
 

 

Abstract—As a clean and efficient renewable energy, wind 

power is increasingly valued by countries all over the world. 

However, due to the inherent volatility, intermittency, and 

uncontrollability of wind power, the secure, stable, and 

economical operation of the power grid will face unprecedented 

pressure with wind power integration on a vast scale. Wind 

power predictions and management are significantly impacted 

by wind speed. Therefore, it is crucial to propose an accurate, 

stable, and efficient wind speed prediction method. In this 

paper, the original wind speed data is denoised using singular 

spectrum analysis to solve the problem of strong randomness 

and volatility of wind speed data. Then, the denoised data is 

processed using wavelet analysis, and the high-frequency and 

low-frequency sequences are respectively predicted using 

CNN-BiLSTM and CNN-BP, while the weights are optimized 

using the PSO algorithm. Finally, the prediction accuracy is 

further improved by incorporating the error correction module. 

In the two datasets used for testing, the outcomes of the trial 

indicate that the wind speed prediction model proposed in this 

paper performs extremely well in short-term wind speed 

prediction, superior to other models. The five evaluation indices 

(MAE, MSE, MAPE, RMSE, and R2) for the first dataset are 

respectively 0.166, 0.055, 0.05, 0.234, and 0.953. Similar results 

were obtained for the second dataset. Furthermore, The 

ablation tests also show that each module suggested in this 

research is successful in enhancing prediction accuracy. 

 
Index Terms—wind speed prediction, artificial neural 

network, hybrid model, convolutional neural network 
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I. INTRODUCTION 

NERGY is a crucial factor in the continued growth of the 

global financial system[1]. The misuse and growing 

scarcity of non-renewable energy sources like coal and oil 

have become more critical problems as the degree of global 

economic growth continues to rise[2]. Therefore, the 

development and use of clean energy have become major 

research topics for countries around the world[3]. As 

environmental pollution and greenhouse gas emissions 

continue to worsen, wind power has become a rapidly 

developing and widely used clean and efficient power 

generation method in various countries around the world[4]. 

Its proportion in the power supply system is increasing, and 

its widespread and efficient usage is critical to global growth 

and environmental conservation. By 2050, the International 

Energy Agency wants to encourage the growth of renewable 

energy by increasing the supply of renewable energy to 

two-thirds of the world's total energy supply[5]. 

Environmentally friendly and sustainable energy has 

received increasing attention and has become the most 

promising power generation method currently[6]. 

However, there are certain issues with the reliable 

operation of the nationwide grid as a consequence of the 

widespread use of wind power. [7]. The effects of wind 

power on electricity security, stability, and economic 

operation have become increasingly clear as a result of the 

grid's continued integration of wind power and the ongoing 

rise in the amount of wind output[8]. Wind speed is the main 

factor in wind power prediction, and accurate wind speed 

signals will make a significant contribution to wind power 

prediction, which promotes ensuring the electrical grid's 

secure and trustworthy operation[9]. The inherent features of 

unpredictability and volatility present in wind speed signals, 

however, present a significant obstacle to the precise 

forecasting of short-term wind speed. Increasing the 

dependability and security of grid operation requires ensuring 

the safe and reliable integration of wind power, and a precise 

and trustworthy wind speed forecast is one of the most 

effective approaches to do this[10]. 

In an effort to improve the preciseness of wind speed 

forecasts, scholars have developed a number of effective 

wind speed prediction systems in recent decades. These 

prediction strategies may be categorized into physical, linear, 

nonlinear, and hybrid prediction methods. Physical 

prediction methods do not require too much historical data 

and fully consider the geological and meteorological factors 

of the prediction area, which is one of its major advantages. 
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However, because it is difficult to collect and analyze 

comprehensive meteorological factors in a brief time frame, 

physical prediction methods are more effective for medium- 

to long-term wind speed prediction than they are for 

short-term wind speed prediction. Currently, numerous 

scholars are engaged in research in this field. For instance, in 

[11], to assess the forecast mistakes, or residuals, of 

forecasted wind speed and direction in numerical weather 

prediction models, they use a thorough statistical 

methodology. Using data from Arctic station sites, they 

successfully combine statistical inference, probabilistic 

modeling, and hypothesis testing to provide outstanding 

findings. In [12], They used a point prediction method and 

incorporated data from three mathematical models for 

weather forecasting to produce results that were satisfactory. 

In [13], they put out a novel approach based on rank 

integration and probabilistic fluctuation perception for 

forecasting wind energy in order for the accuracy of 

numerical weather prediction. The findings demonstrate that 

for a four-hour lead time, the recommended approach can 

minimize the root mean square error (RMSE) by 

2.16%–4.36%. 

Moving average (MA), autoregressive moving average 

(ARMA), autoregressive integrated moving average 

(ARIMA), and autoregressive (AR) are the four primary 

linear prediction models used in linear prediction methods. 

However, these linear prediction algorithms frequently 

struggle to achieve the necessary prediction accuracy due to 

the randomness and uncertainty of wind speed. Current 

research in this area is also very advanced. For example, in 

[14], it is suggested to use a Window-Sliding ARIMA 

(WS-ARIMA) method, and its efficacy and accuracy in 

predicting daily and weekly wind speeds are confirmed. 

When compared to the ARIMA approach, this method lowers 

the overall RMSE of daily wind speed data by up to 75% and 

for weekly data by 50%. In [15], It is suggested to use an 

integrated framework based on EEMD-ARIMA. After 

decomposing the series using the ensemble empirical mode 

decomposition (EEMD) approach, the components are 

predicted using the Autoregressive Integrated Moving 

Average method (ARIMA). Through example analysis, it can 

be established that the suggested prediction algorithm is 

better at forecasting short-term wind speeds than the 

conventional ARIMA model. Additionally, in [16], It is 

advised to calculate short-term wind speeds by utilizing an 

annual autoregressive integrated moving average model. This 

model also achieves excellent accuracy. 

With the popularization of artificial intelligence, methods 

such as artificial neural networks (ANN)[17–19] and support 

vector machines (SVM)[20–22] have been proposed and 

widely used. Compared with linear prediction methods, 

nonlinear prediction methods generally have better results in 

wind speed prediction and have obvious advantages in 

dealing with nonlinear problems. 

The randomness component also makes it more complex 

and challenging to anticipate the wind speed accurately as it 

relates to wind speed variations. Hybrid prediction is a 

common practice because previous prediction algorithms had 

difficulty meeting the accuracy standards of wind speed 

prediction. Wind speed prediction is an extremely complex 

process, and hybrid prediction, which integrates data 

preprocessing and multiple prediction models, is currently 

widely used by scholars. Reference [23–34] are all recent 

examples of wind speed prediction using hybrid prediction 

models. Among them, [23-24], [30], [32] and [34] all 

innovatively incorporate spatial information extraction into 

traditional one-dimensional time series processing for wind 

speed prediction. [26] and [28] primarily concentrate on 

utilizing optimization algorithms to improve the model's 

hyperparameters. [35] is a combination of the previous two 

methods. [27], [29], [31] and [36], on the other hand, 

emphasize the integration of multiple models for ensemble 

prediction. Finally, [25] and [33] are more interested in how 

data pre-processing will affect the outcome of the prediction. 

A hybrid predictive model based on Singular Spectrum 

Analysis (SSA), Wavelet Analysis, Convolutional Neural 

Networks (CNN), Back-Propagation Neural Network (BP), 

Bidirectional Long Short-Term Memory (BiLSTM), and 

other techniques is proposed in this paper, which will provide 

accurate short-term wind speed predictions based on 

historical wind speed data. The primary contributions of this 

study are as follows: 

(1) With the initial wind speed information subjected to 

noise reduction, wind speed information with more 

pronounced features are obtained, creating the groundwork 

for precise prediction. 

(2) The paper proposes an adaptive hybrid predictive 

model based on CNN-BP and CNN-BiLSTM. The two 

sub-models are utilized to forecast the high-frequency detail 

sequence and the low-frequency major component sequence, 

respectively, and optimization algorithms are employed to 

determine the best overlay weights. 

(3) The hybrid model's training and testing mistakes are 

used as data sources for error correction, and an LSTM-based 

error correction model is employed to correct the prediction 

outputs in order to increase prediction accuracy. 

(4) In order to validate the prediction performance of the 

suggested method from several angles, an assessment system 

based on MAE, MSE, RMSE, and R2 is constructed. 

The essay's remaining sections are organized as follows: 

Section II provides a detailed explanation of the SSA, CNN, 

BP, and BiLSTM core theories and mathematical models. 

The Particle Swarm Optimization (PSO) technique, the 

primary structure, and the modules of the proposed model are 

mostly discussed in Section III. In Section IV, to 

independently confirm the successful application of each 

module in the model, an assessment system for performance 

has been set up and ablation experiments are conducted. The 

major thesis of this study is finally summarized and discussed 

in Section V. 

II. METHOD 

In this part, we are going to present an in-depth description 

of the implementation principles of the algorithms and 

approaches employed in this study. Specifically, we will 

focus on SSA, CNN, BP, and BiLSTM. The methods 

discussed here are an essential component of the algorithm 

for the prediction that we suggest and provide assurance for 

the accuracy and continuity of the final prediction results. 

A. Singular Spectrum Analysis 

The SSA technique is effective for analyzing nonlinear 
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time series data. Colebrook first put forth the idea in his 1978 

marine study. An observed time series is used to create a 

trajectory matrix, which is then broken down, determining 

the singular values associated with each component, and then 

reconstructing the matrix depending on the magnitude of the 

singular values. As a consequence, signals that characterize 

different components of the original time series, such as 

long-term trend signals, periodic signals, and noise signals, 

can be retrieved. Future trends can be predicted by delving 

into the time series' structure in this manner. The particular 

procedure is displayed below. 

a. Embedding 

The initial velocity of wind sequence is transformed into 

matrix Y, which is composed of an L -dimensional vector Yi = 

(x1, ···, xi+L-1)T, with sample size N, as illustrated in the 

following: 

 

1 2
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 

, (1) 

where, L represents the length of the embedding window, K = 

N-L+1. 

b. Singular Value Decomposition 

Calculate the matrix YYT's eigenvalues, left singular matrix 

Ci, and right singular matrix Di. The singular matrix as an 

entire thing and each of its vectors are now expressed as 

follows: 

 
1 2 d

Y Y Y Y= + + + , (2) 

 
i i i i

Y C D= , (3) 

where, d represents the number of the rank of the matrix YYT. 

λi represents the eigenvalues of the matrix YYT, and Ci 

represents the orthonormal vectors corresponding to these 

eigenvalues. 

c. Grouping 

The decision-making process of the relevant and usable 

signal components is the central objective of the 

aforementioned method. The matrix Y is first divided into d 

submatrices. Any of the m submatrices with singular values 

greater than 0 is assumed to represent a component indicating 

long-term trends in the initial wind speed sequence. The 

long-term trend component matrix is defined as 

YR=Yr1+Yr2+…+Yrm, where Yr1, Yr2, ..., Yrm indicate each 

sequence matching to each matrix. The component matrix 

consisting of these m submatrices is specified as R = {r1, ..., 

rm}. The noise component of the initial wind speed is 

therefore created through the remaining subsequences. 

d. Reconstructing 

The noise component will be turned into the noise time 

series Xnoise, and the matrix YR will be transformed into the 

matching wind speed time series XR = {Xr1, ..., Xrm} via 

diagonal averaging. Here is the precise transformation 

procedure: 
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where, l = min (L, K), k = max (L, K).  

Finally, the denoised results of the original wind speed 

time series by SSA are as follows: 

 1 2N r r rm noiseX X X X X= + + + +  (5) 

 

B. Convolutional Neural Network (CNN) 

CNN was initially developed for image classification and 

processing. It receives two-dimensional color-channeled 

input pictures to learn their attributes. Since the 1980s, this 

neural network model has been extensively employed by 

several researchers and has undergone ongoing strengthening 

and improvement. Its one-dimensional version has also been 

applied to time series processing and has achieved good 

results. The main components and functions of the CNN 

model are as follows: 

a. Convolution Layer 

The core of Convolutional Neural Networks (CNNs) lies 

in the convolutional layer, where convolution operations are 

applied to the input data. Convolution can be seen as a form 

of filtering operation in image processing, hence the 

convolutional kernel is also referred to as a filter. The 

construction of the convolutional layer is inspired by 

biological research, where humans have a receptive field to 

perceive information. By applying convolutional operations 

with appropriately sized kernels, information within the 

receptive field can be extracted from the raw data. Given an 

input data X, the feature map C of the convolutional layer can 

be represented as: 

 ( )C f X W b=  + , (6) 

where   is the convolution operation, W is the weight 

vector of the convolutional kernel, b represents bias, and f is 

the activation function. In this article, the ReLU function is 

used. 

The convolution operation slides over the data with a 

certain interval, and performs element-wise multiplication 

with the kernel at each position, followed by a summation of 

the results. The detailed process of convolution is illustrated 

below. 

 

 
Fig. 1.  Schematic diagram of one-dimensional convolution operation 
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b. Pooling Layer 

Another crucial idea in convolutional neural networks is 

pooling. It is, in essence, a non-linear kind of downsampling 

that reduces the geographical size of the map of features. The 

difference between pooling and convolution layers is that 

feature maps in convolution layers require convolution with a 

kernel and the participation of parameters, which determine 

the error through forward propagation and are updated 

through backpropagation. Against this backdrop, pooling 

layers do not have any parameters to learn; they just extract 

the maximum or average value from the target region, 

depending on whether they use maximum or average pooling. 

Max pooling is more frequently used in practical applications, 

and this article also uses it. The calculation processes for max 

and average pooling are shown in the figure below. 

 

 
Fig. 2.  Flowchart for calculating the maximum and average pooling 

operations 

 

C. Backpropagation Neural Network (BP) 

A typical kind of artificial neural network model is the BP 

neural network, sometimes referred to as the 

backpropagation neural network. It is a multi-layer 

feedforward neural network with an output layer, hidden 

layers, and input layer as a standard configuration. The BP 

neural network was initially proposed by American 

psychologists David Rumelhart and James McClelland in 

1986 and is based on the backpropagation algorithm. The 

network receives input data at the input layer and transmits it 

via weighted connections to the output layer, where it can 

perform classifications or predictions on the input data. The 

weights of the connections are modified via the 

backpropagation method to reduce output error and training 

error. The error is transported backwards from the output 

layer in the backpropagation method, and each neuron's error 

gradient and weights are computed and modified using the 

gradient descent technique. The diagram that follows depicts 

the BP neural network's structure. 

 

D. Bidirectional Long Short-Term Memory (BiLSTM) 

BiLSTM, which is an improved version of LSTM neural 

network and can be used to process sequence data with 

long-term dependencies. 

Schuster and Paliwal first presented the BiLSTM neural 

network in 1997. To improve the modeling capabilities of 

sequence data, two LSTM networks are combined—one in 

the forward direction and the other in the backward direction. 

Information can only move forward in traditional LSTM 

networks. To better capture long-term dependencies and 

contextual information in sequence data, BiLSTM networks, 

on the other hand, allow information to flow in both forward 

and backward directions at the same time and aggregate the 

outputs from both directions. Specifically, the BiLSTM 

network is made up of two LSTM networks, each of which 

processes the original sequence in a different way. The 

outputs from the two networks are then combined. The 

diagram that follows depicts the BiLSTM's construction. 

 

 
Fig. 3.  Schematic diagram of BP neural network structure 

 
Fig. 4.  Schematic diagram of LSTM neural network structure 

 

 
Fig. 5.  Schematic diagram of BiLSTM neural network structure 

 

III. ALGORITHM AND MODEL FRAMEWORK 

The Particle Swarm Optimization (PSO) algorithm, which 

optimizes the overlay weights of the combination model in 

order to ultimately minimize the adaptive prediction error, is 

the algorithm for optimization that was used in this study and 

is the focus of this section. A thorough explanation of the 

wind speed prediction model, which is based on an adaptive 

hybrid neural network and correction of errors, is offered as 

well in this section. 

A. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart first presented PSO, an 

optimization technique based on swarm intelligence, in 1995. 
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In order to find the best answer in a given search area, this 

algorithm continually modifies the position and velocity of 

each member of the swarm to mimic the behavior of a flock 

of birds or a school of fish. 

The fundamental principle of PSO is to treat the 

optimization problem as a search problem in a 

multi-dimensional space, with each solution represented by a 

particle in the space that has a specific position and velocity. 

The method tries to discover the global optimum for the 

given issue by continually modifying the position and 

velocity of each particle in the swarm depending on its 

history and the successes of the entire swarm. Specifically, 

each particle uses its own history and the history of the entire 

swarm to update its velocity and position, gradually 

approaching the optimal solution over time. The general 

calculation process is shown below. 

Suppose there exists an N-dimensional target search space, 

where a population of M particles constitute a swarm. Each 

particle in the swarm is represented by an N-dimensional 

vector, with Pi denoting the position of the ith particle, as in 

(7). 

 1 2( , , , ), 1,2, ,i i i iNP p p p i M= =  (7) 

The velocity of each particle is represented by an 

N-dimensional vector, as shown in (8). 

 1 2( , , , ), 1,2, ,i i i iNV v v v i M= =  (8) 

The optimal position currently found by the ith particle is 

called the individual extreme by Ebest, as in (9). 

 1 2( , , , ), 1,2, ,best i i iNE p p p i M= =  (9) 

While the global optimal position found by the entire 

swarm is denoted by Gbest, its definition is as follows. 

 
1 2( , , , ), 1,2, ,best g g gNG p p p g M= =  (10) 

Using individual extremes and the global optimum, the 

following formula is used to update particle velocities and 

positions: 

 1 1 2 2( ) ( )i i best i best iV WV C R E P C R G P= + − + − , (11) 

 i i iP P V= + , (12) 

where C1 and C2 are acceleration constants or learning rates, 

W is the inertia constant, and R1 and R2 are random numbers 

in the range of [0,2]. The flow chart of the algorithm is shown 

in Fig 6. 

 

B. Adaptive Hybrid Neural Network and Error Correction 

Forecasting Model 

The proposed adaptive hybrid neural network and error 

correction wind speed prediction model in this article 

comprises of three subsections, namely the portion of data 

processing based on SSA and wavelet analysis, the adaptive 

hybrid neural network prediction model part, which is based 

on CNN-BP, CNN-BiLSTM and PSO algorithm, and the 

error correction part based on LSTM. Fig. 7 displays the 

prediction model's general structure., and the structure and 

implementation steps of the main parts or modules will be 

introduced separately below. 

 

 
Fig. 6.  Calculation process of particle swarm optimization algorithm (PSO) 
 

 
Fig. 7.  The overall framework of the prediction model proposed in this 
article 

a. Data Preprocessing 

The initial wind speed information has strong uncertainty 

and volatility, it contains a lot of noise information, which is 

very unfavorable for subsequent prediction. Therefore, it is 

necessary to perform denoising processing on initial wind 

speed information. The data preparation module of the 

prediction model suggested in this article employs SSA to 

denoise the input raw data, reducing the noise and other 

information that will interfere with subsequent predictions in 
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initial wind speed information, and retaining the effective 

components as much as possible. The denoised data is then 

divided into high-frequency and low-frequency sequences by 

using wavelet analysis. Several prediction models are used to 

anticipate the data with different frequencies in order to make 

better use of the implicit features in the data. 

b. Main Prediction Model of Adaptive Hybrid Neural Network 

To predict the information at different frequencies, we use 

different models for prediction in this part. To verify the 

effectiveness of this approach, we selected a low-frequency 

sequence and a high-frequency sequence from the 

experimental data, and trained and predicted them 

respectively using CNN-BP and CNN-BiLSTM. For ease of 

presentation, the enlarged images of the test results are shown 

in Fig. 8 and Fig. 9. Apart from that, Table I represents the 

contrasting evaluation indicators of the two models for 

various frequency data, which further strengthens the 

conclusions. It can be seen that for low-frequency sequences, 

CNN-BP has a better advantage, while for high-frequency 

sequences, the more complex CNN-BiLSTM has higher 

accuracy. As a consequence, we employ several models in 

this article to forecast data at various frequencies before 

superimposing the predictions from the two models. To find 

the ideal weights and improve the accuracy of the prediction 

outcomes, the PSO algorithm optimizes the best weights of 

each model during the overlapping process. The benefit of 

this strategy is that it can more effectively utilize the implicit 

properties of various sequences, allowing for the adoption of 

more appropriate models for prediction and raising the 

model's overall prediction accuracy. 

 
Fig. 8.  Comparison between CNN-BiLSTM and CNN-BP in original 
low-frequency data 

c. Error Correction 

This article provides an error correction module to increase 

forecast accuracy further. The module is added after the 

model prediction is complete. Utilizing an LSTM network, 

the error value needed for rectification is obtained. The 

mistakes produced during the training and testing phases of 

the prediction model in the previous module provided the 

initial data for training and testing the LSTM network. In 

section II, the LSTM network's model structure was 

discussed. 

 
Fig. 9.  Comparison between CNN-BiLSTM and CNN-BP in original 

high-frequency data 

TABLE I 

COMPARISON OF MODELS IN TEST DATA 

 Model RMSE MAPE MAE 

Low-frequency 
data 

CNN-BP 
CNN-BiLSTM 

0.016 
0.031 

0.077 
0.212 

0.013 
0.026 

High-frequency 

data 

CNN-BP 

CNN-BiLSTM 

0.371 

0.257 

0.073 

0.049 

0.282 

0.193 

 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

A. Original Data Set and Data processing. 

Two wind speed datasets obtained from a wind farm in 

Jiangsu Province, China, are used in this work, each with 

2000 data sets and a time interval of 15 minutes. We ensured 

that there was no missing data or any other abnormal 

situations when conducting our experiments, and used the 

first 1,968 sets of data for our experiments, with the training 

set being the first 1,392, the validation set being sets 1,393 to 

1,680, and the testing set being sets 1,681 to 1,968. In the 

experiments, the prediction interval was set to 48 sets, 

meaning that we used the previous 48 sets to predict the data 

for the next time point. Fig. 10 and Fig. 11 display the two 

datasets, respectively. 

 

 
Fig. 10.  Original wind speed dataset 1 and grouping information 
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Fig. 11.  Original wind speed dataset 2 and grouping information 

 

As shown in Section Ⅱ, in order to reduce the influence of 

noisy data in wind speed information on subsequent 

prediction and use mixed neural network for prediction, we 

used SSA and wavelet analysis to denoise and group the 

original data by frequency. In the original two wind speed 

datasets, we used SSA to divide the original data into ten 

groups and arrange them according to singular values. The 

processing results of the two datasets are shown in Fig. 12 

and Fig. 13. From these two figures, we can conclude that the 

lower the wind speed signal, the higher the complexity and 

the stronger the volatility. many. Therefore, in the subsequent 

processing, we need to further analyze these data to remove 

as many noise signals as possible, so as to lay the foundation 

for the final accurate prediction. 

In both datasets we took the first of the 10 sets of 

subsequences arranged according to the singular values, 

which is the primary component of wind speed data, as the 

reference and calculated Pearson correlation coefficients 

between each of the remaining groups and the first group. 

Based on these coefficients, we cleaned the data for 

denoising, using the magnitude difference of Pearson 

coefficients as the selection criterion for the data. Data with 

large discrepancies will be discarded as noise. The reason for 

doing so is to retain the main components contained in the 

original wind speed data as much as possible and to avoid 

excessive prediction errors caused by inappropriate denoising. 

Heatmaps of Pearson correlation coefficients between the 

decomposed groups of the two datasets are depicted in Fig. 

14 and Fig. 15, respectively. Observing these two pictures 

separately, we can see that among the remaining nine groups, 

the differences in the Pearson correlation coefficients 

between the second, third and fourth groups and the first 

group are smaller than those of the other groups, and both 

datasets roughly show this phenomenon. Therefore, we 

respectively retain the first four groups in the two datasets as 

the wind speed data after denoising. Fig. 16 and Fig. 17 

depict the comparisons of datasets 1 and 2 before and after 

denoising, respectively. 

 
Fig. 12.  Sequence of ten components for dataset 1 sorted by singular value 

 

 
Fig. 13.  Sequence of ten components for dataset 2 sorted by singular value 
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Fig. 14.  The Pearson correlation coefficients between each group in dataset 1 after sorting by singular values. From the figure, we can see that the Pearson 

correlation coefficients of groups 2, 3, and 4 with the first group have smaller order of magnitude differences compared with the remaining nine groups, which 
are 0.285, 0.03, and 0.017, respectively. Therefore, these three groups together with the first group as the benchmark are retained as the main components in 

the original wind speed data, and the remaining part is discarded as noise. 

 

 
Fig. 15.  The Pearson correlation coefficients between each group in dataset 2 after sorting by singular values. From the figure, we can see that the Pearson 

correlation coefficients of groups 2, 3, and 4 with the first group have smaller order of magnitude differences compared with the remaining nine groups, which 

are 0.139, 0.024, and 0.011, respectively. Therefore, these three groups together with the first group as the benchmark are retained as the main components in 

the original wind speed data, and the remaining part is discarded as noise. This is approximately the same as the processing result of dataset 1. 
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As mentioned in the description of the hybrid prediction 

network in the previous section, we will employ two different 

models to predict the denoised data and using wavelet 

analysis to achieve improved accuracy. The denoised wind 

speed data will be split into five sub-sequences in this step 

based on frequency. The results of the two datasets after 

processing with wavelet analysis are shown in Fig. 18 and Fig. 

19, from which we can see that the frequencies increase from 

component 1 to component 5, indicating that the 

low-frequency sequence constitutes the approximate 

components of the original data, while the high-frequency 

sequence constitutes the detail components of the original 

data. Next, we manually integrated the first three 

subsequences of the two datasets into low-frequency 

sequences and the last two subsequences into high-frequency 

sequences according to the above principles, respectively, to 

obtain the final prediction sequences for subsequent 

prediction using different prediction models. In Fig. 20, the 

processing results for low and high frequencies of the two 

datasets are displayed. 

 

 
Fig. 16.  Comparison of the original wind speed series in dataset 1 before and 
after noise reduction 

 

 
Fig. 17.  Comparison of the original wind speed series in dataset 2 before and 

after noise reduction 

 

 
Fig. 18.  Result of comparative analysis of sub-components of dataset 1 

sorted by frequency after wavelet analysis 

 

 
Fig. 19.  Result of comparative analysis of sub-components of dataset 2 

sorted by frequency after wavelet analysis 

 

 
Fig. 20.  Low-frequency and high-frequency reconstruction results for two 

datasets 

 

B. Performance evaluation index 

For confirmation that the prediction model that was 

presented in this study is superior, we apply five evaluation 

indicators, namely MSE, MAE, RMSE, MAPE, and R2, to 
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confirm and assess the effectiveness of our suggested 

prediction model. These assessment metrics are used often in 

pertinent research to assess how well the model predicts 

outcomes. We may more thoroughly assess the performance 

of our suggested model by comparing these parameters. 

Below are the expressions in mathematics for each evaluation 

metric: 
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where y(i) represents the wind speed measurement data at 

time i, ŷ(i) is the predicted value of wind speed, N is the 

number of data points, and the values for MSE, MAE, RMSE, 

and MAPE are all better when smaller, while the value of R2 

is better when closer to 1. 

These metrics may effectively and completely illustrate 

how well a model predicts outcomes. Based on these 

assessment indices, we will assess the model's performance 

in the next section. 

C. Prediction results and comparative analysis 

For the purpose of to confirm the accurateness and stability 

of the suggested model, a comparative analysis will be 

conducted between it and six other prediction models, 

namely SSA-CNN-BiLSTM, SSA-CNN-BP, 

SSA-CNN-LSTM, SSA-BiLSTM, SSA-BP and SSA-LSTM. 

Each model will be separately run five times, with the 

average value being used as the final forecast result, to reduce 

the influence of randomness on the comparison findings. Fig. 

21 and Fig.22 compare predictions made by several models 

and show how they compare. We validate the efficacy of the 

model described in this work by comparing and evaluating 

the projected outcomes of various models. 

Moreover, for the proposed of rigorously evaluate the 

accuracy of our proposed model in wind speed prediction, we 

have compared the predictive performance of seven models 

using the aforementioned five evaluation indexes. Table Ⅱ 

and Table Ⅲ present the comparative results from two 

datasets. Among them, the data representing the best 

performance are also bolded for easy observation. And for 

easy visualization, we also compare the evaluation metrics of 

the different models in the two datasets by using the bar 

charts in Fig. 23 and Fig. 24, respectively. 

Based on Table Ⅱ and Fig. 23, it is evident that the 

proposed predictive model exhibits high accuracy in wind 

speed prediction. Among all the contenders that were 

compared, the proposed model had the best performance, 

with MAE, MSE, MAPE, RMSE, and R2 values of 0.166, 

0.055, 0.05, 0.234, and 0.953, respectively, for dataset 1 used 

in our experiments. 

Apart from that, the evaluation indices of the various 
models in the dataset 2 we employed show findings that 
are quite consistent. With Table Ⅲ and Fig. 24, we can 

easily conclude that the values of MAE, MSE, MAPE, RMSE 
and R2 of the proposed method are 0.325, 0.276, 0.126, 
0.525 and 0.910, respectively, which are the best results 
among all the models used in the experiment. This 
further proves the good performance of the proposed 
model in this paper for wind speed prediction. It is worth 
noting that there is a certain gap between the evaluation 
indexes of dataset 1 and dataset 2, which is caused by 
the volatility and uncertainty of wind speed data. 

Furthermore, we found that incorporating 1dCNN is very 

successful in predicting short-term wind speeds by 

contrasting the predictive outcomes of the fundamental 

models without 1dCNN integration with the same models 

with 1dCNN integration. For instance, the MAE, MSE, 

MAPE, RMSE, and R2 values of SSA-BP for dataset 1 are, 

respectively, 0.348, 0.228, 0.089, 0.477, and 0.806. However, 

for SSA-CNN-BP, the addition of 1dCNN significantly 

increased the predictive performance, resulting in optimized 

performance indexes of 0.211, 0.077, 0.054, 0.277, and 0.934, 

respectively. This trend was similarly observed in the other 

two models, LSTM and BiLSTM. The same phenomenon is 

also reflected in dataset 2. Thus, we can strongly conclude 

that 1dCNN integration is highly effective in enhancing 

predictive accuracy. 

Additionally, by comparing the prediction results and 

evaluation indexes of the models based on BP and BiLSTM, 

we observed that BP is better suited for low-frequency signal 

prediction, while BiLSTM is better suited for high-frequency 

signal prediction. which was previously mentioned in the text. 

This largely illustrates the effectiveness and reliability of our 

method of using two models to separately train and test the 

low-frequency subsequences and high-frequency 

subsequences obtained after processing. This also lays the 

foundation for the accuracy and stability of our subsequent 

forecasts. 

Furthermore, the approach we propose surpasses the 

comparison models in terms of prediction results and 

evaluation indicators, and it performs better than other 

different prediction models in terms of prediction precision 

and consistency, further demonstrating the value of using 

hybrid models for wind speed prediction. 

To further illustrate how each module of our suggested 

approach works to increase the precision of wind speed 

predictions, we conducted corresponding ablation 

experiments. We compared different models by gradually 

adding sub-modules of our proposed method. We started 

from a single model with BiLSTM as the main prediction 

network and sequentially added the hybrid prediction model, 

the adaptive weight optimization algorithm, and the error 

correction module to compare the final predictive 

performance. Fig. 25 and Fig. 26 depict the predictions made 

by the four models using the two datasets, while Table IV and 

Table V compare the performance indices. 
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Fig. 21.  Comparison of predictive results of different models for dataset 1 

 

 
Fig. 22.  Comparison of predictive results of different models for dataset 2 
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TABLE Ⅱ 
COMPARISON OF FIVE EVALUATION INDEX IN DATASET 1 

Model MAE MSE MAPE RMSE R2 

SSA-BP 0.348 0.228 0.089 0.477 0.806 

SSA-LSTM 0.269 0.133 0.068 0.364 0.887 

SSA-BiLSTM 0.244 0.091 0.057 0.301 0.923 

SSA-CNN-BP 0.211 0.077 0.054 0.277 0.934 

SSA-CNN-LSTM 0.208 0.081 0.056 0.285 0.931 

SSA-CNN-BiLSTM 0.193 0.066 0.05 0.257 0.944 

Proposed Method 0.166 0.055 0.05 0.234 0.953 

 

TABLE Ⅲ 
COMPARISON OF FIVE EVALUATION INDEX IN DATASET 2 

Model MAE MSE MAPE RMSE R2 

SSA-BP 0.533 0.813 0.192 0.901 0.734 

SSA-LSTM 0.490 0.670 0.182 0.819 0.781 

SSA-BiLSTM 0.464 0.572 0.176 0.756 0.813 

SSA-CNN-BP 0.407 0.523 0.152 0.722 0.829 

SSA-CNN-LSTM 0.376 0.443 0.143 0.666 0.855 

SSA-CNN-BiLSTM 0.355 0.428 0.133 0.654 0.861 

Proposed Method 0.313 0.276 0.126 0.525 0.910 

 

 
Fig. 23.  Comparison of evaluation index results of different models in 

dataset 1 
 

 
Fig. 24.  Comparison of evaluation index results of different models in 

dataset 2 

Fig. 25.  Comparison of ablation experiment results for dataset 1 
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Fig. 26.  Comparison of ablation experiment results for dataset 2 

 
TABLE Ⅳ 

COMPARISON OF EVALUATION INDEX RESULTS OF ABLATION EXPERIMENTS FOR DATASET 1 

Hybrid predictive models 
ADAPTIVE WEIGHTING 

OPTIMIZATION 
ERROR CORRECTION MAE MSE MAPE RMSE R2 

   0.193 0.066 0.05 0.257 0.944 

√   0.184 0.061 0.05 0.247 0.948 

√ √  0.176 0.059 0.046 0.243 0.950 

√ √ √ 0.166 0.055 0.05 0.234 0.953 

 

TABLE Ⅴ 
COMPARISON OF EVALUATION INDEX RESULTS OF ABLATION EXPERIMENTS FOR DATASET 2 

Hybrid predictive models 
ADAPTIVE WEIGHTING 

OPTIMIZATION 
ERROR CORRECTION MAE MSE MAPE RMSE R2 

   0.355 0.428 0.133 0.654 0.861 

√   0.333 0.362 0.162 0.601 0.882 

√ √  0.325 0.316 0.139 0.562 0.897 

√ √ √ 0.313 0.276 0.126 0.525 0.910 

 

 

From Fig. 25 and Table Ⅳ, it is evident that the various 

sub-modules employed in this study have effectively 

improved the accuracy of wind speed prediction. Taking the 

single prediction model based on SSA-CNN-BiLSTM in 

dataset 1 as an example, its MAE, MSE, MAPE, RMSE, and 

R2 are 0.193, 0.066, 0.05, 0.257, and 0.944, respectively. As 

we continuously added mixed prediction models, adaptive 

weight optimization, and error correction modules, all the 

values showed an optimizing trend except for MAPE, which 

remained stable. The final values were 0.166, 0.055, 0.05, 

0.234, and 0.953, respectively. 

However, in dataset 2, the single prediction model based 

on SSA-CNN-BiLSTM is also used as the benchmark. From 

Figure 26 and Table Ⅴ, we can conclude that the values of 

MAE, MSE, MAPE, RMSE and R2 are 0.355, 0.428, 0.133, 

0.654 and 0.861, also as we continue to increase the hybrid 

prediction model, adaptive weight optimization and error 

correction modules, all values show an obvious optimization 

trend. The final evaluation index values are 0.313, 0.276, 

0.126, 0.525 and 0.91 respectively. 

Additionally, in order to further demonstrate the model's 

applicability in predicting short-term wind speeds, we take 

the MSE results of ten independent runs with the seven 

models mentioned above as an example to compare the 
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upward and downward fluctuations of the results of each 

model, and the fluctuations of the minimum and maximum 

values of each model run independently for ten times are 

shown in Table Ⅵ. 

 
TABLE Ⅵ 

COMPARISON OF MSE VALUE FLUCTUATION OF DIFFERENT MODELS 

Model Fluctuations in MSE values 

SSA-BP 55.8% 

SSA-LSTM 43.5% 

SSA-BiLSTM 38.2% 

SSA-CNN-BP 42.4% 

SSA-CNN-LSTM 35.7% 

SSA-CNN-BiLSTM 27.4% 

Proposed Method 12.3% 

 

From the data comparisons in Table Ⅵ, we can draw the 

conclusion that, when compared to the other six comparison 

models, the suggested approach is the most stable for 

predicting short-term wind speeds. The maximum and 

minimum MSE values of the suggested model have the least 

difference after ten independent repeats of the tests and the 

removal of one maximum and one minimum value, which 

has a very evident benefit over the other models. 
Therefore, we may infer that the several sub-modules used 

in this study were successful in increasing prediction 

accuracy. It is important to note that in dataset 1, the value of 

MAPE stayed largely constant, with no significant upward or 

downward trend. Considering the significant decrease or 

increase in other evaluation indexes, we believe that this 

cannot be used to indicate the ineffectiveness of the 

optimization measures employed. Meanwhile, in dataset 2, 

with the continuous increase of optimization modules, all 

evaluation indicators showed an obvious optimization trend, 

which further illustrates how well the additional approach 

improved prediction accuracy. Additionally, the suggested 

approach provides blatant advantages in terms of stability. 

 

V. CONCLUSION 

In order to maximize the accuracy and stability of wind 

speed prediction as much as is practical, a novel prediction 

model based on an adaptive hybrid neural network model and 

error correction is proposed in this study. The key technique 

for preparing data in the model is SSA. As was previously 

said, using this approach to denoise the data preserves the 

primary elements of the initial wind speed information while 

excluding high-frequency noise components, making it 

simpler to extract characteristics from the data and 

accomplish accurate wind speed prediction. Experimental 

results showed that data denoising considerably improved 

wind speed forecast accuracy. We demonstrate the viability 

and efficacy of using different models to predict different 

frequency data after denoising the data, and then we 

decompose and reconstruct the denoised data using wavelet 

analysis to obtain low-frequency and high-frequency 

sub-sequences, which are subsequently used as input for 

training and prediction in the appropriate model. The 

effectiveness of this approach is also verified in subsequent 

comparative experiments. In addition, another improvement 

of the method proposed in this paper is to use PSO algorithm 

to optimize the superposition weights of the prediction results 

of the two sub-models, instead of simple linear superposition. 

Finally, for the purpose of to further minimize the inaccuracy 

of wind speed prediction, this study additionally uses an error 

correction module that trains and predicts using LSTM and 

superimposes the final forecast result on the previous 

prediction results. The dataset for this module is made up of 

the model's training and testing mistakes. 

According to experimental findings, our suggested model 

for predicting wind speed is more accurate than other single 

prediction models that were employed as a comparison. 

Taking SSA-CNN-BiLSTM, the best-performing model 

among the comparison models, as an example, in dataset 1, 

our method reduces the MAE, MSE, and RMSE by 16%, 

17%, and 9%, respectively, while maintaining stability or 

slightly improving the MAPE and R2. And in dataset 2, our 

method reduces the MAE, MSE, MAPE and RMSE by 12%, 

36%, 5%, and 20%. There is also a 5% increase in the value 

of R2. In addition, to evaluate the impact of each submodule 

of the model in improving accuracy, we also designed 

corresponding ablation experiments. From the comparison 

results, we can see that all evaluation indicators continue to 

improve or remain stable, indicating that the improvements 

we have made are effective and reliable. 

As a consequence, the mixed prediction model proposed in 

this work greatly improves wind speed forecasting accuracy 

and serves as a helpful benchmark for managing and running 

wind farms in reality. 
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