,2,
and 3 as follows:

X1 =

{
x1 :

(
−1
−1

)
≤ x1 ≤

(
1
1

)}
, (43a)

U1 = {u1 : −1.3 ≤ u1 ≤ 1.3}, (43b)

W1 = {d1 : −0.05 ≤ d1 ≤ 0.05}, (43c)

X2 =

{
x2 :

(
−1
−1

)
≤ x2 ≤

(
1
1

)}
, (44a)

U2 = {u2 : −0.6 ≤ u2 ≤ 0.6}, (44b)

W2 = {d2 : −0.05 ≤ d2 ≤ 0.05}, (44c)

X3 =

{
x3 :

(
−1
−1

)
≤ x3 ≤

(
1
1

)}
, (45a)

U3 = {u3 : −0.3 ≤ u3 ≤ 0.3}, (45b)

W3 = {d3 : −0.05 ≤ d3 ≤ 0.05}. (45c)

Furthermore, the values of the parameters used in this
simulation are presented in Table I.

TABLE I
THE VALUES OF THE PARAMETERS

No. Parameter value
1. Ts 240 s
2. As,1 397 m2

3. As,2 653 m2

4. As,3 503 m2

5. Qi diag(100, 100), ∀i = 1, 2, 3
6. Ri 10, ∀i = 1, 2, 3

7. xi(0)
[
0.08 0.08

]T
, ∀i = 1, 2, 3

8. Np 5 time steps
9. T 5 time steps
10. c 0.1

Each canal reach is independently controlled by a set of
agents denoted by {A1, A2, A3}. Each agent Ai, i = 1, 2, 3,
is responsible for maintaining the deviation between the
water and reference levels close to zero. These agents are

interconnected through a communication network consisting
of two links, as illustrated in Fig.2. Due to both links I
and II can be enabled or disabled, four different network
topologies could be established. All topologies that can
appear and their corresponding coalitions generated by them
are presented in Table II.

Fig. 2. Communication Network of Agents

TABLE II
ALL POSSIBLE TOPOLOGIES AND THEIR CORRESPONDING PARTITIONS

No Topology The collection of coalitions

1. g1 = ∅ Pg1 = {{A1}, {A2}, {A3}}
2. g2 = {I} Pg2 = {{A1, A2}, {A3}}
3. g3 = {II} Pg3 = {{A1}, {A2, A3}}
4. g4 = {I, II} Pg4 = {A1, A2, A3}

For each topology g ∈ G, the RPI set Zg
C is computed for

all coalitions C ∈ Pg using the algorithm described in [24].
For this purpose, we solve LMI (13) to obtain matrices Kg

S =
diag(Kg

C)C∈Pg
and P g

S = diag(P g
C )C∈Pg

. For example, for
topology g1, we obtain the following matrices:

Kg1
C1

=
(
−1.6440− 0.9413

)
,

P g1
C1

=

(
127.7995 16.2370
16.2370 176.7849

)
,

Kg1
C2

=
(
−2.3363 −0.7581

)
,

P g1
C2

=

(
996.7954 297.3096
297.3096 324.2800

)
,

Kg1
C3

=
(
−1.1868 −0.3849

)
,

P g1
C3

=

(
1024.6 308.3
308.3 328.6

)
.

The RPI sets Zg1
Ci

, i = 1, 2, 3, are displayed in Fig. 3. Then,
the sets X̂g

C and Ûg
C for all coalitions C ∈ Pg are computed

by using (22). Subsequently, the common control invariant
set T is computed using Algorithm 4. Then, by projecting
the sets T onto the state space of the coalition C, we obtain
T̂g
C for all coalitions C ∈ Pg . The sets T̂g

C corresponding to
the topology g1 are displayed in Fig. 4. Finally, by using
Algorithm 1, we compute the feasible regions X̂g,Np

C and
X̂g,Np

C for all coalitions C ∈ Pg , g ∈ G. The sets X̂g,Np

C
and X̂g,Np

C that corresponds to the topology g1 are shown in
Fig.5.

In this simulation, we compare our coalitional control
scheme to centralized MPC and decentralized MPC schemes.
The network topology g4 is used in the centralized MPC
strategy, while the network topology g1 is exploited in
the decentralized MPC strategy. Furthermore, the values of
disturbance vectors di for all i ∈ {1, 2, 3} are generated using
the rand command in Matlab.

Figs. 6-8 demonstrate the simulation results in 25 time
steps. Fig. 6 shows the control actions of all subsystems for
all schemes, while Fig. 7 and Fig. 8 display the states of
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Fig. 3. The RPI sets corresponding to the topology g1

Fig. 4. The target sets T̂g1
C for all C ∈ Pg1

Fig. 5. The sets X̂g1,Np

C and Xg1,Np

C for all C ∈ Pg1

all subsystems for all schemes. We can observe from Figs.
6-8 that the state and input constraints of all subsystems are
satisfied by all schemes. Furthermore, based on Fig. 7 and
Fig. 8, the behavior of the states of all subsystems resulting
from our proposed scheme is similar to that resulting from
the centralized MPC scheme. This is confirmed by the sum
of the mean squared error (MSE) of the state vector of all
subsystems presented in Table III. We can see from Table III
that the sum of the MSE of our coalitional scheme is similar
to the MSE given by the centralized scheme. In addition,
our proposed control scheme has the lowest cost, as shown
in Table IV.

0 5 10 15 20 25
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0

0.2
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Fig. 6. The dynamic of the control input ∆qin,i

TABLE III
THE COMPARISON OF MEAN SQUARED ERRORS OF STATES

Coal. MPC Cen. MPC Dec. MPC
x1 8.3675× 10−4 7.3511× 10−4 0.0045
x2 0.0011 7.6962× 10−4 0.0018
x3 8.6288× 10−4 7.0785× 10−4 0.0010

Sum 0.0028 0.0022 0.0073

TABLE IV
COMPARISON OF TOTAL COST

Coal MPC Cen MPC Dec MPC
Total cost 9.5381 11.1597 11.1780

Fig. 9 depicts the dynamic of the network topology result-
ing from our coalitional control scheme. In this simulation,
we use g2 as the initial network topology and update the
network topology at intervals of T = 5. Therefore, the net-
work topology update occurs at time steps k = 5, 10, 15, 20.
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It can be observed from Fig. 9 that g(5) = g2, g(10) = g4,
g(15) = g2, and g(20) = g3.
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Fig. 9. The dynamic of network topologies

VI. CONCLUSION

This paper investigates the design of a top-down coali-
tional MPC scheme for a system consisting of disturbed
and constrained subsystems interconnected with each other.
The proposed scheme involves a supervisor that periodically
selects the optimal network topology at the upper layer. At
the bottom layer, each coalition generated by the optimal
network topology independently calculates its control actions
using a decentralized MPC strategy. The issue of recursive
feasibility is addressed by utilizing a common control invari-
ant set as the terminal constraint of the collective coalitional
MPC optimization problem. The simulation results demon-
strate that our proposed control scheme guarantees constraint
satisfaction of the system. Furthermore, the results show that
our proposed control scheme has the lowest cost compared
to the centralized MPC and decentralized MPC schemes.
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control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[23] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, no. 4, pp. 317–367, 1998.

[24] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant
set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp.
406–410, 2005.

[25] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[26] R. R. Negenborn, P.-J. van Overloop, and B. De Schutter, “Coordinated
distributed model predictive reach control of irrigation canals,” in 2009
European Control Conference (ECC). IEEE, 2009, pp. 1420–1425.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_12

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 




