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Abstract—The open neighborhood N(w) of a vertex w ∈
V is the set of all vertices that share an edge with w in an
undirected graph. In other words, N(w) comprises all vertices
that are directly connected to w by an edge, excluding w itself.
The enclave of a vertex w ∈ V , denoted as E(w), is the set
of all vertices that are reachable from w through a series of
adjacent edges, including w itself. In other words, E(w) includes
all vertices that can be reached from w by following a path
along the edges of the graph. The closed neighborhood of w
is known as enclave of w. We note that a vertex w ∈ V , n-
covers an edge x ∈ X if x ∈ ⟨N [v]⟩, the subgraph induced
by the set N [v]. The n-covering number ρn(H) introduced by
Sampathkumar and Neeralagi [16] is the minimum number
of vertices that n-cover all the edges of H. A set S ⊆ V is
said to be n-independent if every edge x ∈ ⟨S⟩ is n-covered
by a vertex in V − S. On the other hand, S is n-complete
if, for every pair of nonadjacent vertices u, v ∈ S there exists
a vertex w ∈ V − S such that {u, v, w} is independent. The
n-independence (n-complete) number αN (H)(ωN (H)) is the
maximum order of n-independent (n-complete) set of H. In this
paper, a Gallai’s theorem type result ρn(H) + αN (H) = p is
proved. In addition to getting several bounds on n-independence
number, we show that αN (H) = ωN (H) and the chromatic
number χ(H) ≤ αN (H) + 1.

Index Terms—n-coverings, n-independence number, n-
complete number, n-chromatic number and n-complete par-
tition number.

I. INTRODUCTION

IN cases where terminologies are not clearly defined,
we can consult the references provided in [1], [21]. A

graph H in this context refers to a connected finite simple
graph characterized by p vertices and q edges. The lower
vertex covering number, denoted as β(H), represents the
minimum number of vertices needed to encompass all the
edges within graph H . Conversely, the upper vertex covering
number, Λ(H), indicates the maximum count of vertices
needed to cover all edges present in graph H . The upper
independence number α(H) is the maximum number of
vertices in any independent set of graph H , while the
lower independence number i(H) is the minimum number
of vertices in any independent set of graph H (see [8],
[14]). The edge analogue of above parameters, edge covering
number β1(H) and the matching number α1(H) are similarly
defined. The above parameters are related by classical theo-
rem now known as Gallai’s theorem, stated as for any graph
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H, α(H) + β(H) = i(H) + Λ(H) = α1(H) + β1(H) = p.
A set S is a dominating set of graph H if, for every vertex v
in the graph H , either v is in S or there exists a vertex
w in S such that there is an edge between v and w in
the graph H . The lower domination number γ(H) is the
smallest number of vertices in any minimal dominating set
of graph H , while the upper domination number Γ(H) is
the largest number of vertices in any minimal dominating
set of graph H . The open neighborhood N(w) of a vertex
w ∈ V is the set of all vertices that share an edge with
w in an undirected graph. In other words, N(w) comprises
all vertices that are directly connected to w by an edge,
excluding w itself. The enclave of a vertex w ∈ V , denoted
as E(w), is the set of all vertices that are reachable from
w through a series of adjacent edges, including w itself. In
other words, E(w) includes all vertices that can be reached
from w by following a path along the edges of the graph.
The closed neighborhood of w is also known as enclave of
w. A set S ⊆ V is called enclaveless (EL-set) (as defined by
Slater [17]) if every vertex in S has all of its neighbors within
S. The upper enclaveless number Ψ(H) is the maximum
order of a maximal enclaveless set in graph H , while the
lower enclaveless number ψ(H) is the minimum order of
a maximal enclaveless set in graph H . Furthermore, it is
notable that the sum of the lower domination number and
the upper enclaveless number, γ(H) + Ψ(H), as well as
the sum of the upper domination number and the lower
enclaveless number, Γ(H)+ψ(H), are both equal to number
of vertices p. Similar Gallai-type results can also be found
in other works, such as [2], [7], [12], [15], [18]. For an
extensive exploration of domination parameters, please refer
to the comprehensive investigations carried out in [6], [10].
Numerous compelling applications of these maximum and
minimum problems arise in the fields of linear programming
(LP) and integer programming. For a thorough discussion,
please refer Chapter 1 in [9].

II. n-INDEPENDENT SETS

Another graph invariant of great interest is the neighbor-
hood covering (n-covering) number, initially introduced and
explored by Sampathkumar and Neeralagi [16]. Since its in-
troduction, this concept has captivated numerous researchers,
as evidenced by their works in [3], [11], [13], [19], [20].
We define the concept of a vertex v ∈ V n-covers an edge
x ∈ X as follows: x is an edge of the subgraph ⟨N [v]⟩,
where ⟨N [v]⟩ represents the subgraph induced by the set of
closed neighbors of vertex v. We refer to a set S as an n-
covering of graph H if the vertices in S collectively n-cover
all the edges of H . In other words, every edge in H is an
element of the subgraph induced by the set of neighbors of at
least one vertex in S. The lower n-covering number ρn(H)
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is the smallest size among all minimal n-coverings of H ,
while the upper n-covering number ρN (H) is the largest size
among all minimal n-coverings of H . It is evident that the
independence number α(H) is the complementary number
to the covering number β(H). This observation led us to
inquire about the complementary number to the n-covering
number. In response to this query, we introduced the concept
of n-independent sets, where the vertices may be adjacent
under specific conditions.

A set D ⊆ V is said to be n-independent if every edge
x ∈ ⟨D⟩ is n-covered by a vertex in V−D. The upper (lower)
n-independence number αN (H)(αn(H)) is the maximum
(minimum) order of a maximal n-independent set of H.
For example, let the vertices of the cycle C5 be labeled
successively by v1, v2, v3, v4, v5. Then D = {v1, v3} is both
maximum and minimum n-independent set and {v1, v3, v4}
is both maximum and minimum n-covering. Therefore
αN (C5) = αn(C5) = 2 < 3 = ρn(C5) = ρN (C5). In fact,

for any cycle Cp with p vertices αN (Cp) = αn(Cp) =

⌊
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Fig. 1. A graph H with α(H) = 3 < 5 = αN (H) < 7 = Ψ(H) and
i(H) = 3 < 4 = αn(H) < 6 = ψ(H)

Every independent set is a n-independent set of H but not
conversely. For any complete graph Kp, αN (Kp) = p − 1.
As another example, for the graph H in Fig. 1, αN (H) = 5
and D = {u1, u3, u5, u6, u8} is a maximum n-independent
set of H which is not independent. Observe that V −D is a
ρn-set of H . Again, αn(H) = 4 and D1 = {u2, u3, u4, u8}
is a minimum n-independent set of H . Also V −D1 is a ρN -
set of H. As every subset of a n-independent set is also n-
independent, the property of n-independence is a hereditary
property while n-covering property is superhereditary. Some
more properties of n-independent sets are revealed in the
next result.

Theorem II.1. The following statements are equivalent.
S1: D ⊆ V is a n-independent set of H
S2: For every x ∈ ⟨N [v]⟩, v ∈ D there exists a vertex w ∈
V −D such that x ∈ ⟨N [v]⟩ ∩ ⟨N [w]⟩.
S3:Any edge uv = x ∈ ⟨D⟩ is an edge of a triangle {u, v, w}
where w ∈ V −D.
S4:V-D is a n-covering of H

Proof: To prove S1 ⇒ S2 : Let D ⊆ V be a n-
independent set of H and x ∈ ⟨N [v]⟩, v ∈ D. Then the
edge x is of following two types.
Case (i): x = vw,w ∈ V − D: then it is evident that
x ∈ ⟨N [w]⟩.
Case (ii): x = uv where u, v ∈ D : In this case, as D is
a n-independent set, there exists a w ∈ V − D such that
x ∈ ⟨N [w]⟩. Thus in any case x ∈ ⟨N [v]⟩ ∩ ⟨N [w]⟩.

To prove S2 ⇒ S3 : Suppose S2 holds. Consider an edge
uv = x ∈ ⟨D⟩. Then both u, v ∈ D. Then as above,
x ∈ ⟨N [w]⟩ where w ∈ V −D. Hence {u, v, w} is a triangle
in H.
To prove S3 ⇒ S4 : Suppose S3 holds. If x = uv and
u, v ∈ V − D then x is n- covered by u ∈ V − D. If
x = uv, u ∈ D and v ∈ V − D. Then x is n-covered by
v ∈ V − D. Finally, if x = uv, u, v ∈ D. Then from S3,
there exists a w ∈ V −D such that {u, v, w} is a triangle in
H. Hence w, n-covers x. Thus every edge of H is n-covered
by a vertex of V −D.
To prove S4 ⇒ S1 : Suppose V −D is a n-covering of H .
Assume that D is not a n-independent set of H . Then there
exists at least one x ∈ ⟨D⟩ which is not n-covered by any
vertex in V −D. But then V −D is not a n-covering of H
- a contradiction.

The corona of two graphs H1 and H2 is the graph H =
H1 · H2 formed from one copy of H1 and |V (H1)| copies
of H2, where ith vertex of H1 is adjacent to every vertex
in the ith copy of H2. From S3, every edge of ⟨D⟩ is in a
triangle. Therefore, if H is triangle free, every n-independent
set is independent. But the converse is not true. For example,
the three pendant vertices of the corona C3·K1 form a n-
independent set in which no two vertices are adjacent, but
the corona C3·K1 contains a triangle.

A. Gallai’s theorem type results for n-independence number

Theorem II.2. For any graph H with p vertices

ρn(H) + αN (H) = p (1)

ρN (H) + αn(H) = p (2)

Proof: Let D be a minimum n-covering of H . Then by
Theorem II.1, V − D is a n-independent set of H . Hence
αN (H) ≥ |V −D| = p−ρn. To obtain the reverse inequality,
we begin with a maximum n-independent set S of H . Again
by Theorem II.1, V −S is a n-covering of H . Hence ρn ≤|
V − S |= p − αN (H). Then the desired result (1) follows.
The proof of the result (2) is similar and we omit the proof.

Proposition II.3. If a graph H has a n-covering which is
also a n-independent set, then

ρn(H) ≤ p

2

Proof: Suppose D be a n-covering which is also a n-
independent set of H . Since D is a n-covering of H, we
have ρn(H) ≤ |D|. Again, since D is a n-independent set
of H, from Theorem II.1, we have V − D is a n-covering
of H . Then ρn(H) ≤ |V −D| = p− |D|. Adding these two
inequalities we get, 2ρn(H) ≤ p which yields the desired
bound.

B. n-complete sets, n-complete partition and n-chromatic
number

The chromatic number χ(H) of a graph H is the minimum
number of colors required to ensure that no two adjacent
vertices are assigned the same color in a proper coloring of
the vertices of H . Any coloring of H results in a partition
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of the vertex set into independent sets. Thus, the chromatic
number χ(H) can also be defined as the smallest number of
independent sets needed to partition the vertex set of graph
H . A clique is a subset of vertices in H where every vertex
is directly connected to every other vertex in the subset, and
it cannot be further extended while maintaining the same
property. The upper clique number ω(H) is the largest size
among all cliques in graph H , while the lower clique number
ϑ(H) is the smallest size among all cliques in graph H .
The partition number θ0(H) is the minimum number of non-
maximal cliques required to cover all the vertices of a graph
which is introduced by Berge [1]. As independent sets and
cliques exchange their characteristics under complementa-
tion, we arrive at the following relationship.

χ(H) = θ0(H);α(H) = ω(H); i(H) = ϑ(H) (3)

Motivated from these definitions, we are interested to see
what are the properties of n-independent sets in complement
of H . In view of this, we define the following graph
parameters. A set D ⊆ V is said to be n-complete if, for
every pair of nonadjacent vertices u, v ∈ D there exists
a vertex w ∈ V − D such that {u, v, w} is independent.
The upper (lower) n-complete number ωN (H)(ϑn(H)) is
the maximum (minimum) order of a maximal n-complete
set of H.

We now introduce the concept of the n-chromatic number,
denoted as χn(H), by considering the smallest number of
independent sets into which the vertex set of H can be
partitioned. Conversely, we define the n-complete partition
number, denoted as θn(H), as the minimum order of a
partition of the vertex set into sets that are each n-complete.
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Fig. 2. Graphs C6 and its complement.

We immediately note that every set S which induce a
complete subgraph is always n-complete. Therefore ω(H) ≤
ωN (H). Observe that in Fig. 2, D = {v1, v2, v6} is a ωN -set
of C6. For the pair of nonadjacent vertices v2, v6 ∈ D there
exists a vertex v4 ∈ V − D such that the set {v4, v2, v6}
is independent. Hence ωN (C6) = 3. It is also true that
{v1, v2, v6} is an αN -set of C6.
The partition P = {{v1, v2, v6}, {v3, v4, v5}} is a n-
complete partition of C6. The same partition P is a n-
independent partition of C6. Hence θn(C6) = χn(C6) = 2.
From the above example it is interesting to see that the newly
defined parameters also follow the results similar in (3).

Proposition II.4. For any graph H,

ωN (H) = αN (H)

θn(H) = χn(H)

Proof: Let D ⊆ V be a n-complete set of H . Then
for any pair of non adjacent vertices u, v ∈ D there exists
a vertex w ∈ V − D such that {u, v, w} is independent.
This implies, for every edge x = uv ∈ ⟨D⟩ there exists a
vertex w ∈ V −D such that uvw is a triangle in H . Then
by Theorem II.1, D is a n-independent set of H . Therefore
ωN (H) = αN (H).

Since every n-complete set is n-independent set in H,
we conclude that every n-complete partition of V is also n-
independent partition of V in H . Therefore θn(H) = χn(H).

III. BOUNDS ON n-INDEPENDENCE NUMBER

First we show that the new parameter fits best in between
the known graph parameters.

Proposition III.1. For any graph H

α(H) ≤ αN (H) ≤ Ψ(H) (4)

i(H) ≤ αn(H) ≤ ψ(H) (5)

Proof: Equations (4) and (5) follow from the fact that
every independent set is a n-independent set and every n-
independent set is an EL set.

One can observe that for the graph H in Fig. 1, the inequal-
ities (4) and (5) are strict and α(H) = 3 < 5 = αN (H) <
7 = Ψ(H). Also, i(H) = 3 < 4 = αn(H) < 6 = ψ(H).
We now show under what conditions equality hold in equa-
tions (4) and (5).

Proposition III.2. For any graph H, α(H) = αN (H) if and
only if there exists a maximum n-independent set D such that
exactly one vertex of every triangle in H is in D.

Proof: Let α(H) = αN (H). Then there exists a
maximum n-independent set D which is independent. If H is
triangle free then there is nothing to prove. So we assume that
H is not a triangle free graph. Let {u, v, w} be any triangle
in H . If | D ∩ {u, v, w} |≥ 2 then D cannot be independent
and hence we assume that | D ∩ {u, v, w} |≤ 1. Now we
claim that D ∩ {u, v, w} ̸= ϕ. If there exists a vertex y ∈ D
and a vertex z ∈ {u, v, w} such that D1 = D − {y} ∪ {z}
is independent, then D1 is the independent set with the
required property. If this rearrangement is not possible, then
D∪{z} is independent contradicting that D is the maximum
independent set of H. Thus | D ∩ {u, v, w} |= 1 as desired.
Conversely, suppose there exists a maximum n-independent
set D satisfying the condition stated in the proposition, then
it is immediate that D is a maximum independent set and
hence |D| = α(H) = αN (H).

Proposition III.3. For any graph H, αN (H) = Ψ(H) if and
only if there exists a maximum EL set D such that every edge
of ⟨D⟩ is in a triangle {u, v, w}.

Proof: Let αN (H) = Ψ(H). Then there exists a
maximum EL-set D which is also a maximum n-independent
set of H . Then from S2 of Theorem II.1 every edge of ⟨D⟩
is in a triangle {u, v, w} and the result follows. Converse is
straight forward as in Proposition III.2

Corollary III.3.1. For any graph H,
(i) i(H) = αn(H) if and only if there exists a maximal n-
independent set D of minimum order such that exactly one
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vertex of every triangle in H is in D.
(ii) αn(H) = ψ(H) if and only if there exists a maximal EL
set D of minimum order such that every edge of ⟨D⟩ is in a
triangle {u, v, w}.

Proposition III.4. For any graph H

Γ(H) ≤ αN (H)

Proof: Let D be a Γ set of H . If D is a n-independent
set of H the result Γ(H) ≤ αN (H) is straight forward.
Suppose D is not a n-independent set of H . Then we
construct a n-independent set of H of order |D| as follows.
Since D is not a n-independent set, there exists at least
one edge uv = x ∈ ⟨D⟩ such that x is not n-covered
by any vertex v ∈ V − D. Let x1 = (u1v1), x2 =
(u2v2), . . . , xn = (unvn) ∈ ⟨D⟩ be the edges which
are not n-covered by V − D. By minimality of D there
exists a d1 ∈ V − D such that N(u1) ∩ D = {d1}.
Then necessarily, D1 = D ∪ {d1} − {u1} n-covers all
the edges in ⟨N(u1)⟩. If D1 is a n-independent set of H ,
we stop and Γ(H) = |D| = |D1| ≤ αN (H). Otherwise,
we repeat the above process and suppose, at the kth stage
(k < n) we get |D| = |Dk| a n-independent set of H . Thus
Γ(H) =| D |=| Dk |≤ αN (H).

Cockayne and Mynhardt [4], [5] completely characterized
the most popular inequality chain γ(H) ≤ i(H) ≤ α(H) ≤
Γ(H). We strengthen this inequality chain by appending two
more parameters to the upper end. It is interesting to see that
six parameters fall in line, extending the inequality chain.

Corollary III.4.1. For any graph H

γ(H) ≤ i(H) ≤ α(H) ≤ Γ(H) ≤ αN (H) ≤ Ψ(H) (6)

γ(H) ≤ ρn(H) ≤ ψ(H) ≤ β(H) ≤ Λ(H) ≤ Ψ(H) (7)

γ(H) ≤ ϑ(H) ≤ ω(H) ≤ Γ(H) ≤ ωN (H) ≤ Ψ(H) (8)

Proof: It is already known that γ(H) ≤ i(H) ≤
α(H) ≤ Γ(H) (See [5]). Then equation (6) is a consequence
of inequalitiy (4) and Proposition III.4. Now, using Theo-
rem III.1 and corresponding Gallai’s type results, equation
(6) may be written as p−Ψ(H) ≤ p−Λ(H) ≤ p−β(H) ≤
p − ψ(H) ≤ p − ρn(H) ≤ p − γ(H). Then equation (7)
follows on simplification. Complementing the equation (6)
using Proposition II.4, we get γ(H) ≤ i(H) = ϑ(H) ≤
α(H) = ω(H) ≤ Γ(H) ≤ αN (H) = ωN (H) ≤ Ψ(H)
which is the desired equation (8).

A lower bound for αn(H) in terms of minimum degree
δ(H) is obtained in our next result. In what follows by Vδ
we mean the set {v ∈ V | deg(v) = δ}. Similarly, V∆ is
defined.

Proposition III.5. For any graph H with minimum degree δ,
αn(H) ≥ δ. Further, equality holds if and only if for every
vertex v ∈ Vδ, N(v) is a αn-set of H.

Proof: Let D be any αn- set of H and v be vertex of
minimum degree δ. Then N(v) is a n-independent set of H .
Since D is a minimum n-independent set, N(v) ⊆ D. Hence
αn(H) ≥ |N(v)| = δ.

If for every vertex v ∈ Vδ, N(v) is a minimum n-
independent set of H, then it is immediate that αn(H) =
|N(v)| = δ. Conversely, let αn(H) = δ. Suppose the

contrary that N(v) is not a minimum n-independent set of H
for some v ∈ Vδ . Then there exists at least one v ∈ V −N(v)
such that N(v)∪ {u} is a n-independent set of H. Therefor
αn(H) ≥| N(v) ∪ {u} |= δ + 1- a contradiction.

Corollary III.5.1. For any graph H with maximum degree
∆, αN (H) ≥ ∆
Further, equality holds if and only if for every vertex v ∈
V∆, N(v) is a maximum n-independent set of H.

Any complete bipartite graph Km,n and complete graph
Kn attain the bounds in Proposition III.5 and Corol-
lary III.5.1

The next result provides bounds for chromatic number in
terms of n-independence number of H .

Proposition III.6. For any graph H with chromatic number
χ(H),

χn(H) ≤ χ(H) ≤ αN (H) + 1 (9)

θn(H) ≤ θ0(H) ≤ ωN (H) + 1 (10)

Proof: It is well known that χ(H) ≤ 1 +∆ (see [21]).
From Corollary III.5.1, ∆ ≤ αN (H). Then we have χ(H) ≤
1 +∆ ≤ 1 + αN (H). Since any partition of vertex set in to
independent sets is also a n-independent partition, we have
χn(H) ≤ χ(H). Complementing the equation (9) and using
Proposition II.4 we get equation (10). The bounds in the
Proposition III.6 are sharp is evident from the fact that for
any complete graph Kp, χ(Kp) = p = 1 + (p − 1) = 1 +
αN (H). For any even cycle, χn(Cp) = χ(Cp).

A graph H is called a block graph if every block of H
is a clique of H . From the above theorem, we note that
every block graph which is k-clique regular and triangle free
graphs attain the bound in the theorem.

For any two vertices u, v ∈ V the distance d(u, v) is
the length of shortest path between u and v. The diameter
d(H) = maxu,v∈V d(u, v). Brigham et al. [3] proved that
ρn(H) ≥ d(H)

2 . Therefore d(H)
2 ≤ ρn(H) ≤ ρN (H). This

lower bound for ρN (H) is improved by 1, in our next
proposition.

Proposition III.7. For any graph H with diameter d(H),

d(H) + 2

2
≤ ρN (H) (11)

Further, the bound is sharp.

Proof: Let S be a maximum n-covering of H . Consider
an arbitrary path of length d(H) and let u and v be the end
vertices of the diametral path. This diametral path includes
at most two edges from the induced subgraph ⟨N [w]⟩ for
each w ∈ S − {u, v}. The vertices u and v contribute at
most one edge each from ⟨N [u]⟩ and ⟨N [v]⟩. Hence d(H) ≤
2ρN (H) − 2 which yields the desired bound. It is not hard
to see that any path Pn on n vertices attains the bound.

Using Theorem II.2 we get the following

Corollary III.7.1. For any graph H

αn(H) ≤ 2p− d(H)− 2

2

αN (H) ≤ 2p− d(H)

2
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