
 

 
Abstract—The Graph Coloring Problem is a well-known 

NP-hard problem. Over the years, numerous scholars have 
been pursuing efficient algorithms to obtain high-quality 
solutions. Nested Rollout Policy Adaptation (NRPA) is a Monte 
Carlo Tree Search algorithm for single-player games, and it has 
been proven effective and good in combinatorial optimization 
problems. In this paper, we use for the first time the NRPA 
algorithm combined with the destruction and reconstruction 
ideas of the Iterative Greedy algorithm to solve the Graph 
Coloring Problem. First, the basic principle of the NRPA 
algorithm is introduced. Then, NRPA is extended by using 
mixed sorting, destruction and reconstruction, and the 
Diversity-NRPA algorithm is proposed, which improves the 
diversity of the algorithm. Finally, Diversity-NRPA is applied to 
solve the Graph Coloring Problem by combining it with the 
knowledge of the graph theory field. We evaluate the 
performance of Diversity-NRPA on DIMACS, a well-known 
graph benchmark instance, and compare it with traditional 
graph coloring algorithms. The experimental results show that 
the Diversity-NRPA algorithm can achieve excellent 
performance in both solution quality and search efficiency in 
solving the Graph Coloring problem. 
 

Index Terms—Combinatorial optimization, Destruction and 
reconstruction, Graph coloring, Nested rollout policy 
adaptation 
 

I. INTRODUCTION 

HE Graph Coloring Problem (GCP) can be described as 
follows: given an undirected graph G = (V, E), which has 

a set of vertices V and a set of edges E, the GCP is to color the 
vertices in V, so that two adjacent vertices have different 
colors while using the minimum number of colors ( called the 
chromatic number of G, denoted by χ(G)). The problem can 
also be expressed as partitioning the vertex set V into a 
minimum number of color groups while satisfying that two 
vertices connected by an edge belong to different color 
groups, as shown in formula (1): 
 1 2 1{{ , ,..., }: , }k

k i i i jS V V V V V V V      (1) 

where k denotes the number of color groups, i, j denote the 
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indexes of the colors and i ≠ j, 1 ≤ i, j ≤ k, 1 ≤ k ≤ |V|, and 

S denotes the search space for graph coloring. 
Over the past few decades, GCP has been intensively 

studied, mainly in two directions: exact methods and 
heuristic methods. Exact methods for solving GCP, such as 
the implicit enumeration algorithm [1] proposed by Brown in 
1972, and the Branch and Price algorithm [2] based on the 
VCP-SC formulation proposed by Mehrotra and Trick in 
1996, ect. However, these exact methods cannot solve 
instances with hundreds of vertices [3]. Since most GCP is 
NP-hard, using exact methods requires prohibitively long 
search times. Thus exact methods fail on the coloring 
problem of large instances [3]. 

To handle large instances, scholars have introduced many 
heuristic algorithms to approximately solve the problem, 
such as constructive methods [4, 5] in the 1960s and 1970s, 
local search meta-heuristics [6, 7] in the 1980s and 1990s, 
and genetic-based local search methods [8, 9] in the 1990s. 
These algorithms usually use greedy heuristics to construct 
initial solutions and improve the current solution by 
considering the best move in a given neighborhood. Among 
the many algorithms, Satisfiability (SAT) algorithm [10] is 
often used to solve GCP and performs well. The algorithm is 
based on Boolean logic, by assigning values to the variables 
of the Boolean formula one by one to find the solution that 
satisfies the formula. It is mainly used to solve Boolean 
satisfiability problems. In 2005, Méndez-Díaz [11] improved 
the classic Degree of Saturation (DSatur) algorithm based on 
Brélaz [4] by adding dynamic adjustment of the color order, 
parallel computing, etc., which effectively improved the 
performance of the algorithm to solve the GCP. However, for 
difficult graph coloring instances (NP-?) [12], the heuristic 
algorithms, due to their characteristic of single-trajectory 
local search, often lack diversification ability, making it 
difficult to find high-quality solutions. 

Recently, Monte Carlo Tree Search (MCTS) [13] has been 
used to solve combinatorial optimization problems and has 
proven effective for many such problems. For example, it has 
been used to solve problems such as the Traveling Salesman 
Problem with Time Windows [14, 15], Crosswords Puzzles 
[16], and Morpion Solitaire. It has set new records in solving 
the Morpion Solitaire and Crosswords Puzzles problems. 
Compared to traditional algorithms, there is little literature on 
using MCTS to solve GCP (except for [17, 18]). At the same 
time, algorithms based on MCTS  naturally combine random 
search with tree search, a feature that makes it possible for 
MCTS to solve GCP. 

In this paper, we first address the problem of the NRPA 
algorithm [16] in MCTS that tends to converge to local 
optimal solutions. We propose two methods to improve the 
diversity of the NRPA algorithm and name the improved 
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algorithm as Diversity-NRPA. Then, based on the 
Diversity-NRPA algorithm, the algorithm is adjusted by 
combining the specialized knowledge in graph theory to 
solve the problem that it is challenging to color the difficult 
instances of graph instances in GCP. Finally, 
Diversity-NRPA is compared with the NRPA algorithm as 
well as the traditional and popular heuristic algorithms: 
SAT(Satisfiability) and Méndez-Díaz's improved DSatur on 
the DIMACS graph benchmark instance [12] to evaluate its 
performance. 

The organization of the rest of the paper is as follows. 
Section II introduces the NRPA algorithm based on MCTS. 
Section III elaborates on Diversity-NRPA. Section IV adapts 
Diversity-NRPA to make it applicable to GCP by 
incorporating graph-theoretic domain knowledge. Section V 
validates the performance of Diversity-NRPA on the 
DIMACS graph benchmark instance. 

II. THE NESTED ROLLOUT POLICY ADAPTATION 

ALGORITHM 

NRPA is a learn a playout policy based on Monte Carlo 
Tree Search (MCTS) proposed by Rosin and given in 
Algorithm 1. This algorithm has been used to improve 
MCTS-based Go programs [19] and other programs for 
combinatorial optimization problems [17], achieving great 
success. 

The algorithm consists of two parts, an adaptive rollout 
policy and a nested structure. In the adaptive rollout policy, a 
set of weights represents the probability of each possible 
move in the game. Firstly, the weights of the policy are 
randomly initialized. Then the solution is obtained by using 
the policy in the playout algorithm, wherein the policy will 
make the solution move closer to the move with a larger 
weight. This process is repeated for N iterations, with each 
iteration using the current best sequence of solutions to adjust 
the policy in the adaptive function. 
 

 
 
The playout algorithm uses Gibbs sampling to select the 

probability proportional to the exponent of its weight as a 
legal move, as described in Algorithm 2. Finally, in the 
adaptive function,  is used to increase the weights of the 

moves in the best sequence and to decrease the weights of the 
other legal moves according to the value proportional to the 
exponent of the weights, as described in Algorithm 3. where 
  takes the value of 1 is verified to be a good value. 
 

 
 

 
 

III. DIVERSITY-NRPA 

Since NRPA is an algorithm with a self-learning policy, it 
relies on the best solution obtained from the current iteration 
to adjust the policy so that the solution is constantly close to 
the optimal solution. Therefore, if the solution sequence 
generated by the algorithm in the first iteration is not optimal, 
the algorithm still adjusts its policy based on the current 
solution sequence, and rollouts are pushed toward this 
sequence. For the same reason, this behavior will continue to 
propagate, causing the solutions obtained by the algorithm to 
gradually deviate from the optimal solution and ultimately 
lead the algorithm to fall into a local optimum. 

To address this issue, we propose two improvement 
methods: (1) Sorting nodes using DSatur meta-heuristic [20, 
21, 22] combined with random sort, and (2) inspired by the 
Iterative Greedy algorithm, a destruction and reconstruction 
operation is added at NRPA algorithm level=0. This enables 
the algorithm to better balance exploration and exploitation, 
and generate more diverse solutions, improving algorithm’s 
search efficiency and quality. 
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A. Mixed Sorting 

Since, in the NRPA algorithm, a large number of legal 
moves will make the training of samples more difficult, it is 
particularly important to reduce the number of legal moves. If 
every possible move is considered at every step, the number 
of moves will reach |V|×|C|, making the search inefficient. 
For this reason, we consider each moving vertex in a specific 
order, so that the maximum number of moves is reduced from 
|V|×|C| to |C|, which improves the execution efficiency of the 
algorithm. 

For the sorting of vertices, we combine the heuristic 
algorithm DSatur and random sorting to sort the vertices, 
where the random sorting can help prevent and break the loop 
that may occur when using DSatur. As shown in Algorithm 4, 
during the iterative process of coloring the graph using the 
NRPA algorithm, the DSatur algorithm and random sorting 
are mixed in a fixed proportion to prevent algorithm 
stagnation. Experimental results show that the convergence 
speed of NRPA can also be effectively improved by mixing 
random sorting in the DSatur algorithm. 

B. Destruction and Reconstruction in NRPA 

To address the problem that the NRPA algorithm is easy to 
fall into the local optimum, we propose a simple and effective 
method of destroying and reconstructing the NRPA 
algorithm at level=0 to improve the diversity of the GCP 
solution process to effectively avoid the algorithm from 
falling into local optimum. The main feature of this algorithm 
is that it adopts a method that first destroys the current 
solution and then reconstructs it using the existing conditions. 
As shown in Algorithm 4, we add a destruction and 
reconstruction function after the completion of the playout() 
function. First, we use the playout algorithm of NRPA to 
generate an initial solution. Then a certain percentage of 
elements are randomly selected and removed from the 
solution to destroy the current solution structure. Then, the 
solution is reconstructed to obtain a new solution. Finally, the 
final solution is selected based on the acceptance criterion. 

 

 
 

The above two methods for NRPA improvement can 
reduce rollouts being pushed into the error sequence, thus 
making the whole nested level less disturbed and improving 
the quality of the NRPA algorithm solution. 

IV. A DIVERSITY-NRPA ALGORITHM FOR GCP 

In this section, based on the Diversity-NRPA algorithm in 
section III, we have adjusted the algorithm according to the 
professional knowledge in graph theory so that the algorithm 
can solve GCP. This process includes defining the legal 
moves for vertices, sorting, coloring, objective function, 
destruction and reconstruction, and adaptive adjustments. 

Before coloring the vertices of the graph, it is necessary to 
define the possible legal moves of the vertices. A legal move 
refers to assigning a color from the set of colors to an 
uncolored vertex in the graph while satisfying the condition 
that adjacent vertices have different colors. That is, given a 
graph G=(V, E), and a set of colors C, and a legal move can be 
represented as (v, c) where v V , \

vNc C C , vN  

represents the set of neighboring vertices of v. 
According to section III, in this paper, we use a method of 

alternating between DSatur and random sorting to sort the 
nodes. The working process of this method on the GCP is as 
follows: during the DSatur sorting phase, we prioritize 
selecting the vertex with the fewest available colors as the 
next coloring vertex. When there is more than one vertex with 
a minimum number of selectable colors, the vertex with the 
most neighbors is selected. Compared with the traditional 
pre-defined vertex sorting, this method has the advantage of 
propagating GCP constraints, so DSatur is a good heuristic 
method for the vertex sorting of Diversity-NRPA. During the 
random sorting phase, the coloring order of the vertices in the 
graph is randomly determined. Compared to using DSatur 
sorting alone, random sorting helps prevent and break the 
possible loops that may occur when using DSatur. By mixing 
these two sorting methods, we not only achieve specific 
sorting of legal moves to reduce the number of moves but 
also achieve the goal of preventing the algorithm from 
stalling. 

In the process of selecting colors for the vertices in the 
graph, we first delete the colors used by its adjacent vertices 
from the possible color set of the current dyed vertex to 
prevent the algorithm from selecting colors that have been 
assigned to adjacent vertices. However, if adjacent vertices of 
the current vertex have used all available colors, the current 
vertex will have no available colors. In this case, all colors 
can be used as possible colorings for the current vertex, even 
if it does not satisfy the constraints of the GCP. 

In this paper, we establish an objective function based on 
the constraint that adjacent vertices in GCP must have 
different colors. That is, the initial total score is 2|E|, if two 
adjacent vertices in the graph have the same color, the total 
score is reduced by 2. When the score of the scoring function 
is equal to two times the number of edges in the currently 
colored graph, a solution has been found. 

As indicated in section III, in this paper, we use the method 
of destruction and reconstruction to diversify the solutions 
obtained. We apply the destruction phase to the coloring 
sequence in the solution obtained by the playout() function to 
break the existing balance. It should be noted that the solution 
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contains the coloring sequence and its corresponding score. 
The coloring sequence contains the coloring of n vertices (let 
n be the number of vertices in the current graph). It randomly 
selects a certain proportion of vertices (let the number of 
selected vertex nodes be d) and deletes the color on the 
selected vertices. The result of this process is two 
subsequences. The first is a partial sequence D  with n-d 

colored vertices, i.e., the sequence after the removal of d 
vertex colors; the second is the sequence consisting of the d 
vertices of the deleted color, which we denote as R . R  

contains the vertices in D  that must be recolored. The 

reconstruction phase starts with the sub-sequence D , and 

the uncolored vertices in this sequence are recolored using 
the same coloring scheme until all the vertices in R  are 

recolored, thereby obtaining a complete solution. Finally, 
according to the acceptance criterion, the solutions obtained 
in the playout and the solutions after the destruction and 
reconstruction are selected, and the best one is chosen as the 
final solution. The acceptance criterion we set is based on the 
solution's score, and higher-scoring solutions are retained. 

In the NRPA algorithm, the policy of the algorithm is 
adjusted using an adaptive function based on the solutions 
found so far, which makes the algorithm keep moving closer 
to the optimal solution. As shown in Algorithm 5, the 
Diversity-NRPA algorithm uses an adaptive function to 
modify the weight values of each color in the set of colors 
selected by the vertex. Among them, we modify the weight 
value of all legally moved colors. 

 

 

V. EXPERIMENTATION 

This section aims to experimentally verify the impact of 
diversity processing on the NRPA algorithm and the 
performance of our designed Diversity-NRPA algorithm 
compared to traditional graph coloring algorithms on GCP. 

A. Benchmark Instances and Implement 

We tested the algorithm on the DIMACS graph benchmark 
instances, which are widely used to evaluate graph coloring 
algorithms and are considered a standard set for experimental 
research in this field. Furthermore, since most of these 
instances have been extensively researched, the optimal 

chromatic number χ for most of them is known. These 
instances in DIMACS are classified by difficulty, and 
roughly divided into three categories: easy graphs (NP-m), 
medium graphs (NP-h), and hard graphs (NP-?), where NP-? 
indicates that the optimal chromatic number χ for this 
instance is unknown or the time required to obtain it is 
unknown. 

Since we are concerned with decision problems, i.e., 
determining whether a graph can be colored with a given 
number of colors. Therefore, it is necessary to set a 
termination condition for the algorithm. At the same time, to 
test the algorithm’s stability, it is necessary to execute the 
algorithm several times under the condition of a given 
number of colors k. We set different time limits and the 
number of executions of the algorithm based on the literature 
data and the difficulty of solving the graph. Specifically, for 
simple NP-m instances, the algorithm is executed twice, each 
time limited to 20 minutes; for medium NP-h instances, the 
algorithm is executed five times, each time limited to 30 
minutes; for the relatively easy graph instance in the difficult 
NP-? instance, the algorithm is executed six times in total, 
and the time limit for each time is 1 hour; for the difficult 
graph instance in the difficult NP-? instance, the algorithm is 
executed four times, and the time limit for each time is 2 
hours. Among them, if the algorithm finds a valid K-coloring 
for the current graph instance within the corresponding time 
limit, the value of k is subtracted by one. The process is 
repeated until the termination condition is reached. The final 
value of k obtained is the smallest number of colorings found 
by the current algorithm on the current instance, and the 
current coloring scheme is the best solution. Where the 
simple greedy algorithm determines the initial value of k, and 
the vertices are sorted according to the method described in 
Section III. In mixed sorting, DSatur sorting and random 
sorting are set at a ratio of 5:1. 

The experiments reported in this paper were conducted on 
a computer equipped with an Intel i7 12700k CPU. The 
Diversity-NRPA algorithm in Section III, the graph coloring 
algorithm in Section IV, and the SAT, DSatur, and NRPA 
algorithms used in the experiments were all implemented in 
Python and initialized with a simple greedy algorithm. We set 
the nested level to level=7 and the iteration number to N=100 
for the NRPA and Diversity-NRPA algorithms. 

We report the following statistics in the experimental 
results table. The BKS (Best-Known Score) column reports 
the best chromatic number χ that is widely recognized for the 
current instance. Note that these results were obtained using 
different algorithms, computational tools, CPUs, or GPUs 
and also under loose conditions (e.g., sufficiently long 
runtimes). When a χ is obtained for an experimental method, 
it is marked in bold in the table. The column "Best" 
represents the best result of the current method, where "unk" 
indicates that the current algorithm has not obtained a result 
under the current experimental conditions, and "Reached" 
indicates the proportion of the current method that reaches 
the best result of the algorithm in multiple solutions, which is 
used to test the stability of the algorithm. 

Due to space limitations, we have provided partial 
experimental results for different types of instances in the test 
cases (26 in total). Among these, the very difficult instance 
(NP-?) in the experimental results table (Table IV, Table VIII) 
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comes from the recognized most difficult instance. 

B. Compare NRPA with Diversity-NRPA in Graph 
Coloring  

Tables I, II, III, and IV show the experimental results of the 
Diversity-NRPA and the NRPA algorithm on DIMACS 
graph instances with different solving difficulties. In the table, 
column 1 is the name of the graph instance, column 2 is the 
number of vertices corresponding to the graph instance, 
column 3 is the number of edges corresponding to the graph 
instance, and column 5 corresponds to the initial solution 
obtained by using a simple greedy algorithm. Columns 6-7 
are the results obtained by the NRPA algorithm in the 
corresponding graph instance, and columns 8-17 correspond 
to the results obtained by the Diversity-NRPA algorithm at 

different destruction ratios. The last row shows the 
percentage of the current algorithm that achieves χ on all 
instances in the current table. 

Combining the results in Tables I, II, III, and IV, it can be 
observed that the Diversity-NRPA algorithm has better 
performance than the NRPA algorithm in the coloring results 
of the graph instances and the percentage of the coloring 
results that reach the χ value. At the same time, it can also be 
noticed that under different destruction ratios, the 
performance of the Diversity-NRPA algorithm for graph 
instances of different difficulties is also different. For easy 
NP-m instances (Table I), the Diversity-NRPA algorithm 
performs the worst when the destruction ratio is 50%, and the 
results of other destruction ratios are the same and consistent 

TABLE III 
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON DIFFICULT INSTANCES 

Instance |V| |E| 
BKS  

χ 
Greedy  
Initial K 

NRPA 
Diversity-NRPA 

(30%) 
Diversity-NRPA 

(40%) 
Diversity-NRPA 

(50%) 
Diversity-NRPA 

(60%) 
Diversity-NRPA 

(70%) 
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached 

le450_5a 450 5714 5 10 5 100% 5 100% 5 100% 5 100% 5 50% 6 100% 
le450_5b 450 5734 5 7 5 50% 5 50% 5 100% 5 50% 5 50% 5 33% 
le450_15c 450 16680 15 17 15 100% 15 100% 15 100% 15 100% 15 100% 16 100% 
le450_25d 450 17425 25 29 26 100% 25 33% 25 50% 25 50% 25 33% 26 50% 
le450_25c 450 17343 25 29 26 100% 26 33% 25 33% 26 100% 26 100% 26 33% 
qg.order60 3600 212400 60 63 62 100% 62 100% 62 100% 62 100% 62 50% 63 100% 

Reach a ratio of χ 3/6 4/6 5/6 4/6 4/6 1/6 

 

TABLE II 
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON MEDIUM INSTANCES 

Instance |V| |E| 
BKS 

χ 
Greedy  
Initial K 

NRPA 
Diversity-NRPA 

(30%) 
Diversity-NRPA 

(40%) 
Diversity-NRPA 

(50%) 
Diversity-NRPA 

(60%) 
Diversity-NRPA 

(70%) 
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached 

DSJC125.5 125 3891 17 23 18 100% 17 100% 17 40% 17 20% 17 20% 18 100% 
DSJC125.9 125 6961 44 50 44 100% 44 100% 44 100% 44 100% 44 40% 45 100% 
DSJC250.9 250 27897 72 90 76 20% 75 20% 76 100% 76 80% 76 40% 77 100% 
DSJR500.1c 500 121275 85 88 87 60% 85 80% 86 20% 86 20% 86 20% 87 60% 
DSJR500.5 500 58862 122 231 122 40% 122 100% 122 100% 122 40% 122 100% 123 100% 

flat300_28_0 300 21695 28 41 35 20% 33 100% 32 20% 33 100% 33 80% 35 100% 
Reach a ratio of χ 2/6 4/6 3/6 3/6 3/6 0/6 

 

TABLE I 
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON EASY INSTANCES 

Instance |V| |E| 
BKS 

χ 
Greedy 
Initial K 

NRPA 
Diversity-NRPA 

(30%) 
Diversity-NRPA 

(40%) 
Diversity-NRPA 

(50%) 
Diversity-NRPA 

(60%) 
Diversity-NRPA 

(70%) 
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached 

le450_15a 450 8168 15 17 15 100% 15 100% 15 100% 15 100% 15 100% 15 100% 
myciel6 95 755 7 7 7 100% 7 100% 7 100% 8 100% 7 100% 7 100% 
wap05a 905 43081 50 50 50 100% 50 100% 50 100% 50 100% 50 100% 50 100% 

mug100_25 100 166 4 4 4 100% 4 100% 4 100% 4 100% 4 100% 4 100% 
Reach a ratio of χ 4/4 4/4 4/4 3/4 4/4 4/4 

 

TABLE IV 
THE RESULTS OF NRPA AND DIVERSITY NRPA WITH DIFFERENT DESTRUCTION RATIOS ON VERY DIFFICULT INSTANCES 

Instance |V| |E| 
BKS 

χ 
Greedy 
 Initial K 

NRPA 
Diversity-NRPA 

(30%) 
Diversity-NRPA 

(40%) 
Diversity-NRPA 

(50%) 
Diversity-NRPA 

(60%) 
Diversity-NRPA 

(70%) 
Best Reached Best Reached Best Reached Best Reached Best Reached Best Reached 

DSJC250.1 250 3218 4 10 8 100% 7 25% 7 100% 7 25% 8 50% 9 100% 
DSJC250.5 250 15668 26 37 32 100% 32 100% 32 100% 32 100% 32 100% 32 100% 

flat1000_50_0 1000 245000 15 113 111 50% 90 50% 90 75% 90 50% 91 75% 91 75% 
flat1000_60_0 1000 245830 14 112 112 100% 112 100% 112 100% 112 100% 112 100% 112 50% 
flat1000_76_0 1000 246708 14 115 110 50% 106 50% 105 25% 106 25% 107 50% 110 25% 

wap01a 2368 110871 41 47 45 50% 45 50% 45 100% 45 50% 45 25% 46 100% 
wap02a 2464 111742 40 46 45 100% 43 100% 42 25% 43 100% 42 25% 45 25% 

DSJC500.5 500 62624 43 65 59 75% 51 100% 49 75% 51 100% 51 50% 53 100% 
DSJC1000.5 1000 249826 73 114 112 50% 89 25% 89 25% 89 25% 91 100% 98 100% 
qg.order100 10000 990000 100 106 102 50% 102 100% 102 100% 102 100% 102 100% 102 100% 

Reach a ratio of χ 0/10 0/10 0/10 0/10 0/10 0/10 
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with those of the NRPA algorithm; for medium NP-h 
instances (Table II), the Diversity-NRPA algorithm performs 
the best when the destruction ratio is 30%, and it performs the 
worst and yields experimental results inferior to the NRPA 
algorithm when the destruction ratio is 70%. Under other 
destruction ratios, the experimental results of the 
Diversity-NRPA algorithm are similar and all superior to the 
NRPA algorithm. For the difficult NP-? instances (Tables III, 
VI), the Diversity-NRPA algorithm performs best when the 
destruction ratio is 40%, and the experimental results are 
significantly better than the NRPA algorithm. From the 
above experimental results, it can be concluded that the 
Diversity-NRPA algorithm outperforms the NRPA algorithm 
in all other cases, except for the case where the destruction 
ratio is 70%. 

In order to further explore the reason why the experimental 
results of the Diversity-NRPA algorithm are inferior to the 
NRPA algorithm when the destruction ratio is 70%, we 
canceled the restrictions on the running time and execution 
times for all instances. And only the graph instances in which 
the Diversity-NRPA algorithm results are inferior to the 
NRPA algorithm when the destruction ratio is 70% in the 
above experimental results table are used for testing. The 
experimental results are shown in Figure 1. It can be seen that 
under the same number of iterations, the experimental results 
of the Diversity-NRPA algorithm are always equal to or 
better than those of the NRPA algorithm. As the number of 
iterations increases, the performance of the Diversity-NRPA 
algorithm has a stronger advantage. This is because as the 

algorithm’s running time increases, the NRPA algorithm falls 
into a local optimum, and the Diversity-NRPA algorithm can 
effectively avoid falling into a local optimum due to its 
diversity. 

Based on the above experiments, it can be seen that after 
adding destruction and reconstruction to the NRPA algorithm, 
the quality of the algorithm's solution is significantly 
improved. So, it is essential to introduce diversification into 
the NRPA algorithm. This method makes the algorithm better 
balance between exploration and exploitation in the search 
process, which improves the diversity of the NRPA algorithm 
and thus improves the quality of the algorithm solution. It can 
also be found that the Diversity-NRPA algorithm performs 
differently on different types of instances with different 
destruction ratios. As a whole, in our experiments, the 
algorithm performs best when the destruction ratio is 40%. 
For the situation in Tables II, III, and IV, where the 
Diversity-NRPA algorithm is inferior to the NRPA algorithm 
when the destruction ratio is 70%, this is because when the 
destruction ratio is too large, the execution time of the 
algorithm will be greatly increased. The execution efficiency 
of the algorithm will be reduced, which will lead to a 
reduction in the number of iterations performed by the 
algorithm within the same period of time, which will then 
affect the quality of the solution. 

C. Compare Traditional Approaches with 
Diversity-NRPA in Graph Coloring 

Tables V, VI, VII, and VIII report the experimental results 

Fig. 1. Results of Diversity-NRPA (70%) and NRPA at different numbers of iterations. The experiments monitored the values of k for both algorithms only at 
iteration counts of 50, 100, and 200 without real-time data monitoring. 
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of graph coloring using traditional algorithms SAT (columns 
6-7), the saturation algorithm DSatur (columns 8-9), and the 
Diversity-NRPA algorithm (columns 10-11) on graphs of 
different difficulties from the DIMACS benchmark.  In the 
table, Gap1 (column 12) shows the gap between the best 
experimental results of the SAT and Diversity-NRPA 
algorithms on the same instances, and Gap2 (column 13) 
shows the gap between the best experimental results of the 
DSatur and Diversity-NRPA algorithms on the same 
instances. Among them, according to the conclusion in 
Section B, the destruction ratio of the Diversity-NRPA 
algorithm is set to 40%. 

 As shown in Table V, all methods we discuss in this paper 
can handle these easy NP-m instances and find χ values. As 

shown in Table VI, the performance gap between the three 
algorithms on medium NP-h instances is small (Columns 
12-13) (except on instance DSJC250.9). However, for the 
relatively easy graph instance in the difficult NP-? instance, 
the number of χ values found by the Diversity-NRPA 
algorithm is significantly more than that of the algorithm 
SAT and DSatur algorithms, as shown in Table VII. For the 
difficult graph instance in the difficult NP-? Instance, i.e., 
very difficult instances (NP-?), the Diversity-NRPA 
algorithm, under the current experimental conditions, not 
find the χ value. However, when the other two algorithms 
failed to find any results, the Diversity-NRPA algorithm 
found relatively good coloring results, especially on the 
instance qg.order100, as shown in Table VIII. This is due to 

TABLE V 
THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON EASY INSTANCES 

Instance |V| |E| 
BKS 
χ 

Greedy 
Initial K 

SAT(1) Diversity-DSatur(2) 
Diversity-NRPA 

(40%)(3) 
Gap1 Gap2 

Best Reached Best Reached Best Reached (3)-(1) (3)-(2) 
le450_15a 450 8168 15 17 15 100% 15 100% 15 100% 0 0 
myciel6 95 755 7 7 7 100% 7 100% 7 100% 0 0 
wap05a 905 43081 50 50 50 100% 50 100% 50 100% 0 0 

mug100_25 100 166 4 4 4 100% 4 100% 4 100% 0 0 

Reach a ratio of χ 4/4 4/4 4/4   

 
TABLE VI 

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON MEDIUM INSTANCES 

Instance |V| |E| 
BKS 

χ 
Greedy 
Initial K 

SAT(1) Diversity-DSatur(2) 
Diversity-NRPA 

(40%)(3) 
Gap1 Gap2 

Best Reached Best Reached Best Reached (3)-(1) (3)-(2) 
DSJC125.5 125 3891 17 23 19 100% 19 100% 17 20% -2 -2 
DSJC125.9 125 6961 44 50 45 100% 45 100% 44 100% -1 -1 
DSJC250.9 250 27897 72 90 86 100% 88 100% 76 100% -10 -12 
DSJR500.1c 500 121275 85 88 86 100% 87 100% 86 20% -1 -2 

DSJR500.5 500 58862 122 231 122 100% 123 100% 122 100% 0 -1 

flat300_28_0 300 21695 28 41 33 100% 34 100% 32 20% -1 -2 

Reach a ratio of χ 1/6 0/6 3/6   

 
TABLE VII 

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON DIFFICULT INSTANCES 

Instance |V| |E| 
BKS 

χ 
Greedy 
Initial K 

SAT(1) Diversity-DSatur(2) 
Diversity-NRPA 

(40%)(3) 
Gap1 Gap2 

Best Reached Best Reached Best Reached (3)-(1) (3)-(2) 
le450_5a 450 5714 5 10 5 100% 9 100% 5 100% 0 -4 
le450_5b 450 5734 5 7 5 100% 9 100% 5 100% 0 -4 
le450_15c 450 16680 15 17 15 100% 16 100% 15 100% 0 -1 
le450_25d 450 17425 25 29 27 100% 28 100% 25 50% -2 -3 

le450_25c 450 17343 25 29 27 100% 28 100% 25 33% -2 -3 

qg.order60 3600 212400 60 63 61 100% 63 100% 62 100% 1 -1 

Reach a ratio of χ 3/6 0/6 5/6   

 
TABLE VIII 

THE RESULTS OF DIVERSITY-NRPA, SAT, AND DSATUR ON VERY DIFFICULT INSTANCES 

Instance |V| |E| 
BKS 
χ 

Greedy 
Initial K 

SAT(1) Diversity-DSatur(2) 
Diversity-NRPA 

(40%)(3) 
Gap1 Gap2 

Best Reached Best Reached Best Reached (3)-(1) (3)-(2) 
DSJC250.1 250 3218 4 10 9 100% 9 100% 7 100% -2 -2 
DSJC250.5 250 15668 26 37 35 100% 36 100% 32 100% -3 -4 

flat1000_50_0 1000 245000 15 113 113 100% 113 100% 90 75% -23 -23 
flat1000_60_0 1000 245830 14 112 112 100% 112 100% 112 100% 0 0 

flat1000_76_0 1000 246708 14 115 113 100% 114 100% 105 25% -8 -9 

wap01a 2368 110871 41 47 43 100% 46 100% 45 100% 2 0 

wap02a 2464 111742 40 46 42 100% 43 100% 42 25% 0 -1 

DSJC500.5 500 62624 43 65 63 100% 62 100% 49 75% -14 -15 

DSJC1000.5 1000 249826 73 114 114 100% 114 100% 89 25% -25 -25 

qg.order100 10000 990000 100 106 unk unk unk unk 102 100% unk unk 

Reach a ratio of χ 0/10 0/10 0/10   
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the adaptive function of the Diversity-NRPA algorithm that 
continuously improves the policy while exploring the search 
space. It also shows that the advantages of the 
Diversity-NRPA algorithm learning policy will be more 
obvious in the long-term operation of the algorithm, so it has 
outstanding experimental results for difficult NP-? instances 
(Table VII, Table VIII). Generally speaking, the 
Diversity-NRPA algorithm is significantly better than these 
two algorithms. 

From the results of the experimental table in this section, 
we can conclude that the Diversity-NRPA algorithm has 
shown superior ability to the traditional graph coloring 
algorithm on the GCP problem, so it is worthy of further 
research and optimization. This further proves that using 
MCTS to solve combinatorial optimization problems has a 
good research prospect. 

VI. CONCLUSION 

In this work, we propose the Diversity-NRPA algorithm to 
address the problem of the NRPA algorithm getting trapped 
in the local optimum and successfully apply it to solve the 
GCP. The algorithm improves the diversity of the solution by 
introducing mixed sorting, destruction and reconstruction 
operations. Based on the Diversity-NRPA algorithm, we 
combine the domain knowledge of graph theory and apply it 
to solve the GCP problem. Compared with traditional 
algorithms, this algorithm shows superior performance. The 
following conclusions can be drawn from the experimental 
results: (1) Diversification of NRPA can effectively improve 
its performance, and when using destruction and 
reconstruction operations on the algorithm, the difference in 
the proportion of destruction will have different impacts on 
the algorithm. (2) Compared to other traditional graph 
coloring algorithms, using the Diversity-NRPA algorithm 
effectively improves the quality of solutions. Particularly for 
difficult instances (NP-?), the learning strategy of the 
Diversity-NRPA algorithm exhibits significant advantages. 

In future work, other methods can be used to improve the 
problem that the NRPA algorithm is prone to fall into local 
optimum. Furthermore, the Diversity-NRPA algorithm can 
be applied to other variants of the Graph Coloring Problem, 
such as Weighted Vertex Coloring. 
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