
Image Manipulation Detection Using the Attention
Mechanism and Faster R-CNN

Kang Tan, Linna Li and Qiongdan Huang

Abstract—With the advancement of image authoring soft-
ware, the traces of image tampering operation have become
increasingly difficult to detect. To enhance the performance of
manipulation detection, we propose a novel end-to-end image
tampering detection method using the attention mechanism
and two-stream Faster R-CNN. In our model, we eliminate
steganalysis rich model (SRM) filter, which suppresses image
content, and employ a constrained convolution layer to adap-
tively extract image tamper features during model training.
These features are then inputted into the backbone network
in parallel with the RGB image. To emphasize image tamper
features and restrict irrelevant features, we introduce the
Convolutional Block Attention Module (CBAM) into the model,
enabling better delivery of tamper-related information. Then,
the output of backbone network is fed into the Region of
Interest (RoI), where we replace max pooling operation with
bilinear interpolation. This modification allows the model to
retain more tamper information. After that, we use bilinear
pooling for feature fusion of the two streams, and the fused
results perform tamper classification operations. The RGB
stream through Region Proposal Network (RPN) to achieve
tamper localization. We evaluate our model on three publicly
available standard image tampering datasets and demonstrate
through experiments that our approach significantly improves
the precision of manipulation detection and localization.

Index Terms—image manipulation detection, Faster R-CNN,
constrained convolution, attention.

I. INTRODUCTION

IN recent years, the prevalence of edited images on social
networking platforms has increased. While most photos

are edited for aesthetic purposes such as life or art photog-
raphy, there are also instances where images are maliciously
altered to deceive viewers. Especially when such image
manipulations are employed in political, military, cultural,
economic, educational, and other domains, they can have
serious consequences and even jeopardize social stability.
Therefore, the detection of image manipulation has garnered
significant attention.

Among various image manipulation techniques, image
content tampering is the most common, involving alterations
to certain areas or objects in images. Splicing (copying a part
of an image and pasting it onto host image) [1], copy-move
(duplicating a part of an image and pasting it into another

Manuscript received April 17, 2023; revised September 6, 2023.
This work is supported by Xi’an Science and Technology Plan Project

(Grant No. 22GXFW0124) and The Youth Innovation Team of Shaanxi
Universities.

Kang Tan is a postgraduate student of the School of Control Science
and Engineering, Xi’an University of Post and Telecommunications, Xi’an
710121, China. (e-mail: tankang0912@163.com).

Linna Li is a Senior Engineer of the Shaanxi Key Laboratory of Network
Data Analysis and Intelligent Processing, Xi’an University of Post and
Telecommunications, Xi’an 710121, China. (e-mail: lilinna0808@163.com).

Qiongdan Huang is an Associate Professor of the School of Com-
munication and Information Engineering, Xi’an University of Post and
Telecommunications, Xi’an 710121, China. (e-mail: xuezhemail@163.com).

Fig. 1. Examples of different tampering methods.

region) [2], and removal (eliminating a region from an image)
are the three most common image tampering operations.
These manipulations are shown in Fig. 1. Additionally, after
tampering, noise or JPEG compression [3] is sometimes
added to further mask traces of manipulation, which poses
greater challenges for image manipulation detection research.

Previously, image manipulation detection mainly focus on
methods such as overlapping image patches and key points.
In a typical study, Bianchi [5] used a probability model
to predict the Discrete Cosine Transform (DCT) [6] and
quantization factors of different areas in a JPEG image. The
method then determined the probability of tempering in each
DCT block. However, the precision of approach varied for
different manipulation operations, and the robustness fell
short of predetermined requirements. Recently, image ma-
nipulation detection algorithms have primarily concentrated
on features related to image compression, edge inconsistency
[4], local noise and camera filter array models. With rapid
advancement of deep learning, research on image forgery de-
tection has become more diversified. Among these methods,
Faster R-CNN [7] has demonstrated promising performance
in detecting image manipulation. The first stream utilizes
the RGB stream to extract image features, such as tamper
boundary inconsistency and contrast difference. The second
stream employs SRM [8] filter to extract features related
to local noise and detect noise inconsistency within tamper
regions. However, the use of manual or predetermined fea-
tures, such as the SRM filter and edge detection, limits the
model’s ability to generalize. Traditional convolutional neu-
ral networks (CNNs) typically extract features from image
content, yet image tamper detection is to recognize and learn
features that can effectively capture tampering traces. Given
the aforementioned limitations, we have designed a model
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that combines a constrained CNN and attention module,
enabling the adaptive extraction of tampering features during
the training process.

In this research, we propose a tampering detection model
based on two-stream Faster R-CNN, incorporating a con-
strained convolutional network and an attention module.
The original model obtains image local noise features using
specific SRM kernels, but this fixed set of features limits the
model’s ability to extract tampering information. To address
this limitation, we introduce constrained convolution opera-
tions [9], which restrict the content of the image and enable
the model to self-adaptively learn manipulation features. This
approach avoids the problem of poor generalization caused
by predetermined features. Furthermore, to better utilize the
most relevant feature information, we incorporate the CBAM
into the feature extraction network. The CBAM highlights the
characteristic information of manipulation while suppressing
irrelevant information. In the initial model, the max pooling
operation is unbalanced in terms of retaining information
from the image target and background, often ignoring back-
ground tampering features. To overcome this problem, we
use bilinear interpolation instead of max pooling in the RoI.
This modification prevents the model from disregarding ex-
cessive tampering information and improves the performance
of image manipulation detection. The key contributions of
this study are as follows:

(1) A constrained convolutional layer is added to two-
stream Faster R-CNN to obtain tamper characteristics from
the image, which is inputted to the model in parallel with
RGB image for end-to-end training. Our model demonstrates
different levels of performance improvement compared to the
noise and edge streams on three standard datasets.

(2) We incorporate the CBAM [10] into the backbone
network, serving as a simple and effective module to enhance
expressiveness of the model. The CBAM enables model
to effectively identify image tampering information without
significantly increasing the computational burden.

(3) We conduct experiments on three publicly available
standard image tampering datasets, the results show that our
model is better than some existing algorithms. Moreover, our
model also shows excellent robustness.

The article is structured as follows: Section 2 summarizes
the research on image tampering detection at home and
abroad. Section 3 introduces the construction of this method
and provides a detailed description. Section 4 presents ex-
perimental results and analysis of the model. Finally, Section
5 summarizes the study and discusses future prospects.

II. RELATED WORKS

This section summarizes existing methods of image ma-
nipulation detection. The main categories are traditional
methods and deep learning methods.

A. Traditional Algorithms

Traditional image manipulation detection approaches of-
ten relied on designing manual features specific to cer-
tain tampering types or leveraging statistical characteristics
of images. For example, Lyu [11] devised a model that
detected region stitching by identifying inconsistencies in
local noise. The algorithm took advantage of the specific

regularity of natural image kurtosis in the bandpass domain
and noise signature versus kurtosis. Rhayma [12] explored
self-certification of JPEG2000 images using a semi-fragile
watermark method, where the watermark is generated by
the perceptual hash function based on the discrete wavelet
coefficients. During compression, the discrete wavelet trans-
form used exponentially modulated quantization, which was
stepped by the approximate subband coefficients of the five
wavelet decomposition. The watermark was embedded and
extracted during image decoding to ensure stability of water-
mark anti-compression effects generated by the JPEG2000
encoder. In 2017, Li [13] proposed a combined model in-
corporating statistical features and copy-move manipulation
detection, using a threshold to identify tampered areas. This
method enhanced precision of detection but also increased
complexity. Wang [14] introduced a copy-move tamper de-
tection using accelerated robust features and polar complex
index transform, which effectively eliminated false matching
points. The model had a low complexity of calculation and
high precision for the detection of tampered areas. However,
these methods were limited to detecting specific tampering
types, and their performance on multi-tampered images was
less favorable. Moreover, these approaches often involved
complex and specific post-processing steps, which increased
computational complexity and challenged the stability of the
model.

B. Deep Learning Algorithms

In the development of manipulation detection algorithms
using deep learning, CNNs have garnered significant atten-
tion. To address the limitations of traditional image tamper-
ing detection methods in terms of robustness, Bayar [15]
proposed a general image manipulation detection method
called constrained convolution neural network. This model
could be trained to adaptively extract tampering features and
effectively suppress image content. Zhou [7] designed a two-
stream Faster R-CNN image tampering detection method,
which enabled classification and localization of tampering
images by simultaneously inputting noise stream features and
RGB stream features into the model. Wei [16] developed
an image tamper detection method using Faster R-CNN and
edge processing. This approach involved extracting image
edge features using Laplacian of Gaussian and Prewitt op-
erators. Additionally, bilinear interpolation was employed to
replace the max pooling of RoI to prevent the model from
solely extracting high-frequency information. To mitigate the
influence of image content on the acquisition of tampering
features, Yang [9] introduced the constrained convolution
layer to preprocess images. This ensured that the CNN paid
more attention to extracting tampering features. Despite the
success achieved by the two-stream Faster R-CNN in image
tampering detection, the manual selection of the noise stream
limited the detection performance of image tampering. In
2021, Chen [17] utilized a two-layer convolutional network
to model weak features arising from image tampering. They
established the weak feature backbone network using a multi-
scale residual network to acquire tampering feature from
tampered images.

In the aforementioned noise stream and edge detection
stream, specific kernels are employed to extract features. In
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Fig. 2. An overview of image tamper detection model using Faster R-CNN.

this study, we remove manual features and instead utilize
a constrained convolutional layer to adaptively extract tam-
pering features. Furthermore, we replace max pooling with
bilinear interpolation to maximize the utilization of higher
resolution feature layers. Additionally, we introduce a simple,
efficient, and lightweight attention module. This attention
module enables our model to focus on image tampering
features, leading to an overall improvement in performance
without significantly increasing computational requirements.

III. PROPOSED METHOD

The Faster R-CNN model consists of feature extraction,
RPN, and RoI pooling. In this paper, we introduce the con-
strained convolution layer and attention mechanism to enable
manipulation classification and boundary box regression [18]
within the Faster R-CNN framework. Fig. 2 illustrates the
module utilizing Faster R-CNN. The RGB stream is utilized
to detect edge inconsistencies introduced by tampering. The
constrained convolution layer replaces the traditional SRM
and adaptively extracts image tampering features, providing
additional support for tampering classification. For feature
extraction, we employ the residual network (ResNet) [19] as
the feature extraction network and enhance it with CBAM to
better capture tampering features. The RoI layer uses bilin-
ear interpolation to retain more manipulation information,
namely RoI Align [20]. Subsequently, bilinear pooling is
employed to combine the characteristics of the two streams
for the final classification. The confidence level is utilized
to ascertain whether an image has undergone tampering, and
the tampered area is selected for bounding box localization.
The RPN utilizes only the RGB stream as input. The role
of region proposal layer is to identify regions that may have
been tampered with for subsequent manipulation localization.
Anchors are employed to generate region candidate boxes

and perform preliminary screening. The RPN network loss
function is shown as follows:

LRPN (pi, ti) =
1

Ncls

∑
i

Lcls(pi, pi
∗)

+ λ
1

Nreg

∑
i

pi
∗Lreg(ti, ti

∗)
(1)

Where, i represents each anchor point. pi represents the
probabilistic prediction of the region containing tampering
for each anchor, while pi

∗ represents the corresponding
ground-truth label for each anchor. ti and ti

∗ represent
the described values and the true values, respectively, for
the boundary box of each anchor. Lcls represents cross-
entropy loss of the RPN, Ncls denotes mini-batch size. Lreg

represents the smoothing loss. Nreg represents total number
of anchor positions. λ represents equilibrium parameter (λ =
10).

The loss of entire model include three components:

Lt = LRPN + Ltamper(fRGB , fC) + Lbbox(fRGB) (2)

Where, Lt represents the overall loss of the entire model.
LRPN corresponds to the loss function of the RPN, while
Ltamper represents subsequent cross-entropy classification
loss. The loss is influenced by both the RGB channel features
fRGB and the constrained channel features fC . On the other
hand, Lbbox denotes the loss for boundary box regression
loss, which is solely determined by the RGB channel features
fRGB .

A. Add Constrained Convolution Layer

Due to the post-processing techniques employed to conceal
tampering features, it becomes challenging to detect subtle
manipulation marks solely from the RGB stream. Traditional
methods often rely on SRM convolution kernels and edge
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Fig. 3. CBAM and feature extraction network structure. “⊗” denotes element-wise multiplication.

detection techniques to identify tampering clues such as noise
inconsistencies and edge differences. However, these manual
methods are limited by their reliance on fixed convolution
kernels for directly extracting tampering features from the
tampered image. By applying constrained convolution layer
to the images, we can extract rich tampering cues. The output
features are fed into the ResNet. The constraint is described
as follows: {

zk(0, 0) = −1∑
x,y ̸=0 zk(x, y) = 1

(3)

Where, zk(0, 0) represents weight of the kth convolution
kernel at the center position, while zk(x, y) denotes the
weight of the kth convolution kernel at the x and y position.
The initial weights of each convolution kernel are randomly
selected, and the weights are subsequently updated through
an iterative stochastic gradient descent method.

The three fixed filter kernels of SRM are replaced by
constrained convolution layer with the size of 5 × 5 convo-
lution kernels. Different from the Constrained R-CNN (CR-
CNN) [9], we continue to employ the two streams model
for manipulation detection. The RGB stream is utilized to
capture boundary inconsistencies within the tampered region,
while the constrained convolution provides an auxiliary role
in analyzing local noise features of the image.

B. Add Convolutional Block Attention Module

Attention mechanisms [27] have gained significant atten-
tion and have been widely studied and applied in various
tasks, including target detection. These mechanisms not
only help determine where the focus of attention should
be but also aid in adjusting the expression of characteristic
information. In our study, we employ the CBAM framework
to enhance the feature acquisition network. This allows us to
concentrate on relevant tampering features while suppressing
unnecessary ones. The CBAM framework consists of two
components: channel attention module and spatial attention
module. The specific placement of the CBAM model within
convolutional block is depicted in Fig. 3.

Specifically, we input the feature maps F of size M×N×
C and obtain information of each channel through average
pooling and max pooling. This result in Favg ∈ R1×1×C

and Fmax ∈ R1×1×C after pooling operation. These pooled
feature maps are then passed through a Multi-Layer Percep-
tron (MLP) is made up of two fully-connected layers. The
output of the first layer represents C

r , where r represents

the compression coefficient. After applying the ReLu, the
output of second layer represents channel number as C. The
output of the two fully-connected layers are added together
and passed through a sigmoid function, resulting in Mc. The
spatial attention module takes the modified feature maps F

′

as input, which is obtained by element-wise multiplication of
the output Mc from channel attention module and original
input feature maps. We perform two pooling operations,
resulting in feature maps Fs

avg and Fs
max with reduced

dimensions. Subsequently, a 7 × 7 convolution operation is
applied, followed by sigmoid activation function, resulting
in a spatial attention output. Finally, the CBAM framework
produces the final output F

′′
by element-wise multiplication

of the input features and output of spatial attention module.
The specific formulas are shown as follows:

Mc(F) = σ(MLP (avgpool(F)) +MLP (maxpool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(4)

In the equation, Mc represents the output of channel at-
tention module. σ denotes the Sigmoid. W0 ∈ RC

r ×C ,
W1 ∈ RC×C

r are weight matrices, where W0 and W1

share weights.

Ms(F) = σ(f7×7([AvgPool(F);MaxPool(F)])

= σ(f7×7([Fs
avg;F

s
max]))

(5)

Where, Ms represents the output of the spatial attention
module. f7×7 denotes the convolution processing core with
a size of 7× 7.

We incorporate the CBAM into the output of each convo-
lutional block in our approach. The placement of CBAM
is determined based on the experimental results we ob-
tain. Through rigorous analysis, we observe that adding the
CBAM module in both streams yields better results compared
to adding it in either stream alone.

C. Improved RoI Pooling

To mitigate the quantization effects in feature assemblies
and maintain continuity, we adopt the bilinear interpolation
method. This method allows us to handle pixels with floating-
point coordinate values instead of quantizing them. In the
case of Faster R-CNN, the model has two quantification pro-
cesses: (x, y, w, h) of region proposal is a decimal number.
To facilitate calculation, these values are usually quantized to
integers. The processed image boundaries are evenly divided
into n × n units, and the boundaries of the generated units
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are integer. However, this quantization process introduces a
bias between the candidate box positions and the original
regression. Such integer processing can negatively impact
the accuracy of object detection. To address this issue, we
introduce RoI Align, which avoids integer operations and
preserves the decimal values. The improved process can be
summarized as follows:

(1) For each candidate area in the image, the boundaries
of the region use non-integer processed.

(2) Each candidate area is divided into a grid of n × n
blocks, and the edge of these blocks are non-integer pro-
cessed.

(3) Bilinear interpolation is utilized to calculate four fixed
coordinate positions for each block, and pooling operations
are applied to obtain the maximum values.

Through experimental comparisons, we demonstrate that
the improved RoI pooling method improves the precision
of our model. We evaluate the impact of max pooling
and bilinear interpolation on the detection performance and
compare it with two other models using the same methods.
The results are shown in Table I. The use of our proposed
model is denoted by “ ”, while its absence is indicated by
“✕”. Based on the experimental findings, it can be conclude
that our model demonstrates superior detection performance
under similar conditions.

TABLE I
COMPARISON OF ROI POOLING AND IMPROVED ROI POOLING MAP

Model Max pooling mAP

RGB-N 0.7645

RGB-N ✕ 0.7837

RGB-N+Edge 0.7459

RGB-N+Edge ✕ 0.8100

Ours 0.8661

Ours ✕ 0.8873

IV. EXPERIMENTS

We evaluate our method on three standard datasets and
compare it with various manipulation detection methods. The
evaluation metrics employed in this study include Recall,
Precision, F1 score and area under the curve (AUC).

A. Pre-Trained Model

Currently, availability of publicly accessible datasets for
image manipulation detection is limited. In this study, we
generate a tamper dataset by synthesizing label information
from PASCAL VOC 2007. A total of 9963 tamper images are
created for model training and testing purposes. To further
expand the dataset, we employ image flipping as a data
augmentation technique, resulting in a total of 15900 tamper
images. The distribution of the final pre-trained model dataset
is presented in Table II.

During training process, the parameters of our model are
set to be consistent with those of the RGB-N model. We use
8, 16, 32, and 64 as the dimensions of the anchors, with
aspect ratios of 1:2, 1:1, and 2:1. The initial learning rate is

TABLE II
TRAINING AND TESTING DIVISION OF DATASET

Dataset Types Number

PASCAL VOC 2007
Training 15000

Testing 900

set to 0.001 and later changed to 0.0001 after 40k training
iterations. The model’s max number of training iterations is
set to 60k. To reduce overlapping regions, we employ a non-
maximum suppression method with a specific threshold set to
0.5. The output of pre-training model consists of a bounding
box along with corresponding confidence values, indicating
areas that have been tampered with.

B. Standard Datasets

This paper conducts experiments and analysis using three
available standard datasets. These datasets are as follows:

(1) CASIA dataset: This dataset consists of two types
of tampered images, namely mosaic and copy-move. The
images undergo post-processing operations such as filtering
and blurring. The dataset is divided into CASIA 1.0 and
CASIA 2.0. CASIA 1.0 is used for testing the model, while
CASIA 2.0 is used for training.

(2) Columbia dataset [21]: The dataset provides ground-
truth masks for uncompressed concatenation operations.

(3) NIST16 dataset [22]: The dataset contains three types
of manipulation: splicing, copy-move, and removal. The
images in this dataset have undergone post-processing op-
erations to hide tampering, and it also provides ground-truth
masks.

The training and testing for three standard datasets are
divided as shown in Table III. The symbol “\” indicates that
there is no raw data information available.

TABLE III
TRAINING AND TESTING DIVISION OF THREE DATASETS

Datasets NIST16 Columbia CASIA

Training 404 \ 5123

Testing 106 180 921

To overcome the limited number of datasets, we employ
data augmentation techniques to expand our dataset. This
allows the trained model to exhibit improved detection per-
formance. Specifically, we utilize image flipping as a form of
data augmentation. Additionally, we compare performance of
model using both flipping and no flipping datasets in terms of
Recall, Precision, and F1 score. The results demonstrate that
the use of image flipping significantly enhances the method’s
performance, as shown in Table IV.

C. Results and Analysis

We evaluate performance of our method on the standard
datasets using various metrics, including Recall, Precision,
F1 score, and AUC. In order to assess the manipulation
detection performance of this model, we compare it with
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TABLE IV
COMPARISON OF IMAGE FLIPPING RESULTS

Datasets Flipping Recall Precision F1 score

NIST16 ✕ 0.9632 0.9654 0.9564

NIST16 0.9701 0.9699 0.9637

Columbia ✕ 0.8011 0.7973 0.8225

Columbia 0.8023 0.7978 0.8209

CASIA ✕ 0.6766 0.5012 0.6742

CASIA 0.6913 0.5101 0.6958

other existing algorithms, namely BLK [23], CFA1 [24],
RGB-N [7], and RGB-N+Edge [16]. The results of these
comparisons are shown in Table V, VI and VII.

TABLE V
F1 SCORE COMPARISON OF THE METHODS

Method NIST16 Columbia CASIA

BLK 0.3019 0.5234 0.2312

CFA1 0.1743 0.4667 0.2073

RGB-N 0.7220 0.6970 0.5457

RGN-N+Edge 0.9533 0.7514 0.5794

Ours 0.9637 0.8225 0.6958

TABLE VI
RECALL COMPARISON OF THE METHODS

Method NIST16 Columbia CASIA

BLK 0.2562 0.4500 0.1705

CFA1 0.1500 0.6278 0.1857

RGB-N 0.9437 0.7944 0.6515

RGN-N+Edge 0.9563 0.7389 0.6608

Ours 0.9701 0.8023 0.6913

TABLE VII
PRECISION COMPARISON OF THE METHODS

Method NIST16 Columbia CASIA

BLK 0.3674 0.6254 0.3590

CFA1 0.2080 0.3714 0.2346

RGB-N 0.8830 0.7044 0.5096

RGN-N+Edge 0.9503 0.7644 0.5158

Ours 0.9699 0.7978 0.5101

Based on the results presented in the above Table, our
model demonstrates superior performance compared to other
image manipulation detection methods. However, in Table
VI, the accuracy rate of our manipulation detection on the
CASIA dataset is slightly lower than that of edge detection

stream. This can be likely due to the fact that tampered
images in the CASIA dataset undergo blurring and filtering.
This results in a decrease in image resolution. As a result,
the actual performance of our model is slightly affected.

To further validate the effectiveness of our model, we
employ the AUC evaluation metric to compare it with other
available manipulation detection algorithms. This compari-
son is presented in Table VIII.

TABLE VIII
COMPARISON OF AUC SCORES FOR MANIPULATION DETECTION BY

DIFFERENT MODELS

Method NIST16 Columbia CASIA

RGB-N 0.9370 0.8580 0.7950

CR-CNN 0.9920 0.8610 0.7890

Fals-Unet 0.8325 \ 0.8463

SPAN 0.9610 0.9360 0.8380

Ours 0.9693 0.9461 0.8491

Through comparative experiments, we demonstrate that
our model, after incorporating the constrained convolutional
layer and CBAM, surpasses existing methods in terms of
detection performance on the NIST16 and Columbia datasets.
Furthermore, compared to the Spatial Pyramid Attention
Network (SPAN) [26], our model achieves comparable or
slightly higher detection performance on the CASIA dataset.
It is worth highlighting that on the NIST16 dataset, the CR-
CNN algorithm achieves a higher AUC index, surpassing
our model by 2%. This is mainly attributed to the fact that
CR-CNN incorporates both low-level and high-level features,
refining tamper detection process. The AUC data for the
comparison models in the Table VIII are sourced from [24],
[25], [26].

D. Robustness

To assess the robustness of our algorithm, we conducted
experiments on the CASIA dataset. It is compared with the
detection performance of RGB-N and RGB-N+Edge meth-
ods under various attacks. We use F1 score for evaluation.
The attacks employed in these experiments primarily involve
Gaussian white noise (mean value of 0, the variances of 5,
10, 15), JPEG compression (quality factors of 85, 70, 55)
and Gaussian blurring (filter size 3× 3 , variances are set to
0.5, 1.0, 1.5).

As depicted in Fig. 4, experimental results show that the
method has better robustness than the other two methods.
From left to right in the Fig. 4, we have Gaussian white
noise, JPEG compression, and Gaussian blurring. As the
noise variance increases, our method has a slight decrease. It
is superior to RGB-N and RGB-N+Edge in noise resistance.
It is worth noting that under JPEG compression, our method
experiences a minimal and gradual decline. Our algorithm
score only decreases by 1.56%. Additionally, under Gaussian
blurring, our method exhibits a larger decline compared to
the previous two attacks but still outperforms several existing
methods. We conclude that the addition of Gaussian blurring
has a slightly more pronounced effect on our model.
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Fig. 4. Comparison of F1 score of three algorithms under different attacks.

Fig. 5. Comparison of manipulation detection localization results.

E. Localization of the Tampered Region

In order to assess localization performance of the method,
we conduct experiments and compare them with the original
RGB-N and RGB-N+Edge methods using publicly available
standard datasets. As shown in Fig. 5, our model demon-
strates more accurate localization results compared to other
model.

Specifically, in Fig. 5, we observe that for tampered
images (a) and (c), the positioning effect of the RGB-N
method tends to be biased towards the right. Moreover,
the selected manipulation region is not enclosed within a
complete bounding box. The RGB-N+Edge method, on the
other hand, successfully locates the tampered region but also
includes irrelevant areas, resulting in suboptimal positioning
results. In contrast, our model accurately selects the manip-
ulation region with a complete bounding box, adjusting its
size to closely match the ground-truth mask. Furthermore,
for image (b) involving copy-move tampering, our model
outperforms both RGB-N and RGB-N+Edge in positioning
accuracy. While the original RGB-N method selects the
manipulation region, it includes an additional part in the
bounding box to the right. In contrast, our model selects
a more reasonable positioning area by reducing the frame
size while maintaining proper boundary framing. Overall,
our propose model demonstrates substantial improvements
in localization of tampered region compared to the existing

methods.

V. CONCLUSION

In this study, we propose an image manipulation detection
method using two-stream Faster R-CNN architecture. To en-
hance model’s ability to learn tampering features adaptively
and overcome limitations of manual specified features, we
introduce a constrained convolution layer in the preprocess-
ing stage. Additionally, we incorporate CBAM to improve
the attention towards tampered regions, allowing the model
to focus on a larger manipulation area within the image.
Furthermore, we employ bilinear interpolation at the RoI
layer to increase the size of the RoI, enabling the model
to retain more tampering information. Through experiments
on three standard image tampering datasets, the method
demonstrates preferable performance in both manipulation
classification and localization tasks. At present, multi-scale
feature fusion has shown remarkable performance in image
manipulation detection. We intend to further investigate and
study in our future work.
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