

Abstract—The Graph Coloring Problem is a well-known

NP-hard problem. Over the years, numerous scholars have
been pursuing efficient algorithms to obtain high-quality
solutions. Nested Rollout Policy Adaptation (NRPA) is a Monte
Carlo Tree Search algorithm for single-player games, and it has
been proven effective and good in combinatorial optimization
problems. In this paper, we use for the first time the NRPA
algorithm combined with the destruction and reconstruction
ideas of the Iterative Greedy algorithm to solve the Graph
Coloring Problem. First, the basic principle of the NRPA
algorithm is introduced. Then, NRPA is extended by using
mixed sorting, destruction and reconstruction, and the
Diversity-NRPA algorithm is proposed, which improves the
diversity of the algorithm. Finally, Diversity-NRPA is applied to
solve the Graph Coloring Problem by combining it with the
knowledge of the graph theory field. We evaluate the
performance of Diversity-NRPA on DIMACS, a well-known
graph benchmark instance, and compare it with traditional
graph coloring algorithms. The experimental results show that
the Diversity-NRPA algorithm can achieve excellent
performance in both solution quality and search efficiency in
solving the Graph Coloring problem.

Index Terms—Combinatorial optimization, Destruction and
reconstruction, Graph coloring, Nested rollout policy
adaptation

I. INTRODUCTION

HE Graph Coloring Problem (GCP) can be described as
follows: given an undirected graph G = (V, E), which has

a set of vertices V and a set of edges E, the GCP is to color the
vertices in V, so that two adjacent vertices have different
colors while using the minimum number of colors (called the
chromatic number of G, denoted by χ(G)). The problem can
also be expressed as partitioning the vertex set V into a
minimum number of color groups while satisfying that two
vertices connected by an edge belong to different color
groups, as shown in formula (1):
 1 2 1{{ , ,..., }: , }k

k i i i jS V V V V V V V (1)

where k denotes the number of color groups, i, j denote the

Manuscript received March 28, 2023; revised September 6, 2023.
This work was supported by the National Natural Science Foundation of

China (Grant No. 11961041; Grant No. 6206249), the Gansu Provincial
Science and Technology Plan Project (Grant No. 21ZD8RA008) and
Excellent Postgraduate Innovation Star Project of Gansu Province (Grant No.
2023CXZX-55).

Wenzhu Yang is a postgraduate student of School of Electronic and
Information Engineering in Lanzhou Jiaotong University, Lanzhou, 730070,
China. (e-mail: 3224408644@qq.com).

Jingwen Li is a professor of School of Electronics and Information
Engineering in Lanzhou Jiaotong University, Lanzhou, 730070, China
(corresponding author; lijingwen28@163.com).

Li Wang is a postgraduate student of School of Electronic and
Information Engineering in Lanzhou Jiaotong University, Lanzhou, 730070,
China. (e-mail: 1175133725@qq.com).

indexes of the colors and i ≠ j, 1 ≤ i, j ≤ k, 1 ≤ k ≤ |V|, and

S denotes the search space for graph coloring.
Over the past few decades, GCP has been intensively

studied, mainly in two directions: exact methods and
heuristic methods. Exact methods for solving GCP, such as
the implicit enumeration algorithm [1] proposed by Brown in
1972, and the Branch and Price algorithm [2] based on the
VCP-SC formulation proposed by Mehrotra and Trick in
1996, ect. However, these exact methods cannot solve
instances with hundreds of vertices [3]. Since most GCP is
NP-hard, using exact methods requires prohibitively long
search times. Thus exact methods fail on the coloring
problem of large instances [3].

To handle large instances, scholars have introduced many
heuristic algorithms to approximately solve the problem,
such as constructive methods [4, 5] in the 1960s and 1970s,
local search meta-heuristics [6, 7] in the 1980s and 1990s,
and genetic-based local search methods [8, 9] in the 1990s.
These algorithms usually use greedy heuristics to construct
initial solutions and improve the current solution by
considering the best move in a given neighborhood. Among
the many algorithms, Satisfiability (SAT) algorithm [10] is
often used to solve GCP and performs well. The algorithm is
based on Boolean logic, by assigning values to the variables
of the Boolean formula one by one to find the solution that
satisfies the formula. It is mainly used to solve Boolean
satisfiability problems. In 2005, Méndez-Díaz [11] improved
the classic Degree of Saturation (DSatur) algorithm based on
Brélaz [4] by adding dynamic adjustment of the color order,
parallel computing, etc., which effectively improved the
performance of the algorithm to solve the GCP. However, for
difficult graph coloring instances (NP-?) [12], the heuristic
algorithms, due to their characteristic of single-trajectory
local search, often lack diversification ability, making it
difficult to find high-quality solutions.

Recently, Monte Carlo Tree Search (MCTS) [13] has been
used to solve combinatorial optimization problems and has
proven effective for many such problems. For example, it has
been used to solve problems such as the Traveling Salesman
Problem with Time Windows [14, 15], Crosswords Puzzles
[16], and Morpion Solitaire. It has set new records in solving
the Morpion Solitaire and Crosswords Puzzles problems.
Compared to traditional algorithms, there is little literature on
using MCTS to solve GCP (except for [17, 18]). At the same
time, algorithms based on MCTS naturally combine random
search with tree search, a feature that makes it possible for
MCTS to solve GCP.

In this paper, we first address the problem of the NRPA
algorithm [16] in MCTS that tends to converge to local
optimal solutions. We propose two methods to improve the
diversity of the NRPA algorithm and name the improved

A Diversity Algorithm of Nested Rollout Policy
Adaptation for Graph Coloring

Wenzhu Yang, Jingwen Li and Li Wang

T

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

algorithm as Diversity-NRPA. Then, based on the
Diversity-NRPA algorithm, the algorithm is adjusted by
combining the specialized knowledge in graph theory to
solve the problem that it is challenging to color the difficult
instances of graph instances in GCP. Finally,
Diversity-NRPA is compared with the NRPA algorithm as
well as the traditional and popular heuristic algorithms:
SAT(Satisfiability) and Méndez-Díaz's improved DSatur on
the DIMACS graph benchmark instance [12] to evaluate its
performance.

The organization of the rest of the paper is as follows.
Section II introduces the NRPA algorithm based on MCTS.
Section III elaborates on Diversity-NRPA. Section IV adapts
Diversity-NRPA to make it applicable to GCP by
incorporating graph-theoretic domain knowledge. Section V
validates the performance of Diversity-NRPA on the
DIMACS graph benchmark instance.

II. THE NESTED ROLLOUT POLICY ADAPTATION

ALGORITHM

NRPA is a learn a playout policy based on Monte Carlo
Tree Search (MCTS) proposed by Rosin and given in
Algorithm 1. This algorithm has been used to improve
MCTS-based Go programs [19] and other programs for
combinatorial optimization problems [17], achieving great
success.

The algorithm consists of two parts, an adaptive rollout
policy and a nested structure. In the adaptive rollout policy, a
set of weights represents the probability of each possible
move in the game. Firstly, the weights of the policy are
randomly initialized. Then the solution is obtained by using
the policy in the playout algorithm, wherein the policy will
make the solution move closer to the move with a larger
weight. This process is repeated for N iterations, with each
iteration using the current best sequence of solutions to adjust
the policy in the adaptive function.

The playout algorithm uses Gibbs sampling to select the

probability proportional to the exponent of its weight as a
legal move, as described in Algorithm 2. Finally, in the
adaptive function, is used to increase the weights of the

moves in the best sequence and to decrease the weights of the
other legal moves according to the value proportional to the
exponent of the weights, as described in Algorithm 3. where
 takes the value of 1 is verified to be a good value.

III. DIVERSITY-NRPA

Since NRPA is an algorithm with a self-learning policy, it
relies on the best solution obtained from the current iteration
to adjust the policy so that the solution is constantly close to
the optimal solution. Therefore, if the solution sequence
generated by the algorithm in the first iteration is not optimal,
the algorithm still adjusts its policy based on the current
solution sequence, and rollouts are pushed toward this
sequence. For the same reason, this behavior will continue to
propagate, causing the solutions obtained by the algorithm to
gradually deviate from the optimal solution and ultimately
lead the algorithm to fall into a local optimum.

To address this issue, we propose two improvement
methods: (1) Sorting nodes using DSatur meta-heuristic [20,
21, 22] combined with random sort, and (2) inspired by the
Iterative Greedy algorithm, a destruction and reconstruction
operation is added at NRPA algorithm level=0. This enables
the algorithm to better balance exploration and exploitation,
and generate more diverse solutions, improving algorithm’s
search efficiency and quality.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

A. Mixed Sorting

Since, in the NRPA algorithm, a large number of legal
moves will make the training of samples more difficult, it is
particularly important to reduce the number of legal moves. If
every possible move is considered at every step, the number
of moves will reach |V|×|C|, making the search inefficient.
For this reason, we consider each moving vertex in a specific
order, so that the maximum number of moves is reduced from
|V|×|C| to |C|, which improves the execution efficiency of the
algorithm.

For the sorting of vertices, we combine the heuristic
algorithm DSatur and random sorting to sort the vertices,
where the random sorting can help prevent and break the loop
that may occur when using DSatur. As shown in Algorithm 4,
during the iterative process of coloring the graph using the
NRPA algorithm, the DSatur algorithm and random sorting
are mixed in a fixed proportion to prevent algorithm
stagnation. Experimental results show that the convergence
speed of NRPA can also be effectively improved by mixing
random sorting in the DSatur algorithm.

B. Destruction and Reconstruction in NRPA

To address the problem that the NRPA algorithm is easy to
fall into the local optimum, we propose a simple and effective
method of destroying and reconstructing the NRPA
algorithm at level=0 to improve the diversity of the GCP
solution process to effectively avoid the algorithm from
falling into local optimum. The main feature of this algorithm
is that it adopts a method that first destroys the current
solution and then reconstructs it using the existing conditions.
As shown in Algorithm 4, we add a destruction and
reconstruction function after the completion of the playout()
function. First, we use the playout algorithm of NRPA to
generate an initial solution. Then a certain percentage of
elements are randomly selected and removed from the
solution to destroy the current solution structure. Then, the
solution is reconstructed to obtain a new solution. Finally, the
final solution is selected based on the acceptance criterion.

The above two methods for NRPA improvement can
reduce rollouts being pushed into the error sequence, thus
making the whole nested level less disturbed and improving
the quality of the NRPA algorithm solution.

IV. A DIVERSITY-NRPA ALGORITHM FOR GCP

In this section, based on the Diversity-NRPA algorithm in
section III, we have adjusted the algorithm according to the
professional knowledge in graph theory so that the algorithm
can solve GCP. This process includes defining the legal
moves for vertices, sorting, coloring, objective function,
destruction and reconstruction, and adaptive adjustments.

Before coloring the vertices of the graph, it is necessary to
define the possible legal moves of the vertices. A legal move
refers to assigning a color from the set of colors to an
uncolored vertex in the graph while satisfying the condition
that adjacent vertices have different colors. That is, given a
graph G=(V, E), and a set of colors C, and a legal move can be
represented as (v, c) where v V , \

vNc C C , vN

represents the set of neighboring vertices of v.
According to section III, in this paper, we use a method of

alternating between DSatur and random sorting to sort the
nodes. The working process of this method on the GCP is as
follows: during the DSatur sorting phase, we prioritize
selecting the vertex with the fewest available colors as the
next coloring vertex. When there is more than one vertex with
a minimum number of selectable colors, the vertex with the
most neighbors is selected. Compared with the traditional
pre-defined vertex sorting, this method has the advantage of
propagating GCP constraints, so DSatur is a good heuristic
method for the vertex sorting of Diversity-NRPA. During the
random sorting phase, the coloring order of the vertices in the
graph is randomly determined. Compared to using DSatur
sorting alone, random sorting helps prevent and break the
possible loops that may occur when using DSatur. By mixing
these two sorting methods, we not only achieve specific
sorting of legal moves to reduce the number of moves but
also achieve the goal of preventing the algorithm from
stalling.

In the process of selecting colors for the vertices in the
graph, we first delete the colors used by its adjacent vertices
from the possible color set of the current dyed vertex to
prevent the algorithm from selecting colors that have been
assigned to adjacent vertices. However, if adjacent vertices of
the current vertex have used all available colors, the current
vertex will have no available colors. In this case, all colors
can be used as possible colorings for the current vertex, even
if it does not satisfy the constraints of the GCP.

In this paper, we establish an objective function based on
the constraint that adjacent vertices in GCP must have
different colors. That is, the initial total score is 2|E|, if two
adjacent vertices in the graph have the same color, the total
score is reduced by 2. When the score of the scoring function
is equal to two times the number of edges in the currently
colored graph, a solution has been found.

As indicated in section III, in this paper, we use the method
of destruction and reconstruction to diversify the solutions
obtained. We apply the destruction phase to the coloring
sequence in the solution obtained by the playout() function to
break the existing balance. It should be noted that the solution

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

contains the coloring sequence and its corresponding score.
The coloring sequence contains the coloring of n vertices (let
n be the number of vertices in the current graph). It randomly
selects a certain proportion of vertices (let the number of
selected vertex nodes be d) and deletes the color on the
selected vertices. The result of this process is two
subsequences. The first is a partial sequence D with n-d

colored vertices, i.e., the sequence after the removal of d
vertex colors; the second is the sequence consisting of the d
vertices of the deleted color, which we denote as R . R

contains the vertices in D that must be recolored. The

reconstruction phase starts with the sub-sequence D , and

the uncolored vertices in this sequence are recolored using
the same coloring scheme until all the vertices in R are

recolored, thereby obtaining a complete solution. Finally,
according to the acceptance criterion, the solutions obtained
in the playout and the solutions after the destruction and
reconstruction are selected, and the best one is chosen as the
final solution. The acceptance criterion we set is based on the
solution's score, and higher-scoring solutions are retained.

In the NRPA algorithm, the policy of the algorithm is
adjusted using an adaptive function based on the solutions
found so far, which makes the algorithm keep moving closer
to the optimal solution. As shown in Algorithm 5, the
Diversity-NRPA algorithm uses an adaptive function to
modify the weight values of each color in the set of colors
selected by the vertex. Among them, we modify the weight
value of all legally moved colors.

V. EXPERIMENTATION

This section aims to experimentally verify the impact of
diversity processing on the NRPA algorithm and the
performance of our designed Diversity-NRPA algorithm
compared to traditional graph coloring algorithms on GCP.

A. Benchmark Instances and Implement

We tested the algorithm on the DIMACS graph benchmark
instances, which are widely used to evaluate graph coloring
algorithms and are considered a standard set for experimental
research in this field. Furthermore, since most of these
instances have been extensively researched, the optimal

chromatic number χ for most of them is known. These
instances in DIMACS are classified by difficulty, and
roughly divided into three categories: easy graphs (NP-m),
medium graphs (NP-h), and hard graphs (NP-?), where NP-?
indicates that the optimal chromatic number χ for this
instance is unknown or the time required to obtain it is
unknown.

Since we are concerned with decision problems, i.e.,
determining whether a graph can be colored with a given
number of colors. Therefore, it is necessary to set a
termination condition for the algorithm. At the same time, to
test the algorithm’s stability, it is necessary to execute the
algorithm several times under the condition of a given
number of colors k. We set different time limits and the
number of executions of the algorithm based on the literature
data and the difficulty of solving the graph. Specifically, for
simple NP-m instances, the algorithm is executed twice, each
time limited to 20 minutes; for medium NP-h instances, the
algorithm is executed five times, each time limited to 30
minutes; for the relatively easy graph instance in the difficult
NP-? instance, the algorithm is executed six times in total,
and the time limit for each time is 1 hour; for the difficult
graph instance in the difficult NP-? instance, the algorithm is
executed four times, and the time limit for each time is 2
hours. Among them, if the algorithm finds a valid K-coloring
for the current graph instance within the corresponding time
limit, the value of k is subtracted by one. The process is
repeated until the termination condition is reached. The final
value of k obtained is the smallest number of colorings found
by the current algorithm on the current instance, and the
current coloring scheme is the best solution. Where the
simple greedy algorithm determines the initial value of k, and
the vertices are sorted according to the method described in
Section III. In mixed sorting, DSatur sorting and random
sorting are set at a ratio of 5:1.

The experiments reported in this paper were conducted on
a computer equipped with an Intel i7 12700k CPU. The
Diversity-NRPA algorithm in Section III, the graph coloring
algorithm in Section IV, and the SAT, DSatur, and NRPA
algorithms used in the experiments were all implemented in
Python and initialized with a simple greedy algorithm. We set
the nested level to level=7 and the iteration number to N=100
for the NRPA and Diversity-NRPA algorithms.

We report the following statistics in the experimental
results table. The BKS (Best-Known Score) column reports
the best chromatic number χ that is widely recognized for the
current instance. Note that these results were obtained using
different algorithms, computational tools, CPUs, or GPUs
and also under loose conditions (e.g., sufficiently long
runtimes). When a χ is obtained for an experimental method,
it is marked in bold in the table. The column "Best"
represents the best result of the current method, where "unk"
indicates that the current algorithm has not obtained a result
under the current experimental conditions, and "Reached"
indicates the proportion of the current method that reaches
the best result of the algorithm in multiple solutions, which is
used to test the stability of the algorithm.

Due to space limitations, we have provided partial
experimental results for different types of instances in the test
cases (26 in total). Among these, the very difficult instance
(NP-?) in the experimental results table (Table IV, Table VIII)

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

comes from the recognized most difficult instance.

B. Compare NRPA with Diversity-NRPA in Graph
Coloring

Tables I, II, III, and IV show the experimental results of the
Diversity-NRPA and the NRPA algorithm on DIMACS
graph instances with different solving difficulties. In the table,
column 1 is the name of the graph instance, column 2 is the
number of vertices corresponding to the graph instance,
column 3 is the number of edges corresponding to the graph
instance, and column 5 corresponds to the initial solution
obtained by using a simple greedy algorithm. Columns 6-7
are the results obtained by the NRPA algorithm in the
corresponding graph instance, and columns 8-17 correspond
to the results obtained by the Diversity-NRPA algorithm at

different destruction ratios. The last row shows the
percentage of the current algorithm that achieves χ on all
instances in the current table.

Combining the results in Tables I, II, III, and IV, it can be
observed that the Diversity-NRPA algorithm has better
performance than the NRPA algorithm in the coloring results
of the graph instances and the percentage of the coloring
results that reach the χ value. At the same time, it can also be
noticed that under different destruction ratios, the
performance of the Diversity-NRPA algorithm for graph
instances of different difficulties is also different. For easy
NP-m instances (Table I), the Diversity-NRPA algorithm
performs the worst when the destruction ratio is 50%, and the
results of other destruction ratios are the same and consistent

TABLE III
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON DIFFICULT INSTANCES

Instance |V| |E|
BKS

χ
Greedy
Initial K

NRPA
Diversity-NRPA

(30%)
Diversity-NRPA

(40%)
Diversity-NRPA

(50%)
Diversity-NRPA

(60%)
Diversity-NRPA

(70%)
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached

le450_5a 450 5714 5 10 5 100% 5 100% 5 100% 5 100% 5 50% 6 100%
le450_5b 450 5734 5 7 5 50% 5 50% 5 100% 5 50% 5 50% 5 33%
le450_15c 450 16680 15 17 15 100% 15 100% 15 100% 15 100% 15 100% 16 100%
le450_25d 450 17425 25 29 26 100% 25 33% 25 50% 25 50% 25 33% 26 50%
le450_25c 450 17343 25 29 26 100% 26 33% 25 33% 26 100% 26 100% 26 33%
qg.order60 3600 212400 60 63 62 100% 62 100% 62 100% 62 100% 62 50% 63 100%

Reach a ratio of χ 3/6 4/6 5/6 4/6 4/6 1/6

TABLE II
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON MEDIUM INSTANCES

Instance |V| |E|
BKS

χ
Greedy
Initial K

NRPA
Diversity-NRPA

(30%)
Diversity-NRPA

(40%)
Diversity-NRPA

(50%)
Diversity-NRPA

(60%)
Diversity-NRPA

(70%)
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached

DSJC125.5 125 3891 17 23 18 100% 17 100% 17 40% 17 20% 17 20% 18 100%
DSJC125.9 125 6961 44 50 44 100% 44 100% 44 100% 44 100% 44 40% 45 100%
DSJC250.9 250 27897 72 90 76 20% 75 20% 76 100% 76 80% 76 40% 77 100%
DSJR500.1c 500 121275 85 88 87 60% 85 80% 86 20% 86 20% 86 20% 87 60%
DSJR500.5 500 58862 122 231 122 40% 122 100% 122 100% 122 40% 122 100% 123 100%

flat300_28_0 300 21695 28 41 35 20% 33 100% 32 20% 33 100% 33 80% 35 100%
Reach a ratio of χ 2/6 4/6 3/6 3/6 3/6 0/6

TABLE I
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON EASY INSTANCES

Instance |V| |E|
BKS

χ
Greedy
Initial K

NRPA
Diversity-NRPA

(30%)
Diversity-NRPA

(40%)
Diversity-NRPA

(50%)
Diversity-NRPA

(60%)
Diversity-NRPA

(70%)
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached

le450_15a 450 8168 15 17 15 100% 15 100% 15 100% 15 100% 15 100% 15 100%
myciel6 95 755 7 7 7 100% 7 100% 7 100% 8 100% 7 100% 7 100%
wap05a 905 43081 50 50 50 100% 50 100% 50 100% 50 100% 50 100% 50 100%

mug100_25 100 166 4 4 4 100% 4 100% 4 100% 4 100% 4 100% 4 100%
Reach a ratio of χ 4/4 4/4 4/4 3/4 4/4 4/4

TABLE IV
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON VERY DIFFICULT INSTANCES

Instance |V| |E|
BKS

χ
Greedy
 Initial K

NRPA
Diversity-NRPA

(30%)
Diversity-NRPA

(40%)
Diversity-NRPA

(50%)
Diversity-NRPA

(60%)
Diversity-NRPA

(70%)
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached

DSJC250.1 250 3218 4 10 8 100% 7 25% 7 100% 7 25% 8 50% 9 100%
DSJC250.5 250 15668 26 37 32 100% 32 100% 32 100% 32 100% 32 100% 32 100%

flat1000_50_0 1000 245000 15 113 111 50% 90 50% 90 75% 90 50% 91 75% 91 75%
flat1000_60_0 1000 245830 14 112 112 100% 112 100% 112 100% 112 100% 112 100% 112 50%
flat1000_76_0 1000 246708 14 115 110 50% 106 50% 105 25% 106 25% 107 50% 110 25%

wap01a 2368 110871 41 47 45 50% 45 50% 45 100% 45 50% 45 25% 46 100%
wap02a 2464 111742 40 46 45 100% 43 100% 42 25% 43 100% 42 25% 45 25%

DSJC500.5 500 62624 43 65 59 75% 51 100% 49 75% 51 100% 51 50% 53 100%
DSJC1000.5 1000 249826 73 114 112 50% 89 25% 89 25% 89 25% 91 100% 98 100%
qg.order100 10000 990000 100 106 102 50% 102 100% 102 100% 102 100% 102 100% 102 100%

Reach a ratio of χ 0/10 0/10 0/10 0/10 0/10 0/10

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

with those of the NRPA algorithm; for medium NP-h
instances (Table II), the Diversity-NRPA algorithm performs
the best when the destruction ratio is 30%, and it performs the
worst and yields experimental results inferior to the NRPA
algorithm when the destruction ratio is 70%. Under other
destruction ratios, the experimental results of the
Diversity-NRPA algorithm are similar and all superior to the
NRPA algorithm. For the difficult NP-? instances (Tables III,
VI), the Diversity-NRPA algorithm performs best when the
destruction ratio is 40%, and the experimental results are
significantly better than the NRPA algorithm. From the
above experimental results, it can be concluded that the
Diversity-NRPA algorithm outperforms the NRPA algorithm
in all other cases, except for the case where the destruction
ratio is 70%.

In order to further explore the reason why the experimental
results of the Diversity-NRPA algorithm are inferior to the
NRPA algorithm when the destruction ratio is 70%, we
canceled the restrictions on the running time and execution
times for all instances. And only the graph instances in which
the Diversity-NRPA algorithm results are inferior to the
NRPA algorithm when the destruction ratio is 70% in the
above experimental results table are used for testing. The
experimental results are shown in Figure 1. It can be seen that
under the same number of iterations, the experimental results
of the Diversity-NRPA algorithm are always equal to or
better than those of the NRPA algorithm. As the number of
iterations increases, the performance of the Diversity-NRPA
algorithm has a stronger advantage. This is because as the

algorithm’s running time increases, the NRPA algorithm falls
into a local optimum, and the Diversity-NRPA algorithm can
effectively avoid falling into a local optimum due to its
diversity.

Based on the above experiments, it can be seen that after
adding destruction and reconstruction to the NRPA algorithm,
the quality of the algorithm's solution is significantly
improved. So, it is essential to introduce diversification into
the NRPA algorithm. This method makes the algorithm better
balance between exploration and exploitation in the search
process, which improves the diversity of the NRPA algorithm
and thus improves the quality of the algorithm solution. It can
also be found that the Diversity-NRPA algorithm performs
differently on different types of instances with different
destruction ratios. As a whole, in our experiments, the
algorithm performs best when the destruction ratio is 40%.
For the situation in Tables II, III, and IV, where the
Diversity-NRPA algorithm is inferior to the NRPA algorithm
when the destruction ratio is 70%, this is because when the
destruction ratio is too large, the execution time of the
algorithm will be greatly increased. The execution efficiency
of the algorithm will be reduced, which will lead to a
reduction in the number of iterations performed by the
algorithm within the same period of time, which will then
affect the quality of the solution.

C. Compare Traditional Approaches with
Diversity-NRPA in Graph Coloring

Tables V, VI, VII, and VIII report the experimental results

Fig. 1. Results of Diversity-NRPA (70%) and NRPA at different numbers of iterations. The experiments monitored the values of k for both algorithms only at
iteration counts of 50, 100, and 200 without real-time data monitoring.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

of graph coloring using traditional algorithms SAT (columns
6-7), the saturation algorithm DSatur (columns 8-9), and the
Diversity-NRPA algorithm (columns 10-11) on graphs of
different difficulties from the DIMACS benchmark. In the
table, Gap1 (column 12) shows the gap between the best
experimental results of the SAT and Diversity-NRPA
algorithms on the same instances, and Gap2 (column 13)
shows the gap between the best experimental results of the
DSatur and Diversity-NRPA algorithms on the same
instances. Among them, according to the conclusion in
Section B, the destruction ratio of the Diversity-NRPA
algorithm is set to 40%.

 As shown in Table V, all methods we discuss in this paper
can handle these easy NP-m instances and find χ values. As

shown in Table VI, the performance gap between the three
algorithms on medium NP-h instances is small (Columns
12-13) (except on instance DSJC250.9). However, for the
relatively easy graph instance in the difficult NP-? instance,
the number of χ values found by the Diversity-NRPA
algorithm is significantly more than that of the algorithm
SAT and DSatur algorithms, as shown in Table VII. For the
difficult graph instance in the difficult NP-? Instance, i.e.,
very difficult instances (NP-?), the Diversity-NRPA
algorithm, under the current experimental conditions, not
find the χ value. However, when the other two algorithms
failed to find any results, the Diversity-NRPA algorithm
found relatively good coloring results, especially on the
instance qg.order100, as shown in Table VIII. This is due to

TABLE V
THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON EASY INSTANCES

Instance |V| |E|
BKS
χ

Greedy
Initial K

SAT(1) Diversity-DSatur(2)
Diversity-NRPA

(40%)(3)
Gap1 Gap2

Best Reached Best Reached Best Reached (3)-(1) (3)-(2)
le450_15a 450 8168 15 17 15 100% 15 100% 15 100% 0 0
myciel6 95 755 7 7 7 100% 7 100% 7 100% 0 0
wap05a 905 43081 50 50 50 100% 50 100% 50 100% 0 0

mug100_25 100 166 4 4 4 100% 4 100% 4 100% 0 0

Reach a ratio of χ 4/4 4/4 4/4

TABLE VI

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON MEDIUM INSTANCES

Instance |V| |E|
BKS

χ
Greedy
Initial K

SAT(1) Diversity-DSatur(2)
Diversity-NRPA

(40%)(3)
Gap1 Gap2

Best Reached Best Reached Best Reached (3)-(1) (3)-(2)
DSJC125.5 125 3891 17 23 19 100% 19 100% 17 20% -2 -2
DSJC125.9 125 6961 44 50 45 100% 45 100% 44 100% -1 -1
DSJC250.9 250 27897 72 90 86 100% 88 100% 76 100% -10 -12
DSJR500.1c 500 121275 85 88 86 100% 87 100% 86 20% -1 -2

DSJR500.5 500 58862 122 231 122 100% 123 100% 122 100% 0 -1

flat300_28_0 300 21695 28 41 33 100% 34 100% 32 20% -1 -2

Reach a ratio of χ 1/6 0/6 3/6

TABLE VII

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON DIFFICULT INSTANCES

Instance |V| |E|
BKS

χ
Greedy
Initial K

SAT(1) Diversity-DSatur(2)
Diversity-NRPA

(40%)(3)
Gap1 Gap2

Best Reached Best Reached Best Reached (3)-(1) (3)-(2)
le450_5a 450 5714 5 10 5 100% 9 100% 5 100% 0 -4
le450_5b 450 5734 5 7 5 100% 9 100% 5 100% 0 -4
le450_15c 450 16680 15 17 15 100% 16 100% 15 100% 0 -1
le450_25d 450 17425 25 29 27 100% 28 100% 25 50% -2 -3

le450_25c 450 17343 25 29 27 100% 28 100% 25 33% -2 -3

qg.order60 3600 212400 60 63 61 100% 63 100% 62 100% 1 -1

Reach a ratio of χ 3/6 0/6 5/6

TABLE VIII

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON VERY DIFFICULT INSTANCES

Instance |V| |E|
BKS
χ

Greedy
Initial K

SAT(1) Diversity-DSatur(2)
Diversity-NRPA

(40%)(3)
Gap1 Gap2

Best Reached Best Reached Best Reached (3)-(1) (3)-(2)
DSJC250.1 250 3218 4 10 9 100% 9 100% 7 100% -2 -2
DSJC250.5 250 15668 26 37 35 100% 36 100% 32 100% -3 -4

flat1000_50_0 1000 245000 15 113 113 100% 113 100% 90 75% -23 -23
flat1000_60_0 1000 245830 14 112 112 100% 112 100% 112 100% 0 0

flat1000_76_0 1000 246708 14 115 113 100% 114 100% 105 25% -8 -9

wap01a 2368 110871 41 47 43 100% 46 100% 45 100% 2 0

wap02a 2464 111742 40 46 42 100% 43 100% 42 25% 0 -1

DSJC500.5 500 62624 43 65 63 100% 62 100% 49 75% -14 -15

DSJC1000.5 1000 249826 73 114 114 100% 114 100% 89 25% -25 -25

qg.order100 10000 990000 100 106 unk unk unk unk 102 100% unk unk

Reach a ratio of χ 0/10 0/10 0/10

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

the adaptive function of the Diversity-NRPA algorithm that
continuously improves the policy while exploring the search
space. It also shows that the advantages of the
Diversity-NRPA algorithm learning policy will be more
obvious in the long-term operation of the algorithm, so it has
outstanding experimental results for difficult NP-? instances
(Table VII, Table VIII). Generally speaking, the
Diversity-NRPA algorithm is significantly better than these
two algorithms.

From the results of the experimental table in this section,
we can conclude that the Diversity-NRPA algorithm has
shown superior ability to the traditional graph coloring
algorithm on the GCP problem, so it is worthy of further
research and optimization. This further proves that using
MCTS to solve combinatorial optimization problems has a
good research prospect.

VI. CONCLUSION

In this work, we propose the Diversity-NRPA algorithm to
address the problem of the NRPA algorithm getting trapped
in the local optimum and successfully apply it to solve the
GCP. The algorithm improves the diversity of the solution by
introducing mixed sorting, destruction and reconstruction
operations. Based on the Diversity-NRPA algorithm, we
combine the domain knowledge of graph theory and apply it
to solve the GCP problem. Compared with traditional
algorithms, this algorithm shows superior performance. The
following conclusions can be drawn from the experimental
results: (1) Diversification of NRPA can effectively improve
its performance, and when using destruction and
reconstruction operations on the algorithm, the difference in
the proportion of destruction will have different impacts on
the algorithm. (2) Compared to other traditional graph
coloring algorithms, using the Diversity-NRPA algorithm
effectively improves the quality of solutions. Particularly for
difficult instances (NP-?), the learning strategy of the
Diversity-NRPA algorithm exhibits significant advantages.

In future work, other methods can be used to improve the
problem that the NRPA algorithm is prone to fall into local
optimum. Furthermore, the Diversity-NRPA algorithm can
be applied to other variants of the Graph Coloring Problem,
such as Weighted Vertex Coloring.

REFERENCES
[1] Brown J. Randall, “Chromatic Scheduling and the Chromatic Number

Problem,” Management Science, vol. 19, no. 4, pp456-463, 1972.
[2] Mehrotra Anuj and Michael A. Trick, “A Column Generation

Approach for Graph Coloring,” Informs Journal on Computing, vol. 8,
no. 4, pp344-354, 1996.

[3] Malaguti Enrico and Paolo Toth, “A Survey on Vertex Coloring
Problems,” International Transactions in Operational Research, vol. 17,
no.1, pp1-34, 2010.

[4] Brélaz Daniel, “New Methods to Color the Vertices of a Graph,”
Communications of the ACM, vol. 22, no. 4, pp251-256, 1979.

[5] Leighton Frank Thomson, “A Graph Coloring Algorithm for Large
Scheduling Problems,” Journal of Research of the National Bureau of
Standards, vol. 84, no. 6, pp489–506, 1979.

[6] Hertz Alain and D. De Werra, “Using Tabu Search Techniques for
Graph Coloring,” Computing, vol. 39, no. 4, pp345-351, 1987.

[7] Ferland J. and C. Fleurent, “Object-oriented Implementation of
Heuristic Search Methods for Graph Coloring,” Maximum Clique and
Satisfiability, No. CONF-9408161-. Univ. of Michigan, Ann Arbor,
MI (United States), 1994.

[8] Fleurent Charles and Jacques A. Ferland, “Genetic and Hybrid
Algorithms for Graph Coloring,” Annals of Operations Research, vol.
63, no. 1, pp437-461, 1996.

[9] Morgenstern Craig, “Distributed Coloration Neighborhood Search,”
No. CONF-9408161-. Univ. of Michigan, Ann Arbor, MI (United
States), 1994.

[10] Alexey Ignatiev, Antonio Morgado and Joao Marques-Silva,
“Cardinality Encodings for Graph Optimization Problems,”
International Joint Conference on Artificial Intelligence, Aug. 19-25,
Melbourne, Australia, 2017.

[11] Isabel Méndez-Díaz and Paula Zabala, “A Branch-and-cut Algorithm
for Graph Coloring,” Discrete Applied Mathematics, vol. 154, no. 5,
pp826-847, 2006.

[12] S. Gualandi and M. Chiarandini. (2019, Nov 17). Graph Coloring
Benchmarks. Available:
https://sites.google.com/site/graphcoloring/vertex-coloring.

[13] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M.
Lucas and Peter I. Cowling, etal, “A Survey of Monte Carlo Tree
Search Methods,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 1, pp1–43, 2012.

[14] Tristan Cazenave and Fabien Teytaud, “Application of the Nested
Rollout Policy Adaptation Algorithm to the Traveling Salesman
Problem with Time Windows,” Learning and Intelligent Optimization:
6th International Conference, 16-20 January, 2015, Paris, France,
pp42–54.

[15] Stefan Edelkamp, Max Gath, Tristan Cazenave and Fabien Teytaud,
“Algorithm and Knowledge Engineering for the TSPTW Problem,”
2013 IEEE Symposium on Computational Intelligence in Scheduling,
16-19 April, 2013, Singapore, pp44-51.

[16] Christopher D Rosin, “Nested rollout policy adaptation for Monte
Carlo tree search,” International Joint Conference on Artificial
Intelligence, 16–22 July, 2011, Barcelona, Catalonia, Spain, pp
649–654.

[17] Stefan Edelkamp, Eike Externest, Sebastian Kühl, and Sabine Kuske,
“Solving Graph Optimization Problems in A Framework for
Monte-Carlo Search,” International Symposium on Combinatorial
Search, vol. 8, no. 1, pp163-164, 2021.

[18] Cazenave T, Negrevergne B, and Sikora F, “Monte Carlo graph
coloring,” Monte Carlo Search. MCS 2020. Communications in
Computer and Information Science, vol 1379. Springer, Cham.
https://doi.org/10.1007/978-3-030-89453-5_8.

[19] Graf, Tobias and Marco Platzner, “Adaptive Playouts in Monte-carlo
Tree Search with Policy-gradient Reinforcement Learning,” Advances
in Computer Games. ACG 2015. Lecture Notes in Computer Science,
vol 9525. Springer, Cham.
https://doi.org/10.1007/978-3-319-27992-3_1.

[20] Ruiz, Rubén and Thomas Stützle, “A Simple and Effective Iterated
Greedy Algorithm for the Permutation Flowshop Scheduling
Problem,” European Journal of Operational Research, vol. 177, no. 3,
pp2033-2049, 2007.

[21] Culberson Joseph, “Iterated Greedy Graph Coloring and the Difficulty
Landscape,” University of Alberta, Department of Computing Science,
1992, https://books.google.com/books?id=hPs5ugAACAAJ.

[22] Stützle, Thomas and Rubén Ruiz, “Iterated Greedy,” In: Martí, R.,
Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer,
Cham. https://doi.org/10.1007/978-3-319-07124-4_10.

Wenzhu Yang was born in Weinan, Shanxi Province,
China in 1995. She received a bachelor’s degree in
engineering at Northwest Normal University in 2019
and now studying for a master’s degree at Lanzhou
Jiaotong University. Her research direction is graph
theory algorithm and applications.

Jingwen Li was born in Shenyang, Liaoning
Province, China in 1965. He is a Professor, master
tutor. The research direction is graph theory
algorithms and its applications. Since 2009, he has
overseen or participated in the completion of three
projects funded by the National Natural Science
Foundation of China (two general projects); he has
won two first prizes, one second prize, and three third
prizes at the Provincial Science and Technology
Progress Award; Over 100 academic papers have
been published by him in journals such as "Discrete

Mathematics", "Acta Mathematicae Applicatae Sinica", "Science in China
Ser.A", "Ars Combinatoria", and are indexed by SCI, EI or ISTP. A total of
more than 70 papers have been published in authoritative core journals,

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

including the "International Journal of Pure and Applied Mathematics.". He
has served as a commentator for the American Mathematical Review since
2007.

Li Wang was born in Zigong, Sichuan Province, China
in 1999. She received the bachelor’s degree in
engineering at Qiannan Normal University in 2021.
Now she is studying for master’s degree at Lanzhou
Jiaotong University. Her research direction is graph
theory algorithm and applications.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_24

Volume 50, Issue 4: December 2023

__

