
 

  

Abstract—Remote sensing image scene classification is a 

challenging task that involves automatically assigning labels to 

remote sensing images based on predefined categories. The 

inherent intra-class diversity and inter-class similarity of 

remote sensing images make it difficult for classification 

models to capture the discriminative key information necessary 

for accurate labeling, resulting in classification confusion. This 

paper proposes a novel method called Multidimensional 

Attention and Feature Enhancement (MA-FE) to address this 

issue. The proposed MA-FE method comprehensively captures 

essential features in different dimensions of channel and 

position through the Multidimensional Attention (MA) module, 

which integrates and combines the captured features. The 

Feature Enhancement (FE) module then amplifies the dis- 

criminative features to suppress the interference of useless 

information, thus improving the representation ability of the 

model. We conducted detailed experiments on three public 

remote sensing datasets and performed a comparative e- 

valuation with multiple remote sensing scene classification 

methods proposed in recent years. The overall accuracies of the 

proposed MA-FE method on these datasets were 99.66%, 

95.68%, and 93.21%, respectively. Our experimental results 

demonstrate that the proposed MA-FE method is more 

effective in extracting complex features in remote sensing 

images than other methods, thereby proving its effectiveness. 

 
Index Terms—remote sensing images, scene classification, 

multidimensional attention, feature enhancement 

 

I. INTRODUCTION 

ITH the rapid advancement of satellite sensing 

technology, acquiring high-resolution image data of 

the Earth's surface through remote sensing technology has 

become increasingly convenient. These remote sensing 

images contain rich semantic information, enabling 

researchers to perform more comprehensive metric analysis 
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of the Earth's surface [1]. One of the key goals of remote 

sensing image scene classification is to automatically assign 

images into predefined categories [2-4], such as vegetation, 

water bodies, buildings, etc., using pixel points or regions in 

the remote sensing image, which is an essential way to 

comprehend remote sensing images. In recent years, remote 

sensing image scene classification has emerged as an 

important research area in the field of remote sensing image 

processing, and has found extensive applications in various 

domains, such as natural resource management, urban 

planning, environmental monitoring, military surveying, 

among others [5-8]. 

Improving accuracy in remote sensing image scene 

classification is a challenging task, primarily due to two 

main reasons. Firstly, the aerial overhead angle of such 

images can capture multiple categories of disturbed feature 

types within one image, leading to increased complexity and  

potential confusion in classification targets, such as 

stadiums and railway stations. Secondly, remote sensing 

images depict objects amidst complex backgrounds and 

varying scales, leading to increased similarity in appearance 

and characteristics among distinct feature categories. For 

instance, both schools and parks possess vegetation, making 

it difficult for the classification network to differentiate 

between them accurately [9]. It is clear that the accuracy of 

remote sensing image scene classification is closely related 

to the feature extraction method from the images. 

In the early days of processing remote sensing images, 

researchers typically extracted features using handmade 

structures such as pixels, textures, and spectra, these 

methods usually relied on professionals. Then they used 

these features as input to a classifier to achieve scene 

classification. Several methods were proposed to extract 

such features, including the scale-invariant feature transform 

(SIFT) method by Lowe et al. [10], the local binary patterns 

(LSPs) method by Ojala et al. [11, 12], the histogram of 

oriented gradients (HOG) method by Dalal et al. [13], the 

bag of visual words (BOVW) method by Yang et al. [14], 

and the spatial pyramid matching (SPM) method by 

Lazebnik et al. [15]. However, these manual feature 

extraction methods are mainly designed for shallow local 

information, and the operations are relatively tedious and 

lack the effective perception of higher-level semantic 

information, which is unfavorable for the complex back-

ground of remote sensing images. Deep learning has become 

the mainstream choice for scene classification due to its 

powerful ability to learn and extract discriminative and 

abstract features of high-level semantic information [16, 17]. 
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Fig. 1 Schematic diagram of MA-FE model 

In conclusion, to enhance the model's emphasis on critical 

feature map areas, diminish the impact of irrelevant 

information, enhance the model's capacity for discrimination, 

and consequently enhance classification accuracy, this paper 

introduces a method involving multidimensional attention 

and feature enhancement. This method consists of three 

parts. The first part is to extract the channel features through 

a pre-trained convolutional neural network model. The 

second part is to extract the location features of the image 

and combine them with the channel features using the 

multidimensional attention module. The third part is to 

enhance the features in the focused attention regions using a 

feature enhancement module. This aims to improve the 

overall representativeness and adaptability of the model 

while reducing the influence of interfering features and 

improving the classification accuracy. 

II. RELATED WORK 

In recent years, Convolutional Neural Networks (CNNs) 

have gained great popularity in the field of scene 

classification[18]. Classical networks like GoogleNet  [3], 

MobileNet [19], and EfficientNet [20] have been developed 

to improve classification accuracy by learning high-level 

information. He et al.  [21] proposed a residual block to 

enhance the model's memory capacity, effectively reducing 

the probability of gradient explosion and gradient dis- 

appearance during weight training. However, CNN's ability 

to generalize and capture key discriminative regions is weak. 

Therefore, CNNs are often combined with attention 

mechanisms. Hou et al. [22] proposed a Coordinate 

Attention (CA) module that effectively extracts location 

information by integrating feature vectors of two directional 

coordinates to prevent overfitting. Cao et al. [23] proposed a 

VGG_VD16 with SAFF, combining a pre-trained VGG 

network with Self-Attentive Feature Fusion (SAFF) with 

aggregated weighting capability to extract scene features. 

Tang et al.  [24] proposed an Attention-Consistent module 

(ACNet) for feature extraction. Wang et al. [25] proposed an 

effective channel attention that emphasizes the important 

information of features from the perspective of channels, 

thereby improving classification accuracy. However, the 

above approaches face two problems. Firstly, most attention 

mechanisms extract features in a single dimension of space 

or location, making the model weak in focusing on 

discriminative essential information. Secondly, due to the 

increasing depth of the network, the model is prone to 

forgetting the features learned at the shallow level and 

receiving interference information, which eventually leads 

to confusion in classification[26]. 

In order to tackle the previously mentioned problems and 

improve the model's classification capability, we propose a 

multi-dimensional attention mechanism and feature en- 

hancement model using ResNet50 pre-trained on the 

ImageNet dataset as the baseline. This model emphasizes 

key information from both location and channel dimensions, 

thereby addressing the limitations of insufficient focal 

information encountered in most attention methods. Further-  

more, the feature enhancement module prioritizes the 

extraction of discriminative information from the upper 

layer while suppressing interference information. 

III. PROPOSED MODEL 

A. Baseline 

ResNet50 is a well-established deep learning architecture 

that has showcased its success across a variety of computer 

vision tasks, such as scene classification, target detection, 

and semantic segmentation. The network itself is composed 

of several layers, encompassing a convolutional layer, a 

batch normalization layer, a ReLU activation function layer, 

a maximum pooling layer, and a global average pooling 

layer. These layers are stacked in four residual units, namely 

L1, L2, L3, and L4, each consisting of 3, 6, 4, and 3 residual 

blocks, respectively. The core of ResNet50 is its residual 

blocks, which are illustrated in Fig.1.  

B. ECA-ResNet 

The Efficient Channel Attention (ECA) mechanism is a 

lightweight attention method that leverages the inter- 

dependencies among feature map channels to increase the 

representational power of the model. By assigning weights 
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to the importance of each channel in the feature map 

through Global Average Pooling (GAP), the ECA me 

mechanism allows the network to focus on crucial channel 

features, which leads to an improvement in the network's 

performance. Additionally, the computational complexity of 

the ECA mechanism is low, which enables it to enhance the 

network performance without adding computational over- 

head. In order to improve the ResNet network's ability to 

emphasize channel information, the ECA mechanism was 

introduced into the residual block by placing it between the 

first BN layer and the ReLu activation function, as depicted 

in Fig. 1. 
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Fig. 2 Schematic diagram of the ECA module 

The ECA mechanism is presented in Fig. 2. Assuming 

that the dimension of the input feature map is ( , , )X H W C , 

where H and W are the height and width of the feature map, 

and C is the number of channels. The channel feature map 

can be obtained using GAP, and any P-th element can be 

expressed as follows: 

1 1

1
( , )

H W

p

i j

Z X i j
H W = =

=


   (1) 

( , )X i j  denotes any one of its elements. In order to perform 

the weighting operation, a channel feature map Z  must be 

learned first using one-dimensional convolution. This is 

done to calculate the weights of the channel attention. It is 

worth noting that ECA leverages cross-channel interaction, 

and the parameter K  is responsible for determining the 

range of channels covered by the interaction. Moreover, the 

size of the convolutional kernel is also determined by K , 

which is adaptively selected based on the number of 

channels C . 

l ( ) 1
( )

2 2 odd

b C
K C= +=  (2) 

Here, [ ( ) 1] / 2lb C + odd denotes the odd number closest to 

[ ( ) 1] / 2lb C + . The feature map is passed through a 

convolution layer, and the resulting feature map is fed to the 

  activation function, which outputs the attention weight 

A  between 0 and 1. Finally, the output feature map F  of 

the ECA module, after the channel weighting, can be 

expressed as: 
F A X=  (3) 

Here, denotes the element-wise multiplication between 

the attention weight of each channel and the corresponding 

feature value of each channel. Consequently, the ECA 

module produces a new feature map that is weighted with 

significant channel information. 

C. Multidimensional Attention 

The MA module is shown in Fig. 3. For enhancing the 

classification performance of the ECA-ResNet50 model and 

efficiently extracting multidimensional characteristics, the 

majority of attention mechanisms have the disadvantage of 

capturing incomplete distinguishing features by focusing 

only on a single dimension of location or channel 

information. To address this constraint, this paper proposes 

a multi- dimensional attention mechanism that integrates 

location information with the channel information extracted 

by ECA, thereby improving the spatial location re- 

presentation of the model and focusing better on important 

features for classification on the feature map. Specific 

operations are as follows. 

Step 1: The ECA introduced residual blocks were utilized 

to extract effective channel features, while the residual 

blocks of the first and last layers were fused to enhance the 

channel feature expression ability. 

Step 2: The fused feature map is fed as input to the 

positional information feature grabbing module. Firstly, two 

convolution transformations are performed, and the second 

convolution layer uses an expanded convolution which can 

reduce the parameters of the convolution layer. This is done 

to avoid the influence of parameter redundancy caused by 

the channel attention of the upper layer on the classification 

effect. 

Step 3: In order to make the information in the feature 

map fully related, it is necessary to conduct dimension 

splitting of positions. The input features are pooled to a 

height of 1 along the horizontal direction (X) and a width of 

1 along the vertical direction (Y), resulting in the encoding 

of the two feature maps with embedded direction-specific 

information as two separate concern maps.  
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Fig. 3 Schematic diagram of the MA module 
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Fig. 4 Schematic diagram of the FE module 

Instead of using traditional Global Average Pooling 

(GAP), we introduce Adaptive Average Pooling (AAP) as 

an alternative, which automatically calculates the parameters 

required for the corresponding pooling based on the size of 

the input and output tensor, thus improving computational 

efficiency and reducing in- formation loss. 

 
 _

_
( _ ) ( )

_

Kernel size input size

input size
output size

output size

=

− 
 (4) 

Equation (4) shows the principle of AAP automatically 

solving for the size of the required pooling kernel, which 

_input size
 
refers to the size of the tensor to be pooled 

and _output size  refers to the output tensor size after 

pooling. After AAP, feature map information is obtained for 

two different locations. 

 
     

  0

1
( ) ( , )h

c c

i W

Z h F h i
W  

=   (5) 

 

0

1
( ) ( , )w

c c

j H

Z w F j w
H  

=   (6) 

Equations (5) and (6) are represented below, where 

( )h
cZ h  represents the output of channel c  at height h  after 

pooling, and ( )w
cZ w  represents the output of the channel c  

at width w  after pooling. Here, ( , )cF h i  represents any 

element with height h  at the channel c  of F , and ( , )cF j w  

represents any element with width w  at the channel c  of 

F . In order to capture the long-distance correlation of 

feature maps along a spatial direction and obtain different 

positional information, 
hf  and wf  were obtained for each 

concern map through 1×1 convolution transformation 

1Conv , and hg  and wg  were obtained through 1×1 

convolution transformation 2Conv . The ReLU activation 

function is denoted by  . 
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 (7) 

Finally, Equation (8) is used to combine the features 

learned from the network's location information to generate 

a new feature map G  that incorporates both channel and 

location information. 

 h wG g g=   (8) 

D. Feature Enhancement 

To enhance both the model's classification performance 

and generalization ability, a feature enhancement module 

was developed. This module is illustrated in Fig. 4.  

To improve the feature map after attention has been 

focused on the key information in the previous layer, global 

average pooling and maximum pooling are applied to the 

features extracted from the attention module to obtain the 

corresponding MAXG  and AVGG  feature maps. Then, the 

features from each of the two directions are learned by the 

same convolutional transform 3Conv  to bring MAXS  and 

AVGS . It should be noted that in order to overcome the poor 

robustness and weak noise immunity of the traditional ReLu 

activation function in deep convolution, the LeakyReLu 

activation function with a wider convergence range is 

introduced here instead of the traditional ReLu activation 

function, denoted by  .  
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 (9) 

Finally, the output characteristics in both directions are 

subtracted to reduce interference caused by useless features. 

Feature fusion is then performed to increase the higher 

values on the feature map, thus enhancing the discriminative 

power of the model. The final feature map S of the feature 

enhancement module is obtained. 

IV. EXPERIMENTS 

A. Datasets 

Table Ⅰ shows the details of the data set used in this article. 

The UC Merced Land Use (UCM) dataset represents a 

comprehensive collection of data designed to facilitate the 

classification of various scene features. This dataset was 

initially developed by researchers at the University of 

California (UC) Merced in the year 2004. The dataset 

comprises high-resolution aerial images that have been 

grouped into 21 categories. The images have a fixed image 

size of 256×256 pixels, and the entire dataset contains a total 

of 2100 images. 
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TABLE Ⅰ 
DATASET INFORMATION 

Datasets 
Number of 

images 
Number of categories Image size 

UCM 2100 21 256×256 

AID 10000 30 600×600 

NWPU 31500 45 256×256 

The Aerial Image Dataset (AID) is a collection of data 

used for analyzing aerial images, released by the Institute of 

Automation, Chinese Academy of Sciences. The dataset 

consists of 10,000 aerial images grouped into 30 categories, 

each image being of size 600×600 pixels, and representing 

various features such as buildings, farmland, roads, bridges, 

forests, water bodies, and more. 

The NWPU-RESISC45 (NWPU) dataset, released in 

2017, is a benchmark dataset for remote sensing image 

classification. Northwestern Polytechnical University in 

China collected the dataset, which comprises 31,500 images. 

Each image has dimensions of 256×256 pixels. The dataset 

covers 45 land use categories, such as farmland, airports, 

beaches, forests, and industrial land. This dataset has 

become an important tool for researchers and practitioners 

working in the field of remote sensing, providing a valuable 

resource for the development and testing of new image 

classification algorithms and techniques. 

B. Metrics 

The model's classification performance was evaluated 

using the overall accuracy (OA) and confusion matrix (CM).  

TABLE Ⅱ  

SECOND-ORDER CONFUSION MATRIX 

Confusion Matrix 
True label 

Positive Negative 

Predict label 
Positive TP FP 

Negative FN TN 

The confusion matrix is a useful tool that records the 

classification results and intuitively expresses the proportion 

of different categories misclassified into other categories. 

The confusion matrix is comprised of n×n matrices, the 

columns of the matrix are the true categories of the training 

samples, and the rows of the matrix are the predicted 

categories of the training samples. The row value in the 

matrix represents the classification accuracy rate between 

categories. True Positive (TP) indicates the positive 

category of the real value of the sample, and the predicted 

value of the model is also positive. True Negative (TN) 

indicates that the real value of the sample is negative, and 

the predicted value of the model is also negative. False 

Positive (FP) indicates that the real value of the sample is 

negative, but the predicted value of the model is positive. 

False Negative (FN) indicates that the true value of the 

sample is in the positive category, but the model predicts 

that it is in the negative category. Confusion matrix plays an 

important role in classification model evaluation Table Ⅱ 

presents the second-order confusion matrix. 

Accuracy is a critical performance metric for evaluating a 

model's predictive power. It refers to the proportion of 

correctly predicted samples to the total number of training 

samples in the test set. The overall accuracy is calculated 

using Equation (10). 

 TP TN
OA

TP FN TN FP

+
=

+ + +
 (10) 

C. Experimental Parameter Settings 

To minimize the influence of randomization on the final 

classification outcomes, we randomly partitioned the dataset 

and replicated the experiment five times, taking the average 

of the classification outcomes as the final result. To explore 

the generalizability of MA-FE on large-scale datasets, we 

created different training ratios on both the AID and NWPU 

datasets and conducted two sets of experiments on each 

dataset to ensure the accuracy of the findings. To maintain 

fairness, we employed the same training-test split ratio as 

other models on these three datasets. Specifically, for the 

AID dataset, the first set of experiments was divided into a 

50% training set and a 50% test set, while the second set of 

experiments was divided into a 20% training set and an 80% 

test set. For the NWPU dataset, the first set of experiments 

employed a training-test split of 20% and 80%, while the 

second set of experiments was divided into a 10% training 

set and an 80% test set. The UCM model used an 80% and 

20% training-test split. The batch size was set to 32, and we 

trained the model for 150 epochs to ensure convergence. 

Regarding the preprocessing stage, we employed various 

techniques such as flipping, cropping, normalization, and 

shuffling of images to mitigate overfitting and ensure the 

experimental validity. All images were resized to 256 × 256 

pixels. To facilitate the training network to reach the optimal 

solution, we set the learning rate to 0.0001. In the context of 

the present experimental setup, the utilized hardware 

configuration consists of an Intel i7-12700KF CPU, an 

NVIDIA GeForce RTX 3080(10G) graphics card, and a 

memory capacity of 32GB. For model construction, the 

PyTorch framework is employed. 

D. Results and Analysis on UCM Dataset 

We conducted a comparative study of 10 recently pro- 

posed methods on the UCM dataset, with a training ratio of 

80%. The obtained results are presented in Table Ⅲ. 

TABLE Ⅲ 

COMPARISON OF THE OVERALL ACCURACY OF EACH METHOD ON THE UCM 

DATASET 

Methods Year Accuracy(%) 

GoogLeNet [3] 2017 94.31 

EfficientNet [20] 2020 94.37 

MobileNet [19] 2020 90.91 

Coutourlet CNN [27] 2020 99.25 

Skip-Connected CNN [8] 2020 98.04 

DDRL-AM method [28] 2020 99.05 

EfficientNetB3-Attn-2 [29] 2021 99.21 

VGG_VD16 with SAFF [23] 2021 97.02 

LCNN-BFF Method [30] 2021 99.29 

ARCNet [31] 2021 99.12 

Ours 99.66 

It is evident from the table that our proposed MA-FE 

model outperforms all other methods, achieving an accuracy 

of 99.66%. Our model's accuracy is 0.37% higher than the 

LCNN-BFF method and 0.41% higher than the Coutourlet 

CNN method, which provides strong evidence of our 

model's robust classification ability. 
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Fig. 5 Confusion matrix with a training ratio of 80% on the UCM dataset 

Furthermore, Fig. 5 shows the confusion matrix for the 

MA-FE model on the UCM dataset, with a training ratio of 

80%. The rows and columns of the matrix are numbered 1-

21, representing the 21 categories of the UCM dataset 

(sorted alphabetically by scene category name). The figure 

shows that 12 of the 21 categories have an overall accuracy 

of 1, with only one category having an accuracy lower than 

95%. Notably, the overall accuracy of categories 3 (baseball 

diamond) and 5 (buildings), which have intra-class diversity 

scenes, are 90% and 95%, respectively. Classes 10 (golf 

course) and 19 (sparse residential) share similar scene 

characteristics, resulting in an inter-class similarity, the 

overall accuracy of these classes is 95%, with a confusion 

ratio of 5%. These findings demonstrate that our model can 

not only differentiate between-category similarity but can 

also effectively distinguish within-category diversity, pro- 

viding strong evidence of the efficacy of our proposed 

approach. 

E. Results and Analysis on AID Dataset 

The results, as presented in Table Ⅳ, indicate that our 

proposed model improves accuracy to some extent, 

achieving 95.68% and 93.51% accuracy for the training sets 

of 50% and 20%, respectively. Furthermore, our proposed 

method, MA-FE, outperformed VGG_VD16 with SAFF, 

which employs pretraining and an attention mechanism by 

1.85% and 2.26%, respectively, thus demonstrating the 

superiority of our proposed approach. 

TABLE Ⅳ  

COMPARISON OF THE OVERALL ACCURACY OF EACH METHOD ON THE AID DATASET 

Methods Year 
Accuracy(%) 

50% Training Ratio 20% Training Ratio 

ResNet50 [22] 2020 94.69 92.39 

EfficientNet [20] 2020 88.35 86.56 

MobileNet [19] 2020 90.91 88.53 

Skip-Connected CNN [8] 2020 93.3 91.1 

LCNN-BFF [30] 2020 94.62 91.66 

VGG_VD16 with SAFF [23] 2021 93.83 90.25 

ACNet [24] 2021 95.38 93.33 

EfficientNetB3-Attn-2 [29] 2021 95.39 92.48 

MARAA-BOVW [32] 2021 93.94 90.37 

MRHNet-50 [33] 2022 95.06 91.14 

Ours 95.68 92.51 
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Fig. 6 Confusion matrix with a training ratio of 50% on the AID dataset 

We present the confusion matrix for the AID dataset with 

a training ratio of 50% in Fig. 6, where the columns labeled 

1-30 correspond to the 30 scene categories in the AID 

dataset, numbered in ascending alphabetical order. The 

figure shows that among the 30 categories, 17 have accuracy 

rates above 95%, while only one category has an accuracy 

rate below 80%. 

Specifically, the scenes with intra-class diversity, such as 

1 (Airport), 7 (Church), 8 (Commercial), and 22 (Railway 

Station), exhibit accuracy rates of 94%, 92%, 99%, and 99%, 

respectively. Furthermore, for scenes with inter-class 

similarity, such as 2 (Bare land) and 10 (Desert), 19 

(Playground) and 28 (Stadium), our model achieves overall 

accuracy rates of 100%, 97%, 98%, and 98%, respectively, 

with a confusion ratio of only 1% between categories 19 and 

28. These results demonstrate that our model can effectively 

differentiate both inter-class and intra-class scene diversity, 

highlighting the efficacy of our method. 

F. Results and Analysis on NWPU Dataset 

We partitioned the NWPU dataset into training ratios of 

20% and 10%, respectively, and evaluated them against 12 

advanced methods from recent years. 

 

TABLE Ⅵ 

COMPARISON OF THE OVERALL ACCURACY OF EACH METHOD ON THE NWPU DATASET 

Methods Year 
Accuracy(%) 

20% Training Ratio 10% Training Ratio 

GoogLeNet [3] 2017 78.48 76.16 

EfficientNet [20] 2020 81.83 78.57 

MobileNet [19] 2020 83.26 80.32 

ResNet50 [22] 2020 88.93 86.23 

Skip-Connected CNN [8] 2020 87.3 84.33 

Contourlet CNN [27] 2020 89.57 85.93 

VGG VD16 with SAFF [23] 2021 87.86 84.38 

MARAA-BOVW [32] 2021 89.76 84.82 

ACNet [24] 2021 92.42 91.09 

LCNN-BFF [30] 2021 91.73 86.53 

MRHNet-101 [33] 2022 91.64 - 

ACR-MLFF [28] 2022 92.45 90.01 

Ours 93.21 91.13 
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Fig. 7 Confusion matrix with a training ratio of 50% on the NWPU dataset 

Table Ⅵ displays the results of our comparison. It is 

evident from the table that the accuracy of our proposed 

model improves to some extent when the training ratios are 

20% and 10%, and the classification accuracy is 93.21% and 

91.13%, respectively. This is 5.35% and 6.75% higher than 

that of VGG_VD16 with SAFF, which highlights the 

superior learning and generalization abilities of MA-FE on 

large datasets. 

Fig. 7 presents the confusion matrix of the NWPU dataset 

with a training ratio of 20%. The labels 1-45 represent the 

45 categories in the dataset, numbered in ascending 

alphabetical order according to the scenario category name. 

As can be observed from the figure, the classification 

accuracy of all categories is above 80%, and the overall 

accuracy of 40 out of 45 categories is above 90%. For the 

scenarios with inter-class similarity, the overall accuracy of 

2 (airport) and 31 (industrial area) are 92% and 95%, 

respectively, with a confusion ratio of 2%. The overall 

accuracy of 12 (dense residential) and 24 (medium 

residential) are 92% and 86%, with a 2% and 6% confusion 

ratio, respectively. The scenarios 15 (freeway) and 35 

(runway) have overall accuracy of 90% and 93%, 

respectively, with a confusion ratio of 1%. Additionally, 

categories 8 (church) and 31 (railway station) with diverse 

scenes within the class have an overall accuracy of 80% and 

90%, respectively. These results demonstrate that our 

proposed model can effectively differentiate the scenes of 

inter-classification similarity and intra-class diversity on a 

large dataset, at the same time, it is also proved that the MA-

FE model has good generalization ability on large data sets 

such as NWPU. 

G. Ablation Experiment 

In order to illustrate the efficacy and importance of both 

the MA module and the FE module, we performed 

experiments on three datasets, with the results showcased in 

Table Ⅶ. 

TABLE Ⅶ 

EFFECTIVENESS OF DIFFERENT MODULES ON 3 DATASETS 

Datasets 
Training 

Ratio 
MA module FE module Accuracy(%) 

UCM 80%  

× × 97.23 

√ × 99.51 

× √ 99.39 

√ √ 99.66 

AID 50%  

× × 91.88 

√ × 95.22 

× √ 93.24 

√ √ 95.98 

NWPU 20%  

× × 89.65 

√ × 93.16 

× √ 90.78 

√ √ 93.21 

The overall accuracy of the four fusion methods on the 

UCM dataset is 97.23%, 99.51%, 99.39%, and 99.66%, 

respectively. For the AID dataset, the overall accuracy is 

91.88%, 95.22%, 93.24%, and 95.98%, respectively. Finally, 

the overall accuracy on the NWPU dataset is 89.65%, 

93.16%, 90.78%, and 93.21%, respectively. These results 

demonstrate that the addition of the MA module allows the 

model to combine channel and location information, 
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resulting in the simultaneous capture of two-dimensional 

discriminative information and a significant improvement in 

overall accuracy. Moreover, the introduction of the FE 

module enhances the extracted attention feature map, 

reducing the value of non-discriminative features and further 

improving classification accuracy. By using both the FE and 

MA modules simultaneously, our proposed method achieves 

the best classification performance, further demonstrating its 

superiority. 

V. CONCLUSION 

In the present study, we propose a novel MA-FE model 

for remote sensing image scene classification. The proposed 

MA-FE model employs a pre-trained ResNet50 structure 

that is embedded with an ECA module, and combines the 

MA and FE modules to further enhance the classification 

performance of the model. Notably, the MA module, 

addresses the limitations of many attention models by 

capturing the key feature information of the two dimensions 

of channel and location, thereby enabling comprehensive 

information focus. Furthermore, the FE module carries out 

additional feature enhancement while suppressing other 

irrelevant information, thus improving the model's dis- 

crimination ability and classification accuracy. To evaluate 

the effectiveness of the proposed method, we conducted 

detailed experiments on three datasets, and the experimental 

results demonstrate the superiority of the proposed approach. 

From now on, our future work will focus on developing 

methods to enhance the generalization ability of large 

datasets, with the goal of further improving the accuracy of 

remote sensing image scene classification. 
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