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Abstract—In this paper, we have introduced minimum cov-
ering maximum reverse degree energy of simple graphs. Few
properties on minimum covering maximum reverse degree
eigenvalues and bounds for minimum covering maximum re-
verse degree energy of a graph are achieved. Further minimum
covering maximum reverse degree energy of some families of
graphs are computed.

Index Terms—Minimum covering maximum reverse degree
matrix, Minimum covering maximum reverse degree eigenval-
ues, Minimum covering maximum reverse degree energy.

I. INTRODUCTION

LET G = (V,E) be a graph with V = {v1, v2, . . . , vn}
as its vertex set and E = {e1, e2, . . . , en} as its

edge set. Let A = aij be the adjacency matrix of G.
Then |A − λI| = 0 is called characteristic equation of G.
λ1, λ2, . . . , λn of A, are called eigenvalues of G which are
assumed to be in non increasing order. As A is real symmet-
ric matrix, the eigenvalues of G are real with sum equal to
zero. The energy of G is defined to be sum of absolute values

of the eigenvalues of G. i.,e E(G) =
n∑

i=1

|λi|. In theoretical

chemistry, the π-electron energy of a conjugated carbon
molecule, computed using Huckle theory, coincides with the
energy as defined above. Hence, results on graph energy
assume special importance in graph theory. Because of the
numerous implications of graph energy, many researchers
have defined multiple energies with regard to a graph. For
more on energy of graphs, one can refer [1]–[8].

Adiga and Smitha defined Maximum degree matrix M(G)
of a graph G as follows:

Definition I.1. [9] Let G be a simple graph with n
vertices {v1, v2, . . . , vn} and di be the degree of vi for i =
1, 2, . . . , n. Then maximum degree matrix M(G) = (dij), is
defined as

dij =

{
max{di, dj}, if vi and vj are adjacent
0, otherwise.

A subset C of V is called a covering set of G, if every edge
of G is incident to atleast one vertex of C. Any covering set
with minimum cardinality is called minimum covering set.
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For more on minimum covering energy of graphs, one can
refer [10], [11].

Definition I.2. [12] Let C be the minimum covering set of
a graph G. The minimum covering maximum degree matrix

Ac[M(G)] = aij =


1, if i = j, vi ∈ C

max{dvi , dvj}, if vi ∼ vj ∈ E

0, otherwise.

Let ∆(G) denote the maximum degree among the vertices
of G. The reverse vertex degree of a vertex vi in G is defined
as cvi

= ∆(G)− d(vi) + 1, where d(vi) is degree of vertex
vi.

Definition I.3. [13] Let G be a simple graph with n vertices
and size m. Let cvi

be the reverse vertex degree of the
vertex vi. Then maximum reverse degree matrix is defined
as MR(G) = (rij), where

rij =

{
max{cvi

, cvj
}, if vi and vj are adjacent

0, otherwise.

In this paper, we have introduced minimum covering
maximum reverse degree energy of graphs.

Definition I.4. Let G be a simple graph with n vertices and
size m. Let cvi

be the reverse vertex degree of the vertex vi.
Then minimum covering maximum reverse degree matrix is
defined as AC [MR(G)] = (rij), where

rij =


max{cvi

, cvj
}, if vi and vj are adjacent

1, if i = j and vi ∈ C

0, otherwise.

The characteristic polynomial of minimum covering
maximum reverse degree of a graph G is defined by
ϕ{Ac[MR(G)]} = |λI − AC [MR(G)]| and minimum cov-
ering maximum reverse degree energy of G is denoted by

EAc[MR(G)], is defined as
n∑

i=1

|λi| where λ′
is are minimum

covering maximum reverse degree eigenvalues of G.
This paper is organised as follows. In section 2, the proper-

ties of minimum covering maximum reverse degree energy
of graphs are studied. In section 3, bounds for minimum
covering maximum reverse degree energy of graphs are es-
tablished. In section 4, minimum covering maximum reverse
degree energy of some families of graphs are computed.

Throughout this paper, xi refers to the number of vertices
in the neighbourhood of vi whose reverse vertex degree is
less than cvi and yi refers to the number of vertices vj(j > i)
in the neighbourhood of vi whose reverse vertex degree is
equal to cvi

.
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II. PROPERTIES OF MINIMUM COVERING MAXIMUM
REVERSE DEGREE ENERGY OF GRAPHS

Theorem II.1. Let G be a simple graph with n vertices
and m edges. If λ1, λ2, . . . , λn represent minimum covering
maximum reverse degree eigenvalues of G, then

1)
n∑

i=1

λi = |C|.

2)
n∑

i=1

λ2
i = |C|+ 2

n∑
i=1

(xi + yi)c
2
vi

.

Proof:
1) Sum of eigenvalues of AC [MR(G)] is equal to trace of

AC [MR(G)],
n∑

i=1

λi =
n∑

i=1

rii = |C|.

2) The sum of squares of eigenvalues of AC [MR(G)] is
the trace of AC [M

2
R(G)].

i.e.,
n∑

i=1

λ2
i =

n∑
i=1

n∑
i=1

rijrji

=
n∑

i=1

r2ii +
∑
i̸=j

rijrji

n∑
i=1

λ2
i = |C|+ 2

n∑
i=1

(xi + yi)c
2
vi
.

Theorem II.2. Let G = (V,E) be a graph. Let
ϕ{AC [MR(G)], λ} = a0λ

n+a1λ
n−1+a2λ

n−2+a3λ
n−3+

. . .+ an be the minimum covering maximum reverse degree
characteristic polynomial of graph G. Then,

1) a0 = 1.
2) a1 = −|C|.
3) a2 =

(|C|
2

)
−

n∑
i=1

(xi + yi)c
2
vi

.

Proof:
1) From the definition of ϕ{AC [MR(G)], λ}, it follows

that a0 = 1.
2) Sum of diagonal elements of AC [MR(G)] is equal to

cardinality of the set C.
Hence, (−1)a1 = −trace{AC [MR(G)]} = −|C|.

3) We have

(−1)2a2 =
∑

1≤i<j≤n

∣∣∣∣rii rij
rji rjj

∣∣∣∣
=

∑
1≤i<j≤n

riirjj −
∑

1≤i<j≤n

rjirij

a2 =

(
|C|
2

)
−

n∑
i=1

(xi + yi)c
2
vi
.

III. BOUNDS FOR MINIMUM COVERING MAXIMUM
REVERSE DEGREE ENERGY OF GRAPHS

Theorem III.1. Let G be a graph and C be minimum
covering set of G. Then

√
(|C|+ β) ≤ EAC [MR(G)] ≤√

n(|C|+ β).

Proof: Taking ai = 1, bi = |λi| in Cauchy Schwarz
inequality, we get

(
n∑

i=1

λi

)2

≤

(
n∑

i=1

1

)(
n∑

i=1

λ2
i

)

(EAC [MR(G)])2 ≤ n

(
|C|+ 2

n∑
i=1

(xi + yi)c
2
vi

)
.

Let

2
n∑

i=1

(xi + yi)c
2
vi

= β.

EAC [MR(G)] ≤
√
n(|C|+ β).

Also, (
n∑

i=1

λi

)2

≥
n∑

i=1

λ2
i

(EAC [MR(G)])2 ≥ |C|+ 2
n∑

i=1

(xi + yi)c
2
vi

EAC [MR(G)] ≥
√
(|C|+ β).

Theorem III.2. Let G be a graph on n vertices. Then

EAC [MR(G)] ≥
√
|C|+ β + n(n− 1)P

2
n , where P =

|MRp
(G⊕ S)|.

Proof: Using arithmetic and geometric mean inequality,

1

n(n− 1)

∑
i̸=j

|λi||λj | ≥

∏
i̸=j

|λi||λj |


1

n(n− 1)

=

(
n∏

i=1

|λi|2(n−1)

) 1

n(n− 1)

=

(
n∏

i=1

|λi|

) 2

n

= P
2
n ,

where P = |AC [MR(G)]|.∑
i̸=j

|λi||λj | ≥ n(n− 1)P
2
n .

Now,

(EAC [MR(G)])2 =

(
n∑

i=1

|λi|

)2

(EAC [MR(G)])2 =
n∑

i=1

|λi|2 +
∑
i̸=j

|λi||λj |

EAC [MR(G)] ≥
√
|C|+ β + n(n− 1)P

2
n .
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Theorem III.3. Let λ1 ≥ λ2 ≥ . . . ≥ λn represent minimum
covering maximum reverse degree eigenvalues of G. Then
EAC [MR(G)] ≤ |λ1|+

√
(n− 1)(|C|+ β − |λ1|2).

Proof: Applying Cauchy-Schwartz inequality for n− 1
terms, (

n∑
i=2

λi

)2

≤

(
n∑

i=2

1

)(
n∑

i=2

λ2
i

)
.

(EAC [MR(G)]− |λ1|)2 ≤ (n− 1)(|C|+ β − |λ1|2)

(EAC [MR(G)]− |λ1|) ≤
√
(n− 1)(|C|+ β − |λ1|2)

EAC [MR(G)] ≤ |λ1|+
√
(n− 1)(|C|+ β − |λ1|2).

Theorem III.4. Let G = (V,E) be a graph and ρ(G) =
max
1≤i≤n

|λi| be the minimum covering maximum reverse degree

spectral radius of G. Then√
|C|+ β

n
≤ ρ(G) ≤

√
|C|+ β.

Proof: Consider,

ρ2(G) = max
1≤i≤n

{|λi|}

≤
n∑

j=1

λ2
j

= |C|+ 2

n∑
i=1

(xi + yi)c
2
vi

ρ(G) ≤
√
|C|+ β,

where β = 2
n∑

i=1

(xi + yi)c
2
vi

.

Next,

nρ2(G) ≥ max
1≤i≤n

{|λi|}

≥ |C|+ β

ρ(G) ≥
√

|C|+ β

n√
|C|+ β

n
≤ ρ(G) ≤

√
|C|+ β.

IV. MINIMUM COVERING MAXIMUM REVERSE DEGREE
ENERGY OF SOME FAMILIES OF GRAPHS

Theorem IV.1. Minimum covering maximum reverse degree
energy of Kn is given by,

EAC [MR(Kn)] =
√

(n− 1)2 + 4(n− 1).

Proof: Let Kn be complete graph of order n and C =
{1, 2, . . . , n− 1}. Then,

AC [MR(Kn)] =

[
Jn−1 Jn−1×1

J1×n−1 01

]
n

,

where J is matrix of all 1’s, is the minimum covering
maximum reverse degree matrix of Kn. The result is proved
by showing AC [MR(Kn)]Z = λZ for certain vector Z
and by making use of fact that the geometric multiplicity
and algebraic multiplicity of each eigenvalue λ is same, as
AC [MR(Kn)] is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order n partitioned

conformally with AC [MR(Kn)].
Consider,

[AC [MR(Kn)]− λI]

[
X
Y

]
=

[
[J − λI]X + JY
JX + [−λI]Y

]
n

. (1)

Case 1. Let X = Xj = e1 − ej , j = 2, 3, . . . , n − 1 and
Y = 01. Using equation (1), [J − λI]Xj + J(0) = −λXj ,
then λ = 0 is the eigenvalue with multiplicity of at least
n− 2 since there are n− 2 independent vectors of the form
Xj .

Case 2. Let X = 1n−1 and Y = (λ− (n− 1)) 11, where
λ is any root of the equation,

λ2 − (n− 1)λ− (n− 1) = 0.

From equation (1),

(J)1×(n−1)1(n−1) − λI (λ− (n− 1)) 11

= (n− 1)11 − λ (λ− (n− 1)) 11

= {(n− 1)− λ2 + λ(n− 1)}11
= {λ2 − λ(n− 1)− (n− 1)}11

So,

λ =
(n− 1) +

√
(n− 1)2 + 4(n− 1)

2

and

λ =
(n− 1)−

√
(n− 1)2 + 4(n− 1)

2

are the eigenvalues with multiplicity of at least one.
The spectrum of AC [MR(Kn)] is given by,(

0 λ1 λ2

n− 2 1 1

)
,

where λ1 =
(n−1)+

√
(n−1)2+4(n−1)

2 ,

λ2 =
(n−1)−

√
(n−1)2+4(n−1)

2 .
Therefore,

EAC [MR(Kn)] =
√

(n− 1)2 + 4(n− 1).

Theorem IV.2. Minimum covering maximum reverse de-
gree energy of complete bipartite graph is given by,
EAC [MR(Km,n)] = (m− 1) +

√
1 + 4mn(n−m+ 1)2.

Proof: Let Km,n be complete bipartite graph of order
m+ n with m < n, then C = {1, 2, . . . ,m}. Then,

AC [MR(Km,n)] =

[
Im (n−m+ 1)m×n

(n−m+ 1)n×m 0n

]
m+n

,
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is the minimum covering maximum reverse degree matrix of
Km,n. The result is proved by showing AC [MR(Km,n)]Z =
λZ for certain vector Z and by making use of fact that
the geometric multiplicity and algebraic multiplicity of each
eigenvalue λ is same, as AC [MR(Km,n)] is real and sym-
metric.

Let Z =

[
X
Y

]
be an eigenvector of order m+n partitioned

conformally with AC [MR(Km,n)].
Consider,

[AC [MR(Km,n]− λI]

[
X
Y

]
=

[
(I − λI)X + (n−m+ 1)Y

(n−m+ 1)X − λInY

]
m+n

(2)

Case 1. Let X = Xj = e1 − ej , j = 2, 3, . . . ,m and
Y = 0n. Using equation (2), [1−λ]IXj +(n−m+1)0n =
(1−λ)Xj , then λ = 1 is the eigenvalue with multiplicity of
at least m− 1 since there are m− 1 independent vectors of
the form Xj .

Case 2. Let X = 0m and Y = Yj , j = 2, 3, . . . , n. Using
equation (2), −λIYj , then λ = 0 is the eigenvalue with
multiplicity of at least n−1 since there are n−1 independent
vectors of the form Yj .

Case 3. Let X = 1m and Y = (n−m+1)m
λ 1n, where λ is

any root of the equation,

λ2 − λ−mn(n−m+ 1)2 = 0.

From equation (2),

(1− λ)m + (n−m+ 1)m×n
(n−m+ 1)m

λ
1n

=

{
(1− λ) + (n−m+ 1)n

(n−m+ 1)m

λ

}
1m

=
λ2 − λ−mn(n−m+ 1)2

λ
1m.

So,

λ =
1 +

√
1 + 4mn(n−m+ 1)2

2
and

λ =
1−

√
1 + 4mn(n−m+ 1)2

2
are the eigenvalues

with multiplicity of at least one.
Thus, the spectrum of AC [MR(Km,n)] is given by,(

1 0 λ1 λ2

m− 1 n− 1 1 1

)
,

where λ1 =
1 +

√
1 + 4mn(n−m+ 1)2

2
,

λ2 =
1−

√
1 + 4mn(n−m+ 1)2

2
.

Therefore,

EAC [MR(Km,n)] = (m− 1) +
√

1 + 4mn(n−m+ 1)2.

Corollary IV.3. Minimum covering maximum reverse degree
energy of star graph K1,n−1 is

EpMR(K1,n−1) =
√

1 + 4(n− 1)3.

Proof:

Let K1,n−1 be star graph, then the minimum covering
set C consists of the non-pendant vertex. Then, substituting
m = 1 and n = n− 1 in theorem (IV.2), we get

EpMR(K1,n−1) =
√
1 + 4(n− 1)3.

Theorem IV.4. Minimum covering maximum reverse de-
gree energy of cocktail party graph Kn×2 is given by
EACMR(Kn×2) = (2n− 3) +

√
(3− 2n)2 − 16(1− n).

Proof: Let Kn×2 be cocktail party graph of order 2n
and let C = {1, 2, . . . , n−1, n+1, n+2, . . . , 2n−1}. Then,

ACMR(Kn×2) =



1 1 1 · · · 1 1 0 1 1 · · · 1 1

1 1 1 · · · 1 1 1 0 1 · · · 1 1

1 1 1 · · · 1 1 1 1 0 · · · 1 1

...
...

...
. . .

...
...

...
...

...
. . .

...
...

1 1 1 · · · 1 1 1 1 1 · · · 0 1

1 1 1 · · · 1 0 1 1 1 · · · 1 0

0 1 1 · · · 1 1 1 1 1 · · · 1 1

1 0 1 · · · 1 1 1 1 1 · · · 1 1

1 1 0 · · · 1 1 1 1 1 · · · 1 1

...
...

...
. . .

...
...

...
...

. . .
...

...
...

1 1 1 · · · 0 1 1 1 1 · · · 1 1

1 1 1 · · · 1 0 1 1 1 · · · 1 0


2n

|EACMR(Kn×2)− λI| is given by,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 1 · · · 1 1 0 1 1 · · · 1 1

1 1− λ 1 · · · 1 1 1 0 1 · · · 1 1

1 1 1− λ· · · 1 1 1 1 0 · · · 1 1

...
...

...
. . .

...
...

...
...

...
. . .

...
...

1 1 1 · · · 1− λ 1 1 1 1 · · · 0 1

1 1 1 · · · 1 −λ 1 1 1 · · · 1 0

0 1 1 · · · 1 1 1− λ 1 1 · · · 1 1

1 0 1 · · · 1 1 1 1− λ 1 · · · 1 1

1 1 0 · · · 1 1 1 1 1− λ · · · 1 1

...
...

...
. . .

...
...

...
...

. . .
...

...
...

1 1 1 · · · 0 1 1 1 1 · · · 1− λ 1

1 1 1 · · · 1 0 1 1 1 · · · 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n

(3)

Step 1: On replacing Ri by Ri − Ri + 1, for i =
1, 2, . . . , n − 1, n + 1, . . . , 2n − 1 and replacing Ci by
Ci+Ci−1+· · ·+C2+C1, for i = n, n−1, . . . , 2, 1 and Cj by
Cj+Cj−1+· · ·+C2+C1, for j = 2n, 2n−1, . . . , n+2, n+1
in equation (3) a new determinant say det(D) is obtained.

Step 3: On multiplying and dividing
Cn+1, Cn+2, . . . , C2n−1 by (λ) and replacing
Cn+1 −→ Cn+1−C1, Cn+2 −→ Cn+2−C2, . . . , C2n−1 −→
C2n−1 − Cn−1 in det(D) we get a new determinant say,
det(E).

Step 4: On expanding det(E) along the rows from R1 to
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Rn−2 it reduces to,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 · · · 0 0

n− 1 (n− 1)− λ λ− 1 · · · (n− 1)(λ− 1) n− 1

0 0 −λ2 + 1 · · · 0 0

...
...

...
. . .

...
...

−1 0 0 · · · −λ2 + 1 1

(n− 1) (n− 1) λ− 1 · · · (n− 1)(λ− 1) (n− 1)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+2

(4)

Step 5: Then expanding equation (4) along rows and on
simplifying, we get

ϕ{ACMR(Kn×2)} = λ(1−λ)n−2(λ−1)(λ2+(3−2n)λ+
4(1− n)) = 0.

The spectrum of ACMR(Kn×2) is given by,(
0 1 −1 λ1 λ2

1 n− 1 n− 2 1 1

)
,

where λ1 =
−(3− 2n) +

√
(3− 2n)2 − 16(1− n)

2
,

λ2 =
−(3− 2n)−

√
(3− 2n)2 − 16(1− n)

2
.

Therefore,

EACMR(Kn×2) = (2n− 3) +
√
(3− 2n)2 − 16(1− n).

Theorem IV.5. Minimum covering maximum reverse degree
energy of crown graph (S0

n) is EACMR(S
0
n) =

1+
√
5

2 (n −
1) + 1−

√
5

2 (n− 1) +
√
1 + 4(n− 1)2.

Proof: Let S0
n be crown graph of order 2n and let C =

{1, 2, . . . , n}. Then,

AC [MR(S
0
n)] =

[
In (J − I)n

(J − I)n 0n

]
2n

,

is the minimum covering maximum reverse degree matrix of
S0
n. The result is proved by showing AC [MR(S

0
n)]Z = λZ

for certain vector Z and by making use of fact that the
geometric multiplicity and algebraic multiplicity of each
eigenvalue λ is same, as AC [MR(S

0
n)] is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with AC [MR(S
0
n)].

Consider,

[AC [MR(S0
n)]− λI]

[
X
Y

]
=

∣∣∣∣∣ (I − λI)X + (J − I)Y

(J − I)X − λIY

∣∣∣∣∣
2n

. (5)

Case 1. Let X = Xj = e1 − ej , j = 2, 3, . . . , n and
Y = (1− λ)Xj , where λ is any root of the equation,

λ2 − λ− 1 = 0.

Using equation (5),

(J − I)Xj − λI(1− λ)Xj

= −Xj − λ(1− λ)Xj

= (λ2 − λ− 1)Xj .

So, λ = 1+
√
5

2 and λ = 1−
√
5

2 are the eigenvalues with
multiplicity of at least n− 1.

Case 2. Let X = 1n and Y = (n−1)2

λ 1n, where λ is any
root of the equation,

λ2 − λ− (n− 1)2 = 0.

Using equation (5),

(1− λ)In1n + (J − I)n
(n− 1)2

λ
1n

= (1− λ)1n +
(n− 1)2

λ
1n

=
λ2 − λ− (n− 1)2

λ
1n.

So, λ =
1 +

√
1 + 4(n− 1)2

2
and

λ =
1−

√
1 + 4(n− 1)2

2
are the eigenvalues with multi-

plicity of at least 1.
Thus, the spectrum is given by,(

1+
√
5

2
1−

√
5

2 λ1 λ2

n− 1 n− 1 1 1

)
where

λ1 =
1 +

√
1 + 4(n− 1)2

2
,

λ2 =
1−

√
1 + 4(n− 1)2

2
.

Therefore, EACMR(S
0
n) =

1+
√
5

2 (n− 1)+ 1−
√
5

2 (n− 1)+√
1 + 4(n− 1)2.

Theorem IV.6. A double star is denoted by S(l,m). Let
V = {ui, vj |i = 0, 1, . . . , l, j = 0, 1, . . . ,m} be the vertex
set of the double star S(l,m) with u0 and v0 as its centers.
Then, characteristic polynomial of S(l,m) is given by,
ϕ{MR(S(l,m) ⊕ S)} = (−λ)l+m−2(λ4 − 2λ3 + λ2(1 −

t2 −m+2m2 −m3 − l+4lm− 3lm2 +2l2 − 3l2m− l3)+
λ(m−2m2+m3+ l−4lm+3lm2−2l2+3l2m+ l3)+ lm−
4lm2 + 6lm3 − 4lm4 + lm5 − 4l2m+ 12l2m2 − 12l2m3 +
4l2m4 + 6l3m− 12l3m2 + 6l3m3 − 4l4m+ 4l4m2 + l5m.

Proof: Let S(l,m) be double star graph, then C =
{u0, v0}. Then,

ACMR(S(l,m)) =

[
J2 B2×(l+m)

BT
(l+m)×2 0(l+m)

]
l+m+2

is the minimum covering maximum reverse degree matrix of
S(l,m).

|ACMR(S(l,m))− λI| =

∣∣∣∣∣∣
(J − λI)2B2×(l+m)

BT
(l+m)×2

−λI(l+m)

∣∣∣∣∣∣
l+m+2

(6)

where, B is given by

[
(l +m− 1)JI×l 0I×m

0I×l (l +m− 1)JI×M

]
2×(l+m)

On applying row operation Ri −→ Ri − Ri+1, 1 ≤ i ≤
l − 1, 1 ≤ j ≤ m − 1 and column operations Ci −→ Ci +
Ci−1+ . . .+C1, 1 ≤ i ≤ l, 1 ≤ j ≤ m, in equation (12) we
get
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(−λ)l+m−2

∣∣∣∣∣∣∣
1− λ t l(l +m− 1) 0

t 1− λ 0 m(l +m− 1)
l +m− 1 0 −λ 0

0 l +m− 1 0 −λ

∣∣∣∣∣∣∣
(7)

where, t = max{Cu0
, Cv0

}
On further simplifying in equation (14), we get
ϕ{MR(S(l,m) ⊕ S)} = (−λ)l+m−2(λ4 − 2λ3 + λ2(1 −

t2 −m+2m2 −m3 − l+4lm− 3lm2 +2l2 − 3l2m− l3)+
λ(m−2m2+m3+ l−4lm+3lm2−2l2+3l2m+ l3)+ lm−
4lm2 + 6lm3 − 4lm4 + lm5 − 4l2m+ 12l2m2 − 12l2m3 +
4l2m4 + 6l3m − 12l3m2 + 6l3m3 − 4l4m + 4l4m2 + l5m.

Theorem IV.7. Let B3
n be triangular book graph and let

C = {v1, v2}, where v1v2 is the base of n triangles, then
EACMR(B

3
n) =

√
1 + 2n3.

Proof: Let

ACMR(B
3
n) =

 01 nJ1×2 01×(n−1)

nJ2×1 J2 nJ2×(n−1)

0(n− 1)× 1 nJ(n−1)×2 0n−1


n+2

be the minimum covering maximum reverse degree matrix
of B3

n. The result is proved by showing AC [MR(B
3
n)]W =

λZ for certain vector W and by making use of fact that
the geometric multiplicity and algebraic multiplicity of each
eigenvalue λ is same, as AC [MR(B

3
n)] is real and symmetric.

Let W =

XY
Z

 be an eigenvector of order n+2 partitioned

conformally with AC [MR(B
3
n)]. Consider,

[
ACMR(B

3
n)− λI

] XY
Z

 =

 −λIX + nJY + 0Z
nJX + (J − λI)Y + (nI)Z

0X + (nJ)Y − λIZ

 .

(8)
Case 1. Let X = Xj , j = 1, 2, . . . , n, Y = 02 and Z =

0n−1. Using equation (8), [−λI]Xj + [nJ ]02, then λ = 0 is
an eigenvalue with multiplicity of at least n.

Case 2. Let X = 01 and Y = 12 and Z = λ−2
n2 where λ

is any root of the equation

λ2 − 2λ− 2n3 = 0.

From equation (8),

(nJ)Y − λIZ = nJ12 − λI
λ− 2

n2

=

{
2n− λ

λ− 2

n2

}
1n−1

=
λ2 − 2λ− 2n3

n2

So, λ = 1 +
√
1 + 2n3 and λ = 1 −

√
1 + 2n3 are the

eigenvalues with multiplicity of at least one.

Thus, spectrum of ACMRB
3
n is

(
0 λ1 λ2

n 1 1

)
, where

λ1 = 1 +
√
1 + 2n3, λ2 = 1 +

√
1 + 2n3.

Therefore,

EACMR(B
3
n) =

√
1 + 2n3.

Theorem IV.8. Let Amal(k,Kn) be the k times amalga-
mation of complete graph Kn. If |C| = (n− 1)(k − 1) + 1,
then ϕp{ACMR(Amal(k,Kn)} = (1− λ−C)k(n−3){λ2 +
λ(3C−1−Cn)−C2n+2C2}k−1{−λ3+λ2(Cn+2−3C)+
λ(3C−1−2C2−C2k+C2n−Cn+C2kn)−C2k−C2n+
2C2 + C3kn}.

Proof: Let

ACMR(Amal(k,Kn))

=



J1 CJ1×n−1 CJ1×n−1 · · · CJ1×n−1

CJ1×n−1 Bn−1 0n−1 · · · 0n−1

CJ1×n−1 0n−1 Bn−1 · · · 0n−1

...
...

...
. . .

...

CJ1×n−1 0n−1 0n−1 · · · Bn−1


k+1
(9)

be the minimum covering maximum reverse degree matrix
of Amal(k,Kn), where C = (n− 1)(k − 1) + 1 and

B =



0 C C · · · C C
C 1 C · · · C C
C C 1 · · · C C
...

...
...

. . .
...

...
C C C · · · 1 C
C C C · · · C 1


n−1

.

|ACMR(Amal(k,Kn))− λI| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ CJ1×n−1 CJ1×n−1 · · · CJ1×n−1

CJ1×n−1 Bn−1 − λI 0n−1 · · · 0n−1

CJ1×n−1 0n−1 Bn−1 − λI · · · 0n−1

...
...

...
. . .

...

CJ1×n−1 0n−1 0n−1 · · · Bn−1 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k+1
(10)

On replacing Ri by Ri−Ri+1 for i = 2, . . . , k+1 and replacing
Ci by Ci + Ci−1 + · · · + C2 for i = k + 1, k, . . . , 3, 2 in (10), a
new determinant say det(D) is obtained.

det(D) = |(B − λI)n−1)|(k−1)

∣∣∣∣1− λ CkJ
CJ B − λI

∣∣∣∣
n

(11)

Consider,

|(B − λI)n−1)| =

∣∣∣∣∣∣∣∣
−λ C C · · · C
C 1− λ C · · · C
...

...
...

. . .
...

C C C · · · 1− λ

∣∣∣∣∣∣∣∣
n−1

(12)

On replacing Ri by Ri −Ri+1 for i = 2, . . . , n− 1 and replacing
Ci by Ci + Ci−1 + · · · + C2 + C1 for i = 2, . . . , n − 1 in (12),
we have

{(1−λ−C)n−3(λ2+λ(3C−1−Cn)−C2n+2C2)}k−1 (13)

Next,

∣∣∣∣1− λ CkJ
CJ B − λI

∣∣∣∣
n

=

∣∣∣∣∣∣∣∣∣∣

1− λ Ck Ck · · · Ck
C −λ C · · · C
C C 1− λ · · · C
...

...
...

. . .
...

C C C · · · 1− λ

∣∣∣∣∣∣∣∣∣∣
n
(14)
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On replacing Ri by Ri − Ri+1 for i = 2, . . . , n and replacing
Ci by Ci + Ci−1 + · · ·+ C2, i = 2, . . . , n in (14), we have

{(1− λ− C)n−3}{λ3 − λ2(Cn+ 2− 3C)− λ(3C − 1− 2C2

−C2k + C2n− Cn+ C2kn) + C2k + C2n− 2C2 − C3kn}.
(15)

Substituting (13) and (15) in (11), we obtain
ϕp{ACMR(Amal(k,Kn)} = (1 − λ − C)k(n−3){λ2 +
λ(3C− 1−Cn)−C2n+2C2)}k−1{−λ3 +λ2(Cn+2− 3C)+
λ(3C − 1− 2C2 − C2k + C2n− Cn+ C2kn)− C2k − C2n+
2C2 + C3kn}.

V. CONCLUSION

Graph energies found unexpected applications in such
areas of science and engineering as crystallography, air trans-
portation, comparison of protein sequences, construction of
spacecrafts, etc. In this paper, we have introduced minimum
covering maximum reverse degree energy and obtained some
bounds for minimum covering maximum reverse degree
energy graphs. Also, a generalized expression for minimum
covering maximum reverse degree energy of complete graph,
star, cocktail party graph, crown graph, complete bipartite
graph, double star graph, triangular book graph and amalga-
mation of complete graph are also computed.
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